Spine constructions for branching populations with interactions. Application to a Yule process

Supervisors: Coquille Loren (Institut Fourier), Marguet Aline (Inria), Smadi Charline (Inrae)

cnrs

PERSYVAL - Lab

Charles Medous (Institut Fourier)

MMB Aussois 2023

Innía

4 juillet 2023

1 Structured branching process with interactions

2 Spinal construction

3 Yule process with interactions

Definition of the process $(\boldsymbol{\nu}_s)_{s\geq 0}$

 $\mathsf{Type} = (\mathsf{size}, \mathsf{position}, \mathsf{gender}, ...) \in \mathcal{X} \subset \mathbb{R}^d.$

Notations

• Offspring size : $N \sim (p_n(X_s^v, \boldsymbol{\nu}_s, s))_{n \geq 0}$.

• Type distribution at birth :

$$(\mathcal{Y}_1, \cdots, \mathcal{Y}_n) \sim K_n (X_s^v, \boldsymbol{\nu}_s, s, \cdot).$$

• Deterministic dynamics between jumps : $\dot{x}_s = \mu(x_s, \boldsymbol{\nu}_s, s)$.

イロト イヨト イヨト

Structured branching process with interactions

3 Yule process with interactions

Charles Medous (Institut Fourier)

MMB Aussois 2023

4 juillet 2023

2/11

3 N 3

Size-biased tree [CR88], [LPP95]

We assume the following parameters to be constant :

- Branching rate; $B(x, \nu, t) = B$,
- Reproduction law; for all $k\geq 0$, $p_k(x,\nu,t)=p_k$

$$\mathbb{P}(\text{"having }k \text{ children"}) = p_k$$

$$\widehat{p}_k = \widehat{\mathbb{P}}(\text{"having }k \text{ children"}) := \frac{kp_k}{m}$$

where $m:=\sum_{k\geq 0}kp_k$ is the mean number of children. $\bullet~{\rm Spine}\to \widehat{p}_k$

• Other individuals $\rightarrow p_k$

Type at birth of the k children $\sim K_k(x_t, \boldsymbol{\nu}_t, t, \cdot)$ Deterministic dynamics between jumps : $\dot{x}_t = \mu(x_t, \boldsymbol{\nu}_t, t)$

Spinal process

Spinal process BP (B, p_k) Branching property Ш $\overline{\mathsf{BP}}(B, p_k)$ T_1 Time 0

Spinal process

3 N 3

Spinal process

Many-to-One formula without interactions, [BDMT11]

$$\mathbb{E}\left[\sum_{u\in\mathbb{G}(t)}F\left((X^u_s)_{0\leq s\leq t}\right)\right] = \mathbb{E}\left[e^{B(m-1)t}F\left((Y_s)_{0\leq s\leq t}\right)\right]$$

Charles Medous (Institut Fourier)

Spinal trees and Many-to-One formula

- Type space \mathcal{X} finite or countable
- $\mu(x,\nu,t) = 0$
- $B(x,\nu,t) = B(x,\nu)$
- For all $n\geq 0, \ p_n(x,\nu,t)=p_n(x,\nu)$ and $K_n(x,\nu,t,\cdot)=K_n(x,\nu,\cdot)$

Many-to-One formula with interactions, [Ban21]

$$\mathbb{E}\left[\sum_{u\in\mathbb{G}(t)}F\left((X_s^u)_{0\leq s\leq t}\right)\right] = C\mathbb{E}\left[\frac{1}{\psi\left(\mathbf{Y}_t,\chi_t\right)}\exp\left(\int_0^t\frac{\mathcal{G}\psi\left(\mathbf{Y}_s,\chi_s\right)}{\psi\left(\mathbf{Y}_s,\chi_s\right)}\mathrm{d}s\right)F\left((\mathbf{Y}_s)_{0\leq s\leq t}\right)\right].$$

