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1 Discrete branching processes in random environment

1.1 Galton-Watson processes

These processes have their origin in the study of the extinction probabilities of family names in
Great Britain in the nineteenth century. Let ξ be an integer-valued random variable with law

P(ξ = k) = pk, k ≥ 0,

1
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and Yn be the population size at time n. The generation n + 1 is composed of the descendants of
the individuals of the generation n, and conditionally to Yn, the individual (1 ≤ i ≤ Yn) of the
generation n generates ξ(i, n) descendants where the variables ξ(i, n) and ξ(j, n) are independent if
i 6= j, and of the same law as ξ, which can be written as follows:

Yn+1 =
Yn

∑
i=1

ξ(i,n).

This procedure is then iterated, the variables ξ(i, n) being independent of the variables ξ(j, p) for
i 6= j or p 6= n. The Markov chain (Yn, n ≥ 0) is called Galton-Watson process. If Y(x) is a Galton-
Watson process with an initial number of individuals Y0 = x, we have the branching property
which follows directly from the definition of the process:

Y(x + y) L= Y(1)(x) + Y(2)(y)

where Y(1) and Y(2) are independent copies of Y and L
= stands for equality in law. In terms of

modelling, this property implies the absence of interaction between individuals. It is therefore
well suited when considering small populations or populations with access to a large amount of
resources.

Figure 1: Illustration of the branching property

In the absence of precision, we will assume that Y0 = 1. For s ∈ [0, 1], the generating function f
of the random variable ξ is defined by:

f (s) := E[sξ ] =
∞

∑
i=0

pisi, s ∈ [0, 1].

It characterises the law of ξ as

P(ξ = k) =
1
k!

f (k)(0).

We then notice that for any (s, n) ∈ [0, 1]×N,

E[sYn+1 ] = E[E[sYn+1 |Yn]] = E[E[sξ(1,n)+ξ(2,n)+...+ξ(Yn ,n) |Yn]] = E[ f (s)Yn ],

which entails, by iterating:

E[sYn ] = f (n)(s) = f ◦ f ... ◦ f︸ ︷︷ ︸
n times

, (s, n) ∈ [0, 1]×N.
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The moments of the process, when they exist, can be expressed using the derivatives of f :

f ′(1) ←
s→1

f ′(s) = E[Y1sY1−1] →
s→1

E[Y1],

( f ′(1))n = ( f (n))′(1) ←
s→1

( f (n))′(s) = E[YnsYn−1] →
s→1

E[Yn].

which leads to the following definition which will be justified later.

Definition 1.1. If ln f ′(1) is strictly less than 0, equal to 0, or strictly greater than 0, then the process is
called subcritical, critical or supercritical respectively.

This classification is equivalent to distinguishing processes that on average decrease, remain
stable or increase. We restrict ourselves to the case p0 + p1 < 1; f is then strictly convex and
increasing over [0, 1].

Proposition 1.2. The subcritical and critical processes almost surely die out. The supercritical process
survives with positive probability.

Knowing the probability of extinction, a natural question is to look at the extinction rates of
processes that almost certainly die out, and at the long-time behaviour of processes that survive.
Let us introduce the Markov chain

Wn := ( f ′(1))−nYn, n ∈N.

Then

E[Wn+1|Wn] = E[Yn+1|Yn]( f ′(1))−(n+1) = E

[
Yn

∑
i=1

ξ(i,n)

∣∣∣Yn

]
( f ′(1))−(n+1)

= Yn f ′(1)( f ′(1))−(n+1) = Wn.

Such a process is called a (non-negative martingale) and has many properties. In particular it almost
surely converges to a non-negative random variable W. This entails that in most cases Yn roughly
behaves as ( f ′(1))n.

We have the following possibilities for the long time survival probability of the process (we
exclude the trivial case when the process is deterministic).

Theorem 1.3.

• Subcritical process: If ln f ′(1) < 0 and E[Y1 ln+ Y1] < ∞, there exists a finite constant c such that

P(Yn > 0) ∼ c( f ′(1))n, (n→ ∞).

• Critical process: If ln f ′(1) = 0,

P(Yn > 0) ∼ 2
nVar(Y1)

, (n→ ∞).

• Supercritical process: If ln f ′(1) > 0 and E[Y1 ln+ Y1] < ∞, then E[W] = 1, and

P(W = 0) < 1.
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We may easily obtain an upper bound for the subcritical case using the Markov inequality:

P(Yn > 0) = P(Yn ≥ 1) ≤ E[Yn]

1
= ( f ′(1))n.

For the critical case, we notice that

1
1− f (s)

− 1
1− s

=
1

(1− f (s))(1− s)
( f (s)− s).

In the vicinity of 1,

f (s)− s ∼ Var(Y1)

2
(1− s)2

and
1− f (s) = f (1)− f (s) ∼ f ′(1)(1− s) = 1− s.

Hence for s close to 1,

1
1− f (s)

− 1
1− s

=
1

(1− f (s))(1− s)
Var(Y1)

2
(1− s)2 ∼ Var(Y1)

2
.

Moreover, as Yn goes to 0 as n goes to inifinity, f (n)(s) goes to 1 uniformly for any s ∈ [0, 1] and

1
1− f (n)(s)

− 1
1− s

=
n−1

∑
k=0

(
1

1− f (k+1)(s)
− 1

1− f (k)(s)

)
∼ n

Var(Y1)

2

for large n. Noticing that
P(Yn > 0) = 1− f (n)(0)

ends the proof.

1.2 Galton-Watson processes in variable environment

In the Galton-Watson process, the law of birth is the same for each generation, which means that the
population lives in a constant environment. In the early 1970s, Smith and Wilkinson [SW69] and
later Athreya and Karlin [AK71b, AK71a] sought to understand the effect of the environment on
population dynamics. They introduced variability in birth laws reflecting environmental variability
over generations. In the case of a population of annual plants, this variability may reflect the
variability in sunshine, rainfall or pollination rate from one year to the next, variables that have a
great influence on the quantity of offspring produced by the plants.

We thus assume now that the offspring distributions may depend on the generation n. For
instance we can assume that there are dry and rainy years.

