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Motivation and goals

School and/or workplace closures: e�cient non-pharmaceutical

interventions for mitigating epidemics, e.g. COVID-19 and

influenza (Mendez-Brito et al., 2021; Luca et al., 2018).

) Models with several levels of mixing: explicitly distinguish

di↵erent types of contact.

) Aim of the present study:

1. Better understanding of the epidemic impact of small contact

structures: indicators capturing this impact?

2. Propose reduced models = approximate models that are more

prone to mathematical analysis / numerical exploration.
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A multilayer model with households

and workplaces



Population structure

Model introduced by Pellis et al., 2009.

1. Global level of mixing !
homogeneously mixing general

population.

2. Local level of mixing !
households and workplaces:

• Structure size distributions ⇡H

and ⇡W , maximal size nmax < 1.

• Each individual is attributed to a

household and workplace

independently from one another

and from other individuals.
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Epidemic process

Modified SIR model ! three ways of contamination in a

population of size K :

• General population: total of S

susceptible and I infected

individuals ! infections at rate
�G

K
SI .

• Intra-household or

intra-workplace: s susceptible

and i infected members !
infections at rate �X si for

X 2 {H,W }, respectively.
Duration of infectious periods

⇠ Exp(�)

) Stochastic model of

parameters

(K , ⇡H ,⇡W

| {z }
social structure

,�h,�w ,�g , �| {z }
epidemic

).
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R0 and exponential growth rate

Reproduction number R0: outbreak criterion (threshold = 1).

• Intuition: average number of contaminations caused by a ’typical’

infected at the beginning of the epidemic.

• Several possible definitions ! most of them use the fact that some

correlations can be neglected at the beginning of the epidemic.

• R0 introduced by Pellis et al., 2009 ! associated to the proportions

(pH , pW , pG ) of infection in each layer.

Exponential growth rate r : characterised by an implicit equation

(Pellis et al., 2011) ! can only be solved numerically.
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The epidemiological footprint of

contact structures

Bansaye, Deslandes, Kubasch and Vergu (2023)



Simulation scenarios

1. Population structure:

• Large population

(K = 100,000).

• Fixed household size

distribution.

• Varied workplace size

distributions (sizes 1 to 50).

 Teleworking.

2. Epidemic parameters: scenarios
di↵er in terms of

• Epidemic intensity (R0, r).

• Proportions of infection

between layers (pG , pH , pW ).
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The influence of the variance of workplace size distribution of
fixed average on key features of the epidemic

We are going to focus on a setting where the size of the

population and the number of workplaces are fixed, considering

that the latter is given by logistic constraints.

) This implies that the average workplace size is fixed.

We are going to focus on the influence of the workplace size

variance on the exponential growth rate r , the peak size and the

final size of the epidemic.
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The influence of the variance of workplace size distribution of
fixed average on key features of the epidemic

For each epidemic scenario !
simulate epidemics for a variety

of workplace distributions, of

fixed mean and di↵erent

variances.

) Linear dependence on the

variance: good proxy for the

impact of ⇡W .

7/13



Approximation using a uniformly mixing SIR model

Proposed approach: approximate our model by a classical SIR

model: 8
>><

>>:

S
0 = ��SI

I
0 = �SI � �I

R
0 = �I .

) How to fit the parameters?

• Removal rate � usually known (epidemiological expertise).

• Two natural candidates for calibrating �: � = �R0 or

� = r + �.
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The growth rate allows to capture the epidemic footprint of
social structures

Comparison of simulation outputs and reduced model predictions

) satisfying results on key features of the epidemic:

9/13



Large population approximation

Kubasch (2023)



General idea

Large graph limit: well understood for epidemics on configuration

models (Volz, 2008; Decreusefond et al., 2012) ! no small closed

structures.

Reduced models suggested in similar settings (House and Keeling,

2008; Volz et al., 2011) ! epidemic at the level of structures

characterised by a type x :

x = ( n, s, i )

number of

susceptibles

structure

size
number of

infected

Problem: infected individuals correlate the epidemic states of their

household and workplace.
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General idea

Large graph limit: well understood for epidemics on configuration

models (Volz, 2008; Decreusefond et al., 2012) ! no small closed

structures.

Reduced models suggested in similar settings (House and Keeling,

2008; Volz et al., 2011) ! epidemic at the level of structures

characterised by a type x :

x = ( n, s, ⌧ )

number of

susceptibles

structure

size

remaining infectious

periods (⌧ 2 Rn)

Solution: keep track of each infected’s remaining infectious period

(similar in spirit to Ball et al., 2014).
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General idea

) Measure-valued Markov process ⇣K describing the epidemic

process in a population of size K ! model reduction in two steps:

1. Tightness-identification-uniqueness strategy inspired by Tran,

2006  convergence in distribution when K ! 1 to the

unique deterministic solution ⌘ of :

h⌘X
T
, fT i = h⌘X0 , f0i+

Z
T

0
h⌘X

t
,Aftidt + �X

Z
T

0
h⌘X

t
, si(f I

t
� ft)idt

+ �
X

Z
T

0

h⌘X
t
, sii

h⌘Xt , si
h⌘X

t
, s(f I

t
� ft)idt + �G

Z
T

0

h⌘H
t
, ii

h⌘H0 ,ni
h⌘X

t
, s(f I

t
� ft)idt.

2. Extract from ⌘ a finite-dimensional closed dynamical

system.
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Simulations

Examples: Stochastic simulations (SSA) in a population of size

K = 10000 compared to the reduced model.
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Conclusion and perspectives



Key messages

• Proxy for the epidemic impact of the workplace size

distribution: size distribution variance, exponential growth

rate.

• Two reduced models:

• Homogeneous mixing SIR model calibrated using the growth

rate ! key characteristics of the epidemic;

• Large population approximation ! asymptotically exact

trajectories.

• Perspective: Closer study of the exponential growth phase?
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Thank you for your attention!
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