э

5/11

Spinal trees and Many-to-One formula

- Type space \mathcal{X} finite or countable
- $\mu(x,\nu,t) = 0$
- $B(x,\nu,t) = B(x,\nu)$
- For all $n\geq 0, \ p_n(x,\nu,t)=p_n(x,\nu)$ and $K_n(x,\nu,t,\cdot)=K_n(x,\nu,\cdot)$

Many-to-One formula with interactions, [Ban21]

With $\psi \equiv 1$

$$\mathbb{E}\left[\sum_{u\in\mathbb{G}(t)}F\left((X_s^u)_{s\leq t}\right)\right] = \mathbb{E}\left[e^{\int_0^t B(Y_s,\chi_s)(m(Y_s,\chi_s)-1)\mathrm{d}s}F\left((Y_s)_{s\leq t}\right)\right].$$

э

5/11

Spinal process $(Y_t, \chi_t)_{t \ge 0}$

We denote χ_+ the new population after a branching event

Biased distributions using $\psi_{\phi}(x, \chi, t) := \psi(x, \langle \chi, \phi(\cdot, t) \rangle, t)$ Spine

$$\widehat{p}_{k}^{*}\left(oldsymbol{x}_{e},oldsymbol{\chi}
ight) \propto rac{\sum_{i=1}^{k}\psi_{\phi}\left(y_{i},oldsymbol{\chi}_{+}
ight)}{\psi_{\phi}\left(oldsymbol{x}_{e},oldsymbol{\chi}
ight)}p_{k}\left(oldsymbol{x}_{e},oldsymbol{\chi}
ight).$$

The j-th child becomes the new spine with probability

$$rac{\psi_{\phi}\left(y_{oldsymbol{j}},oldsymbol{\chi}_{+}
ight)}{\sum_{i=1}^{k}\psi_{\phi}\left(y_{i},oldsymbol{\chi}_{+}
ight)}.$$

Outside the Spine

$$\widehat{p}_{k}\left(x, \boldsymbol{x_{e}}, \boldsymbol{\chi}
ight) \propto rac{\psi_{\phi}\left(x_{e}, \boldsymbol{\chi}_{+}
ight)}{\psi_{\phi}\left(x_{e}, \boldsymbol{\chi}
ight)} p_{k}\left(x, \boldsymbol{\chi}
ight).$$

Spinal process $(Y_t, \boldsymbol{\chi}_t)_{t \geq 0}$

We denote χ_+ the new population after a branching event

Biased distributions using $\psi_{\phi}(x, \chi, t) := \psi(x, \langle \chi, \phi(\cdot, t) \rangle, t)$ Spine

$$\widehat{p}_{k}^{*}\left(oldsymbol{x_{e}},oldsymbol{\chi}
ight) \propto rac{\sum_{i=1}^{k}\psi_{\phi}\left(y_{i},oldsymbol{\chi}_{+}
ight)}{\psi_{\phi}\left(oldsymbol{x_{e}},oldsymbol{\chi}
ight)}p_{k}\left(oldsymbol{x_{e}},oldsymbol{\chi}
ight).$$

Outside the Spine

$$\widehat{p}_{k}\left(x, \boldsymbol{x_{e}}, \boldsymbol{\chi}\right) \propto \frac{\psi_{\phi}\left(\boldsymbol{x_{e}}, \boldsymbol{\chi}_{+}\right)}{\psi_{\phi}\left(\boldsymbol{x_{e}}, \boldsymbol{\chi}\right)} p_{k}\left(x, \boldsymbol{\chi}\right).$$

If $\psi^t_\phi \equiv 1$,

$$\widehat{p}_{k}\left(x, \boldsymbol{x}_{e}, \boldsymbol{\chi}\right) = p_{k}\left(x, \boldsymbol{\chi}\right) \quad \text{et} \quad \widehat{p}_{k}^{*}\left(\boldsymbol{x}_{e}, \boldsymbol{\chi}\right) = \frac{kp_{k}\left(\boldsymbol{x}_{e}, \boldsymbol{\chi}\right)}{m\left(\boldsymbol{x}_{e}, \boldsymbol{\chi}\right)}$$

For a given function ψ_{ϕ} , we denote $(Y_t, \chi_t)_{t \geq 0}$ the associated spinal process.