• When the year is rainy, the environment is denoted Er, and p(r)2 = p(r)3 = 1/2. Hence
individuals have two or three children with equal probabilities.

• When the year is dry, the environment is denoted Ed, and p(d)0 = p(d)1 = 1/2. Hence individuals
have zero or one child with equal probabilities.

• A possible sequence of environment is for instance (Er, Ed, Ed, Er, Ed, Ed, ...)
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More generally, The state of the environment at time n− 1 is denoted En. Associated with this
state is a sequence of real numbers (p(n)k , k ∈ N) where p(n)k is the probability that an individual
of the generation n− 1 produces k descendants in the generation n. The generating function fn at
generation n is thus

fn(s) := E[sZn ] =
∞

∑
k=0

p(n)k sk, (s, n) ∈ [0, 1]×N.

The generating functions of the inhomogeneous Markov chain (Zn, n ∈ N) corresponding to
the sequence of population sizes in the environment (E1, ..., En, ...) are then obtained by iterating
the successive generating functions. If we denote again ξ(i,n) the number of offspring of the ith
individual of generation n− 1:

E[sZn ] = E[sξ(1,n−1)+ξ(2,n−1)+...+ξ(Zn−1,n−1) ]

= E[E[sξ(1,n−1) ]Zn−1 ]

= E[ fn(s)Zn−1 ]

= E[ fn−1( fn(s))Zn−2 ]

= ...

= f1 ◦ f2 ◦ ... ◦ fn(s), (s, n) ∈ [0, 1]×N.

Therefore, the average of the population size Zn in the environment (E1, ..., En) is:

E[Zn] = f ′1(1)... f ′n(1) =: eSn , n ∈ N, (1)

where Sn is defined by:

S0 = 0, Sn = ln f ′1(1) + ... + ln f ′n(1), n ∈N. (2)

1.3 Galton-Watson processes in iid random environments

We will now consider that the environments are themselves random variables, and will focus on the
case where they are chosen randomly with the same law at each generation. In particular, their law
does not depend on the population size Zn. We refer to [BGK05, VDS13] or the recent monograph
[KV17] for known results on critical and sub-critical processes (see Definition 1.4). We also refer to
[BB11, BB13, Böi14] for results concerning the supercritical case. We will limit our presentation to
the monotype case and to iid environments.

A Galton-Watson process (Zn, n ∈N) in a random environment (GWRE) can thus be described
in terms of its generating functions ( fn, n ∈ N). As the law of the sequence of environments
(E1, ..., En, ...) does not depend on anything else we can first draw the sequence, then study the
population Z in this particular environment, and then take the average on the possible sequences of
environments. This is called the quenched approach and has proven to be very useful to study the
questions of extinction of GWRE (see [AGK+05] for instance).

The process S := (Sn, n ∈ N) defined in (2) is thus a random walk. We will see that this
random walk is intimately linked to the long time behaviour of the process (Zn, n ∈N). But before
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specifying more precisely this relation, we may already notice that:

P(Zn > 0|E1, ..., En) = min
0≤i≤n

P(Zi > 0|E1, ..., En)

≤ min
0≤i≤n

E[Zi|E1, ..., En] = exp(min(S0, S1, ..., Sn)), (3)

where we applied Markov inequality, Equality (1) and Definition (2). If the random walk (Sn, n ∈N)

is not degenerate (i.e. we exclude the case S ≡ 0), it has only three possible a.s. behaviours at
infinity [Fel71]: limn→∞ Sn = +∞, limn→∞ Sn = −∞, and lim supn→∞ Sn = − lim infn→∞ Sn = +∞,
which correspond respectively to cases E[ln f ′1(1)] < 0, > 0, and = 0 when E[| ln f ′1(1)|] < ∞. In
the rest of this presentation and for the sake of simplicity we will restrict ourselves to the case where
ln f ′1(1) is integrable. It is possible to define a classification for GWRE’s similar to the Definition 1.1:

Definition 1.4. If E[ln f ′1(1)] is strictly less than 0, equal to 0, or strictly greater than 0, the Galton-Watson
process in a random environment is called subcritical, critical or supercritical.

Inequality (3) is sufficient to show that the process (Zn, n ∈N) almost certainly gets extinct in
subcritical and critical cases. We have in fact the equivalent of Theorem 1.3:

Proposition 1.5 (Theorem 3.1 [SW69]). Subcritical and critical processes get extinct almost surely. The
supercritical process survives with a positive probability if E[| ln(1− f1(0))|] < ∞.

The condition E[| ln(1− f1(0))|] < ∞ excludes the possibility that a sequence of "catastrophic"
environments leads to the death of the population within a few generations.

Finally, we have the following equivalent of Theorem 1.3 concerning the extinction rate of the
critical case and the long time behaviour of the supercritical process in the case of survival:

Theorem 1.6 ([AK71a, Kap74, Koz76, GK01]).

• Critical process: If E[ln f ′1(1)] = 0, 0 < Var[ln f ′1(1)] < ∞ and f ′1(1) has a non-lattice distribution,
there are positive finite constants c1 and c2 such that

P(Zn > 0) ∼ c1P(min(S0, ..., Sn) ≥ 0) ∼ c2√
n

, (n→ ∞).

• Supercritical process: If E[ln f ′1(1)] > 0 and E[Z1 ln Z1/ f ′1(1)] < ∞, then the martingale
(Zn exp(−Sn), n ∈N) has a non-zero finite limit on the non-extinction event of the process:

lim
n→∞

Zne−Sn = W a.s., P(W > 0) = P(∀n ∈N, Zn > 0|Z0 = 1) > 0.

The behaviour of the subcritical process is more complex in the case of GWREs than in the case of
conventional Galton-Watson processes. Knowing that E[ln f ′1(1)] < 0 is not sufficient to deduce the
behaviour of the process in long time. The extinction rate in the subcritical case has been studied, in
more and more general cases by Dekking [Dek87], D’Souza and Hambly [DH97], Guivarch and Liu
[GL01], and finally by Geiger, Kersting and Vatutin [GKV03]. We have the following asymptotics
for the probability of survival in the subcritical case (recall that S1 = ln f ′(1)).



1 DISCRETE BRANCHING PROCESSES IN RANDOM ENVIRONMENT 7

Figure 2: Idea (Afanasyev et al 2005): Decomposition with respect to the minimum of the

auxiliary random walk S. In the critical and weakly subcritical cases, surviving ' experiencing

particularly good environments

Theorem 1.7 ([GKV03]). Under additional moment assumptions we have the following asymptotics, where
c denotes a positive finite constant whose value can change from one line to another:

• Strong subcritical case: If E[ f ′1(1) ln f ′1(1)] < 0, then

P(Zn > 0) ∼ c(E[ f ′1(1)])
n, (n→ ∞).

• Intermediate subcritical case: If E[ f ′1(1) ln f ′1(1)] = 0, then

P(Zn > 0) ∼ c(E[ f ′1(1)])
nn−1/2, (n→ ∞).

• Weak subcritical case: If 0 < E[ f ′1(1) ln f ′1(1)] < ∞, then

P(Zn > 0) ∼ Cc1P(min(S0, ..., Sn) ≥ 0) ∼ cγnn−3/2, (n→ ∞)

where γ := infτ∈[0,1] E[ f ′1(1)
τ].

Hence when the variability of the environment is small, the extinction probability is similar
to the one of the subcritical Galton-Watson process. For an average growth rate E[Z1|Z0 = 1] =
E[ln f ′1(1)] < 0, the exponential extinction rate depends on the law of the environment only if the
environment is sufficiently variable, more precisely when E[ f ′1(1) ln f ′1(1)] > 0. In order to see that
the variability of the environment is linked to this inequality it can be noted that for this inequality
to be satisfied f ′(1) must take large values. Moreover, since E[ln f ′(1)] is negative in the subcritical
case, f ′(1) must also take small values.

To understand better the reasons of surviving a long time for a population, Bansaye [Ban09b]
has studied the following question: what can we say about environments when we condition on
the surviving of the population during a large number of generations? In fact the answer is not
the same if we consider the strong and intermediate subcritical cases or if we consider the weak
subcritical case. In the first two cases, conditionally on population survival, the survival probability
of the branching process in the selected environment is still zero. This means that the survival
is due to a particularly high reproduction of an individual line in a subcritical environment. In
the weak subcritical case, conditioning on the survival of the population selects only supercritical
environments, which means that the sequence of selected environments has a.s. a positive survival
probability.
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2 (Stable) Continuous state branching processes in random environment

2.1 (Stable) Continuous state branching processes

Continuous state branching processes (CSBPs) are the analog in continuous time and space of
Galton-Watson processes. They were introduced by Jirina [Jir58] and studied by many authors. Let
us mention in particular [Lam67a, Lam67b, Gre74, Gri74, Bin76] for the first works on the subject,
and [Kyp06, Li10] for recent reviews. A CSBP Y = (Yt, t ∈ R+) is a strong Markov process with
values in R+ and which satisfies the branching property. Y admits 0 and ∞ as absorbing points,
and Px denotes the law of the process starting from x. Lamperti [Lam67b] has shown that CSBPs
are the only possible scaling limits of Galton-Watson processes and that, conversely, any CSBP can
be obtained as such a scaling limit.

CSBPs are spectrally positive, with jumps representing macroscopic birth events (an infinitesimal
individual gives birth to a sufficiently large number of infinitesimal individuals to be visible
macroscopically).

In this course, we will only focus on a particular class of CSBP’s: the stable CSBP’s. They are
parametrized by a real number β ∈ (−1, 0) ∪ (0, 1]. In our applications we will only need to take
β ∈ (−1, 0) ∪ {1}. For these parameters, the stable CSPB’s have the following form:

• If β = 1 the process, called Feller diffusion [Fel71], is continuous. It may be realised as the
unique strong solution to the stochastic differential equation

Yt = Y0 + g
∫ t

0
Ysds +

∫ t

0

√
2σ2YsdBs (4)

where B is a standard Brownian motion. In this case, we may prove that,

Ex[Yt] = xegt.

g is thus the Malthusian parameter of the population dynamics. We then have the analog of
Definitions 1.1 and 1.4.

Definition 2.1. If g is strictly greater than 0, equal to 0, or strictly less than 0, the CSBP Y is called
supercritical, critical or subcritical, respectively.

In the case of the Feller diffusion, the events of extinction

Ext :=
{

lim
t→∞

Yt = 0
}

and the event of absorption
Abs := {∃t < ∞, Yt = 0}

coincinde (which is not always the case; for example the CSBP Y = (Y0e−t, t ≥ 0) satisfies for
every x ∈ R?

+, Px(Ext) = 1 and Px(Abs) = 0). We have the analog of Propositions 1.2 and
1.5.

Proposition 2.2. The subcritical and critical processes almost surely die out. The supercritical process
survives with positive probability.
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Asymptotics for the survival probability at large time may be obtained and they are similar to
the ones of Galton-Watson processes. This is a consequence of the fact that Feller diffusion
is a scaling limit of Galton-Watson process sequences whose reproduction law has a finite
variance. If

Y
(n)
t :=

1
n

Y(n)
bntc, t ≥ 0

where (Y(n), n ∈ N) is a sequence of GW processes with reproduction law ξ and satisfying
Y(n)

0 = n and Var(Y(n)
1 ) < ∞ for all n ∈ N, then (Y

(n)
t , t ∈ [0, T]) converges in law when n

tends towards infinity (here T is a positive real) towards a Feller diffusion on the interval
[0, T].

• If β ∈ (−1, 0). In this case, the process may be realized as the unique strong solution to the
SDE

Yt = Y0 + g
∫ t

0
Ysds +

∫ t

0

∫ ∞

0

∫ Ys−

0
zR(ds, dz, du), (5)

where R(ds, dz, du) is a Poisson random measure with intensity dsρ(dz)du. The jump measure
ρ is given by:

ρ(dx) =
cββ(β + 1)

Γ(1− β)xβ+2 , x > 0 (6)

(with cβ < 0). Notice that as β < 0, ∫ ∞
xρ(dx) = ∞.

These processes have thus an infinite mean, and as we will see they may explode (reach
infinity) in finite time.