Theorem

Under non-explosion assumptions for both processes, for all $t \ge 0$, for every initial population z and every positive function F,

$$\mathbb{E}_{z}\left[\sum_{u\in\mathbb{G}(t)}F\left((X_{s}^{u})_{0\leq s\leq t}\right)\right] = C(z)\mathbb{E}_{z}\left[\frac{1}{\psi_{\phi}\left(Y_{t},\chi_{t},t\right)}\exp\left(\int_{0}^{t}\frac{\mathcal{G}\psi_{\phi}\left(Y_{s},\chi_{s},s\right)}{\psi_{\phi}\left(Y_{s},\chi_{s},s\right)}\mathrm{d}s\right)F\left((Y_{s})_{0\leq s\leq t}\right)\right].$$

Structured branching process with interactions

2 Spinal construction

Type = mass $x \in \mathbb{R}^*_+$ of each individual, growing as $\dot{x} = \mu(t)x$. Branching events :

- Λ is a random variable in [0,1]
- Θ is a random variable in (0,1)

Yule process with growth and loss events

We assume

$$K_{\rm div} := \mathbb{E}\left[\frac{1}{\Lambda(1-\Lambda)}\right] < +\infty, \qquad K_{\rm loss} := \mathbb{E}\left[\frac{1}{\Theta}\right] < +\infty.$$

We take $\psi(x,y,t):=xe^{-y}$ and $\phi(x,t):=\ln{(xK_{\rm div}r(t))}.$ We thus get

$$\psi_{\phi}(x,\nu_t,t) = \frac{x}{\prod_{u \in \mathbb{G}(t)} X_t^u K_{\text{div}} r(t)}$$

Branching rates of the associated spinal process

$$\begin{array}{c} x \\ & 1 \\ & & \\ \hline \end{array} \begin{array}{c} & & \\ & &$$

$$K_{\rm div} := \mathbb{E}\left[\frac{1}{\Lambda(1-\Lambda)}\right], \quad K_{\rm loss} := \mathbb{E}\left[\frac{1}{\Theta}\right], \quad \psi_{\phi}(x,\nu_t,t) = \frac{x}{\prod_{u \in \mathbb{G}(t)} X_t^u K_{\rm div} r(t)}$$

Branching rates of the spinal process

Yule process with growth and loss events

$$K_{\rm div} := \mathbb{E}\left[\frac{1}{\Lambda(1-\Lambda)}\right], \quad K_{\rm loss} := \mathbb{E}\left[\frac{1}{\Theta}\right], \quad \psi_{\phi}(x,\nu_t,t) = \frac{x}{\prod_{u \in \mathbb{G}(t)} X_t^u K_{\rm div} r(t)}.$$

Algorithm's sketch

Acknowledgements

- Sangster Maaike (Inria/Liphy, Grenoble)
- Barthelemy Elisabeth (Liphy, Grenoble)
- Billiard Sylvain (EEP, Lille)
- Bansaye Vincent (CMAP, Palaiseau)

Thank you for your attention !

Bibliographie	
	Vincent Bansaye. Spine for interacting populations and sampling. <i>arXiv preprint arXiv :2105.03185</i> , 2021.
	Vincent Bansaye, Jean-François Delmas, Laurence Marsalle, and Viet Chi Tran. Limit theorems for Markov processes indexed by continuous time Galton–Watson trees. The Annals of Applied Probability, 21(6) :2263–2314, 2011.
	Brigitte Chauvin and Alain Rouault. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probability theory and related fields, 80(2) :299–314, 1988.
	Russell Lyons, Robin Pemantle, and Yuval Peres. Conceptual proofs of LlogL criteria for mean behavior of branching processes. <i>The Annals of Probability</i> , pages 1125–1138, 1995.

11/11