2.2 (Stable) Continuous state branching processes in Lévy random environment

The construction of CSBPs as scaling limits of Galton-Watson processes raises a natural question. Is it
possible, like for the Galton-Watson processes, to immerse a CSBP in a random environment, in order
to take into account the variability of the living and reproductive conditions of the (infinitesimal)
individuals constituting the modelled populations? Here the question is more delicate. Indeed,
to make the environment vary in a discrete framework we consider a new reproduction law at
each discrete time step (or generation). In the continuous time case, the environment can vary in
multiple ways: continuously, abruptly, more or less frequently, with a variable amplitude...

In the case where the environment can be described by a Lévy process, similarly as in the case of
BPREs where the environment could be described by the random walk S, CSBPs in (Lévy) random
environment can be obtained as scaling limits of BPREs. Historically, the existence of branching
diffusions in Brownian environments constructed as scaling limits of Galton-Watson processes
in random environment has been conjectured by Keiding [Kei75] and rigorously established by
Kurtz [Kur78]. Recent work [BS15, BCM19] has focused on the scaling limits of a large class of
branching processes in variable environments (in particular a reproduction law that could have
infinite variance, bottlenecks, interactions between individuals,...), and the authors of these works
obtained, among other processes, a large class of CSBPs in Lévy environments.
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Like CSBPs, CSBPs in Lévy environment can be seen as solutions to SDEs. The realization
of generalized branching processes (with interactions, immigration, bottlenecks,...) in variable
environments as the only strong solution of SDEs is currently the subject of much work (see
for example [PP18, HLX18, FL20]). The proofs of these results are generalizations of techniques
introduced by Li and co-authors (see for example [FL10, DL12, LP12]). We will not need to apply
these results in their full generality, and so we present only the case of interest for us, namely the case
of a branching process (without additional interactions or immigration) in a random environment
given by compouned Poisson process.

2.3 (Stable) Continuous state branching processes with catastrophes

For the applications we will consider, we are interested in modeling catastrophes which occur at
random and kill each individual with some probability (depending on the catastrophe). In terms of
the CSBP representing the scaling limit of the size of a large population, this amounts to letting the
process make a negative jump, i.e. multiplying its current value by a random fraction. The process
that we obtain is still Markovian whenever the catastrophes follow a time homogeneous Poisson
Point Process.

The process Z that we consider in this section is then called a CSBP with catastrophes. Roughly
speaking, it can be defined as follows: The process Z follows the SDE (4) or (5) between catastrophes,
which are then given in terms of the jumps of a Lévy process with bounded variation paths. Thus
the set of times at which catastrophes occur may have accumulation points, but the mean effect of
the catastrophes has a finite first moment. When a catastrophe with effect θt occurs at time t, we
have

Zt = θtZt−.

Let us now be more precise. The law of the catastrophes does not depend on the value of the
process Z and are given by a Poisson random measure N1 = ∑i∈I δti ,θti

on [0, ∞) × [0, ∞) with
intensity rdtκ(dθ) with r ∈ R+ such that κ({0}) = 0. The jump process

∆t =
∫ t

0

∫
(0,∞)

log(θ)N1(ds, dθ) = ∑
s≤t

log(θs),

is thus a Lévy process with paths of bounded variation, which is non identically zero. The choice of
this representation, which is equivalent to the measure N1, stems from the following observation:
when a catastrophe of intensity θt occurs, the population size is multiplied by a factor θt = eln θt .
Hence the introduction of the process (∆t, t ≥ 0) will make it possible to explicitly express the
conditions under which the population can survive with positive probability.

The CSBP with catastrophes κ is defined as the solution to the following stochastic differential
equation:

Zt =Z0 + g
∫ t

0
Zsds + 1{β=1}

∫ t

0

√
2σ2ZsdBs

+ 1{β∈(−1,0)}

∫ t

0

∫ ∞

0

∫ Zs−

0
zR(ds, dz, du) +

∫ t

0

∫
[0,∞)

(
θ − 1

)
Zs−N1(ds, dθ). (7)
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The branching property of Z, conditionally on ∆, is inherited from the branching property of
the CSBP and the fact that the additional jumps are multiplicative.

The key observation is that the process Z̃t = Zt exp{−gt− ∆t} has a ’simplified’ dynamics due
to the compensations when a catastrophe occurs. Indeed, if a catastrophe of intensity θt occurs at
time t,

Z̃t − Z̃t− = Zt−θte−gt−∆t−−ln θt − Zt−e−gt−∆t− = 0.

Moreover, as for t ≥ 0, e−gt−∆t /∈ {0, ∞}, we obtain the following equalities:

{Z̃t = ∞} = {Zt = ∞} and {Z̃t = 0} = {Zt = 0}, t ≥ 0.

We thus get that

E
[
e−λZ̃t

]
→

λ→∞
P(Z̃t = 0) = P(Zt = 0)

→
λ→0

P(Z̃t < ∞) = P(Zt < ∞)

It allows us prove the following proposition:

Proposition 2.3 ([BPS13, PPS16]). For all z > 0 and t ≥ 0, if β = 1:

Pz(Zt > 0 | ∆) = 1− exp

{
−z
(

σ2
∫ t

0
e−(gs+∆s)ds

)−1
}

a.s (8)

and if β ∈ (−1, 0),

Pz

(
Zt < ∞

∣∣∣∆) = exp

{
−z
(

βcβ

∫ t

0
e−β(gs+∆s)du

)−1/β
}

a.s. (9)

Both probabilities thus appear as functionals of the integral of the exponential of the Lévy
process ∆. This allows one to obtain precise asymptotics at large time for these probabilities. The
results are a bit technical and will not be presented in this course. Interested readers are referred to
[BPS13, PPS16, PP17, LX18].

3 Parasite infection in a cell population

We are interested in the modelling of a parasite infection in a cell population, and, in particular, in
the role of the stochasticity of repartition of the parasites at cell division. From the pioneering work
of Kimmel [Kim97], several models and associated analysis have been proposed, both in discrete
[Ban08, Ban09a, AG13, AG16] and continuous time [BT11, BPS13]. The asymmetric repartition
of parasites is taken into account in all of those work: in [Ban08, OW20], each parasite chooses
to go to one daughter cell with probability p (and to the other with probability 1− p), and in
[Ban09a], a random environment is considered (the probability generating functions of the number
of parasites at birth in the two daughter-cells of each cell in the population are i.i.d random
variables). In branching-within-branching models, independently for each parasite and with the
same distribution, the descendants are shared between the daughter cells. A different approach
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has been proposed in [BT11], removing the independence property of the sharing of parasites
descending from different lineages. Following the dynamics of the (R-valued) quantity of parasites
inside the cells (rather than a discrete count), this model assumes that a cell with x parasites, splits
into two daughter cells with a quantity of parasites Θx and (1−Θ)x respectively, with Θ a random
variable on [0, 1]. In this section, we extend this approach and explore the role of the random
variable Θ in the proliferation of the infection. We refer to [MS23] for the rigorous proofs.

3.1 Model

3.1.1 Parasites dynamics in a cell

Each cell contains parasites whose quantity evolves as a diffusion with positive jumps. More
precisely, we consider the SDE

Xt = x +
∫ t

0
g(Xs)ds +

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ Xs−

0

∫
R+

zR(ds, dx, dz), (10)

where x is nonnegative, g, σ ≥ 0 are real functions on R+, B is a standard Brownian motion, and R
has been defined in (5). Finally, B, Q and R are independent.

Compared to the branching processes considered until now, taking functions g(x) and σ2(x)
(and not necessarily gx and σ2x) allows to take into account interactions in the reproduction law of
(infinitesimal) individuals.

We will provide later on conditions under which the SDE (10) has a unique nonnegative strong
solution. In this case, it is a Markov process with infinitesimal generator G, satisfying for all
f ∈ C2

0(R+) (the set of twice continuously differentiable functions on R+ vanishing at 0 and
infinity),

G f (x) = g(x) f ′(x) + σ2(x) f ′′(x) + x
∫

R+

( f (x + z)− f (x)) ρ(dz), (11)

and 0 and +∞ are two absorbing states. Following [Mar16], we denote by (Φ(x, s, t), s ≤ t) the
corresponding stochastic flow i.e. the unique strong solution to (10) satisfying Xs = x and the
dynamics of the trait between division events is well-defined.

3.1.2 Cell division

Each cell carrying a quantity x of parasites divides at rate r and is replaced by two daughter cells
with quantity of parasites Θx and (1−Θ)x, where Θ is a symmetrical random variable on (0, 1),
with associated distribution κ(·). Finally, we assume that E[ln Θ]| < ∞.

3.1.3 Cell death

Cells can die because of two mechanisms. First, they have a natural death rate q. Second, cells die
when the quantity of parasites they carry explodes (i.e., reaches infinity in finite time), as a proper
functioning of the cell is not possible anymore. Notice that to model this case, we do not ‘kill the
cell’ strictly speaking. As infinity is an absorbing state for the quantity of parasites in a cell, and
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as a cell with an infinite quantity of parasites transmits an infinite quantity of parasites to both
its daughter cells, we let the process evolve and decide that a cell is dead if it contains an infinite
quantity of parasites.

3.1.4 Existence and uniqueness

We use the classical Ulam-Harris-Neveu notation to identify each individual. Let us denote by

U :=
⋃

n∈N

{0, 1}n

the set of possible labels,MP(R+) the set of point measures on R+, and D(R+,MP(R+)), the set
of càdlàg measure-valued processes. For any Z ∈ D(R+,MP(R+)), t ≥ 0, we write

Zt = ∑
u∈Vt

δXu
t
, (12)

where Vt ⊂ U denotes the set of individuals alive at time t and Xu
t the quantity of parasites at

time t of cell u. By convention, Zt is the null measure if Vt = ∅. By extension, for u ∈ Vt and any
s ≤ t, Xu

s denotes the quantity of parasites in the ancestor of u in the population at time s. Thus,
(Xu

s , s ≤ sup(t ≥ 0 s.t. u 6= Vt)) follows (10) between events of division impacting the lineage under
consideration.

Let
(
Φu(x, s, t), u ∈ U , x ∈ R+, s ≤ t

)
be a family of independent stochastic flows satisfying

(10) describing the individual-based dynamics. Let E = U × (0, 1) × R+ and M(ds, du, dθ, dz)
be a PPM on R+ × E with intensity ds⊗ n(du)⊗ κ(dθ)⊗ dz, where n(du) denotes the counting
measure on U . We assume that M and (Φu, u ∈ U ) are independent. We denote by Ft the filtration
generated by the restriction of the PPM M to [0, t] × E and the family of stochastic processes
(Φu(x, s, t), u ∈ U , x ∈ R+, s ≤ t) up to time t.

We now introduce assumptions to ensure the strong existence and uniqueness of the process.

Assumption EU. 1. The function g is continuous on R+, g(0) = 0 and for any n ∈N there exists a
finite constant Bn such that for any 0 ≤ x ≤ y ≤ n

|g(y)− g(x)| ≤ Bnφ(y− x), where φ(x) =

{
x (1− ln x) if x ≤ 1,
1 if x > 1.

2. The function σ is Hölder continuous with index 1/2 on compact sets and σ(0) = 0.

Recall the definition of G in (11). Then, the structured population process may be defined as the
strong solution to a SDE.

Proposition 3.1. Under Assumption EU, there exists a strongly unique Ft-adapted càdlàg process (Zt, t ≥
0) taking values inMP(R+) such that for all f ∈ C2

0(R+) and x0, t ≥ 0,

〈Zt, f 〉 = f (x0) +
∫ t

0

∫
R+

G f (x)Zs (dx) ds + M f
t (x0)

+
∫ t

0

∫
E

1{u∈Vs−}
(
1{z≤r} ( f (θXu

s−) + f ((1− θ)Xu
s−)− f (Xu

s−))

−1{0<z−r≤q} f (Xu
s−)
)

M (ds, du, dθ, dz) ,
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where for all x ≥ 0, M f
t (x) is a Ft-martingale.

For the sake of readability, we will assume that all the processes under consideration in the
sequel satisfy Assumption EU, but we will not indicate it.

We will now investigate the long time behaviour of the infection in the cell population. The
strategy to obtain information at the population level is to introduce an auxiliary process providing
information on the behaviour of a ‘typical individual’.

3.2 Many-to-One formula

We are interested in the long-term behaviour of the infection in the cell population. One possible
approach is to select an individual uniformly at random at a given time t and look at the properties
satisfied by this individual’s trait (here, the quantity of parasites it contains, for example). We are
therefore interested in quantities of the form

∑u∈Vt
f (Xu

t )

Nt
, (13)

for bounded functions f , where Nt denotes the cell population size at time t. But as we shall see, it
is simpler to look first at quantities of the form

∑u∈Vt
f (Xu

t )

E[Nt]
,

and then make the link with (13). Recall that in our case the size of the cell population follows a
branching process of birth rate r and death rate q. It therefore has expectation e(r−q)t at time t (to
simplify the proof, we do not actually ’kill’ a cell with an infinite number of parasites, but leave it in
the population with an infinite number of parasites, which it transmits to its daughter cells. It will
therefore suffice to count the number of cells with an infinite number of parasites at time t to know
the actual number of cells alive at time t). We are thus interested in the process

Kt := e−(r−q)t ∑
u∈Vt

f (Xu
t ).

We will thus look at the dynamics of this process

dKt = −(r− q)dtKt + e−(r−q)t ∑
u∈Vt

G f (Xu
t )dt + dMt

− e−(r−q)t ∑
u∈Vt

1{u dies during [t,t+dt]} f (Xu
t )

+ e−(r−q)t ∑
u∈Vt

1{u div during [t,t+dt]}( f (θu
t Xu

t−) + f ((1− θu
t )Xu

t−)− f (Xu
t−))

where M is a Ft-martingale and by abuse of notation θu
t and 1− θu

t are the fractions of parasites
transmited in the daugthers of the cell u dividing at time t. Recall that the θu

t are iid of law κ and
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that the times of division for each cell follows an exponential law of parameter r. In particular it
implies that

E

[
∑

u∈Vt

1{u div during [t,t+dt]}( f (θu
t Xu

t−) + f ((1− θu
t )Xu

t−)− f (Xu
t−))

]

= rdtE

[
∑

u∈Vt

∫ 1

0
( f (θXu

t−) + f ((1− θ)Xu
t−)− f (Xu

t−))κ(dθ)

]

= rdtE

[
∑

u∈Vt

∫ 1

0
(2 f (θXu

t−)− f (Xu
t−))κ(dθ)

]
as Θ has a symmetrical distribution. Similarly,

E

[
∑

u∈Vt

1{u dies during [t,t+dt]} f (Xu
t )

]
= qdtE

[
∑

u∈Vt

f (Xu
t )

]
.

We thus obtain

dE[Kt] = −(r− q)dtE[Kt] + e−(r−q)tE

[
∑

u∈Vt

G f (Xu
t )

]
dt + qdtE[Kt]

+ rdte−(r−q)tE

[
∑

u∈Vt

∫ 1

0
(2 f (θXu

t−)− f (Xu
t−))κ(dθ)

]

= e−(r−q)tE

[
∑

u∈Vt

G f (Xu
t )

]
dt + 2rdte−(r−q)tE

[
∑

u∈Vt

∫ 1

0
( f (θXu

t−)− f (Xu
t−))κ(dθ)

]

= E

[
G
(

e−(r−q)t ∑
u∈Vt

f (Xu
t )

)]
dt + 2rdt

∫ 1

0
E

[
∑

u∈Vt

e−(r−q)t f (θXu
t−)− ∑

u∈Vt

e−(r−q)t f (Xu
t−)

]
κ(dθ).

Now let us introduce the process Y solution to the SDE:

Yt = x+
∫ t

0
g(Ys)ds+

∫ t

0

√
2σ2(Ys)dBs +

∫ t

0

∫ Ys−

0

∫
R+

zR(ds, dx, dz)+
∫ t

0

∫ 1

0
(θ− 1)Ys−Na(ds, dθ),

where g σ, B and R have been defined in (10) and Na is a PPP with intensity 2rdsdθ, independent of
B and R. Hence for twice derivable and bounded functions, an application of Itô formula gives:

dE[ f (Yt)]

dt
= E [GYt] + 2r

∫ 1

0
E [ f (θYt−)− f (Yt−)] κ(dθ).

We thus may conclude that

Eδx

[
∑

u∈Vt

f (Xu
t )

]
= e(r−q)tEx [ f (Yt)] . (14)

The process Y is called auxiliary process and may be exhibited in more complex situations (division
rate depending on the quantity of parasites in the cell for instance. However in most cases it is
inhomogeneous in time and its study may be out of range. We deduce that a ’typical’ lineage
behaves as a typical lineage between division events and divides twice more often that a normal
lineage. This bias is due to the fact that picking an individual uniformly at random among alive
cells at a given time will favor lineages which uderwent more divisions than the other ones. We
refer the reader to [BDMT11] for more details on these questions.
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Figure 3: Illustration of the bias phenomenon for a typical lineage.

3.3 Quantity of parasites in the cells

We now consider that the dynamics of the parasites in a cell follows the SDE (10) without the stable
positive jumps, that is to say

Xt = x +
∫ t

0
g(Xs)ds +

∫ t

0

√
2σ2(Xs)dBs. (15)

In this case we can observe moderate infections, extinctions of the parasites in the cell population,
but also cases where the quantity of parasites goes to infinity with an exponential growth in a
positive fraction of the cells.

In order to state the next result, we need to introduce two assumptions. The first one provides a
condition under which the quantity of parasites may reach 0. It is almost a necessary and sufficient
condition (see [MS21, Remark 3.2 and Theorem 3.3]).

(LN0) There exist 0 < a < 1, η > 0 and x0 > 0 such that for all x ≤ x0

g(x)
x
− a

σ2(x)
x2 ≤ − ln(x−1)

(
ln ln(x−1)

)1+η
.

The second assumption ensures that the process does not explode in finite time almost surely (see
[MS21, Theorem 4.1]).

(SN∞) There exist 0 < a < 1, and a nonnegative function f on R+ such that

g(x)
x
− a

σ2(x)
x2 = − f (x) + o(ln x), (x → +∞).

Recall that the total number of cells is given by a continuous-time birth and death process with
individual birth rate r and individual death rate q. From classical results on branching processes
(see for instance [AN72]), we know that the cell population survives with probability 0∨ (1− q/r).
The long time behaviour for the quantity of parasites in the cells is described in the next proposition.
Recall that Nt is the cardinality of Vt.
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Proposition 3.2. Assume that the quantity of parasites in a cell follows the SDE (15) and that r > q ≥ 0.

1. If E[ln2 Θ] < ∞, and there exists η > 0 such that for x ≥ 0,

g(x)
x

+ 2rE[ln Θ(x)] > η,

and if the function x 7→ σ2(x)/x is bounded, then for ε > 0,

lim inf
t→∞

E

[
1{Nt≥1}

#{u ∈ Vt : Xu
t > e(η−ε)t}

Nt

]
> 0.

2. If there exists η > 0 such that for all x ≥ 0,

g(x)
x

+ 2rE[ln Θ] < −η,

then for ε > 0

lim
t→∞

1{Nt≥1}
#{u ∈ Vt : Xu

t > ε}
Nt

= 0 in probability.

3. If Assumption (LN0) and (SN∞) hold and there exist η > 0 and x0 ≥ 0 such that for x ≥ x0,

g(x)
x
− σ2(x)

x2 + 2rE[ln Θ] < −η,

then

lim
t→∞

1{Nt≥1}
#{u ∈ Vt : Xu

t > 0}
Nt

= 0 a.s.

Let us give an idea of the proof. Let us take a non-negative real function a. From the Many-to-one
formula (14) we get that

Eδx

[
∑

u∈Vt

1{Xu
t >a(t)}

]
= e(r−q)tEx

[
1{Yt>a(t)}

]
= e(r−q)tPx (Yt > a(t)) .

We may thus focus on the process Y. If we introduce the compound Poisson Process D describing
the log of the jump intensities as follows

Dt =
∫ t

0

∫ 1

0
ln θNa(ds, dθ) = ∑

i≤Na(t)
ln θi

(where we used the notation Na(t) =
∫ t

0

∫ 1
0 Na(ds, dθ)), we get that

Yt exp
(
−
∫ t

0

g(Ys)

Ys
ds−Dt

)
is a local martingale. Once again this means that we may focus on the behaviour of

exp
(∫ t

0

g(Ys)

Ys
ds +Dt

)
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to study the process Y. The end of the proof consists in comparing
∫ t

0
g(Ys)
Ys

ds +Dt with a Lévy
process with positive or negative drift.

From Proposition 3.2 we see that in some sense an equal sharing is the worst strategy at the
population level. Indeed, from the concavity of the function x 7→ ln x, we can prove that if the
proportion of highly infected cells is positive for large time with a given partitioning strategy, then
the equal sharing strategy would have led to the same result. Conversely, if the equal sharing
strategy guarantees the healing of the cell population for large time, then it would have been the
case for any partitioning strategy.

Lemma 3.3. Under the assumptions of Proposition 3.2, we have the following:

1. If there exists a sharing kernel κ such that the assumptions of point 1 of Proposition 3.2 hold, then they
also hold for the equal sharing (corresponding to Θ ≡ 1/2).

2. If the assumptions of point 2 (resp. 3) of Proposition 3.2 hold for the equal sharing (Θ ≡ 1/2), then
they also hold for any a sharing kernel κ such that E[Θ] = 1/2 and |E[ln Θ]| < ∞.

It is a consequence of the concavity of the function x 7→ ln x entailing via Jensen inequality that

ln(1/2) = ln E[Θ] ≥ E[ln Θ].

3.4 Mean number of cells alive: General results

We denote by Ct the number of cells alive at time t. We consider that the quantity of parasites in a
cell follows the SDE:

Xt = x + g
∫ t

0
Xsds +

∫ t

0

∫ Xs−

0

∫
R+

zR(ds, dx, dz), (16)

where g ≥ 0, x ≥ 0, B is a standard Brownian motion and the Poisson measure R has been defined
in (10). In this case, we are able to obtain an equivalent of the mean number of cells alive at a large
time t. It emphasizes how crucial is the choice of repartition of the parasites at division between
daughter cells.

Let

µ := g + 2rE [ln Θ] (17)

and

d := τ̂g + r
[
2E[Θτ̂]− 1

]
− q, (18)

where τ̂ satisfies
g
2r

= E[Θτ̂ ln(1/Θ)].

Proposition 3.4. Assume that the dynamics of the quantity of parasites in a cell follows (16), and that q 6= r.

1. If µ < 0, then for every x > 0 there exists 0 < c1(x) < 1 such that

lim
t→∞

e(q−r)tEδx [Ct] = c1(x).
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2. If µ = 0, then for every x > 0 there exists c2(x) > 0 such that

lim
t→∞

√
te(q−r)tEδx [Ct] = c2(x).

3. If µ > 0, then for every x > 0 there exists c3(x) > 0 such that

lim
t→∞

t
3
2 e−dtEδx [Ct] = c3(x).

Note that the dependency on β (parameter of the law of positive jumps for the parasites) is
hidden in the limiting functions c1, c2, c3.

Hence, the cell population survives the infection with positive probability if the strategy for
repartition of the parasites at division is well-chosen. The sign of µ indicates if the quantity of
parasites stays finite with a positive probability in a typical cell line. If it is the case (µ ≤ 0), then the
expected number of cells alive goes to infinity as time goes to infinity because the cell population
grows exponentially at a rate larger than r− q > 0. If µ > 0, then the probability that the quantity
of parasites is infinite in a typical cell line goes to 1 as time goes to infinity. In that case, the speed of
convergence of this probability has to be compared with the growth of the population. And if the
growth of the population is strong enough (d > 0), the expected number of cells that are alive still
goes to infinity as time goes to infinity.

Again, we see that the mean of the jump process (E[ln Θ]) is not enough to obtain the long term
behaviour of the process, but that the variability is also key via the parameter d as it was the case
for the survival probability of subcritical branching processes in random environment.

Focusing on the role of the partitioning kernel, Proposition 3.4 shows that if the cell population
manages to adapt its partitioning strategy to make it more asymmetrical, it can save the cell
population (in the sense of making the mean number of cells alive tend to infinity for large time).
Indeed, for any choice of the pair (g, r), we can find a kernel κ such that

E [ln Θ] ≤ − g
2r

,

and thus µ ≤ 0.
In absence of parasites, if r > q, the cell population evolves as a supercritical Galton-Watson

process and survives with probability 1− q/r [AN72]. In the presence of parasites, the condition
r > q does not ensure that the cell population survives with a positive probability, as it goes extinct
almost surely if m > 0 and d ≤ 0. More generally, from the previous proposition, we deduce the
following corollary on the asymptotic behaviour of Ct.

Corollary 3.5. Under the assumptions of Proposition 3.4, for any x > 0,

1. If q ≥ r or if (µ > 0 and d ≤ 0), then limt→∞ Eδx [Ct] = 0.

2. If (µ ≤ 0 and r > q) or if (µ > 0 and d > 0), then limt→∞ Eδx [Ct] = ∞.

Notice that the case r = q is not taken into account in Proposition 3.4 for the simplicity of its
statement as it corresponds to a critical birth and death process for the cell population dynamics.
However, we know that in this case the number of cells (with a finite or infinite quantity of parasites)
reaches 0 in finite time, hence the number of cells alive also reaches 0 in finite time.
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3.5 Mean number of cells alive: Role of the partitioning kernel

The most simple examples of partitioning strategies are the uniform law and the symmetrical
sharing. For those laws, we can explicit the bounds of Corollary 3.5.

Corollary 3.6. Assume that the quantity of parasites in a cell follows the SDE (16) and that r > q ≥ 0.

- For any r, q there exists glim(r, q) such that limt→∞ Eδx [Ct] = 0 if g ≥ glim(r, q) and limt→∞ Eδx [Ct] =

∞ if g < glim(r, q)

- If κ(dθ) = dθ,

glim(r, q) = 3r− q + 2
√

2r(r− q).

- If κ(dθ) = δ1/2(dθ),
glim(r, q) = rx0(q/r) ln 2

where x0(q/r) > 2 is the unique value such that

x0(q/r) =
(

1 +
q
r

)
(1 + ln 2− ln (x0(q/r)))−1. (19)

From this result, one can prove with a few more computations that the ‘uniform sharing’ strategy
is always better than the ‘equal sharing’ strategy in terms of survival of the cell population. In fact,
the symmetrical sharing is the worst strategy, as stated in the next proposition.

Proposition 3.7. Assume that the quantity of parasites in a cell follows the SDE (16) and that r > q ≥ 0.
For any partitioning kernel κ, if g/r < x0(q/r) ln 2, where x0(q/r) is defined in (19), we have for all x ≥ 0,

lim
t→+∞

Eδx [Ct] = ∞.

As x0(q/r) ln 2 is the limiting value corresponding to the case of an equal sharing, Proposition
3.7 proves that any other sharing strategy is better than the symmetric partitioning.

More generally, we expect that a more unequal strategy is beneficial for the cell population: it
amounts to ‘sacrificing’ some lineages in order to save the other ones. We were not able to prove
such a general statement, but we will try to understand better the effect of unequal sharing in the
next two propositions.

Let us introduce the expectation of the minimal fraction of parasites transmited to daughters at
division:

ϑ = E [min(Θ, 1−Θ)] .

We will see that this criterium allows us to compare what we call ’deterministic partitioning’

κz(dθ) =
1
2
(δz(dθ) + δ1−z(dθ))

to any other partinioning law with the same value for ϑ.
We will also wonder if there exists, for any level of infection and for a fixed value of ϑ, a

partitioning distribution that leads to survival of the cell population.
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Figure 4: Illustration of the value of glim(r, 0) as a function of ϑ (figure from [MS23]).

Parameters in the green area lead to survival of the cell population for any finite point

partitioning kernel. Each cross corresponds to the limit for a finite point distribution with

a given value of ϑ above which the cell population goes to extinction. The orange (resp.

blue) crosses correspond to distributions with 20 (resp. 2) modes below 1/2. The red curve

corresponds to the limit above which a cell population with a partitioning kernel of the form

κα(dθ) = cαθα(1− θ)αdθ goes to extinction.

In Figure 4, we plot the logarithm of the limiting value g/r at which d = 0 for various multimodal
distributions as a function of ϑ (in the case q = 0). We observe that for a fixed value of ϑ, the worst
scenario seems to be the case of a deterministic partitioning κz. It indeed holds and is stated in the
following proposition.

Proposition 3.8. Assume that the quantity of parasites in a cell follows the SDE (16), and that r > q ≥ 0.
Let ϑ ∈ (0, 1/2] and let κ be a symmetric distribution on [0, 1] such that

E [min(Θ, 1−Θ)] = ϑ.

Finally, let
κϑ(dθ) = 1/2 (δϑ + δ1−ϑ) ,

be the associated deterministic partitioning kernel. Then, for any x > 0,

lim
t→+∞

E
(κ)
δx

[Ct] ≥ lim
t→+∞

E
(κϑ)
δx

[Ct],

where E(κ) (resp. E(κϑ)) denotes the expectation for the population process with partitioning kernel κ (resp.
κϑ).

On the other hand, there is no upper bound: for any value of ϑ ∈ (0, 1/2), and any value of
y ≥ 0, one can find a finite point measure (with n = 2 for example) such that for all g/r < y, the
mean number of cells alive goes to infinity when time goes to infinity. This can be achieved by
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taking very small values for z1, which is the smallest atom of the partitioning distribution. This is
formally stated in the following proposition.

Proposition 3.9. Let g, r, q ∈ R+ with q < r and ϑ ∈ (0, 1/2). Then, there exists a multimodal distribution

κ2(dθ) =
2

∑
i=1

(δzi(dθ) + δ1−zi(dθ)) pi,

with 2(p1 + p2) = 1, and (z1, z2) ∈ (0, 1/2)2, such that if Θ ∼ κ2,

E [min(Θ, 1−Θ)] = ϑ and lim
t→∞

Eδx [Ct] = ∞ for any x > 0.
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