Ecole de recherche Aussois 2024

A generalized Dynamic Energy Budget model including 3D shape changes for modeling small pelagic fish growth

(D)K

Lola De Cubber, Grea Groenewald, Matthew Horton, Laure Pecquerie, Martin Huret, Carl van der Lingen and Olivier Maury

agriculture, forestry & fisheries Department: Agriculture, Forestry and Fisheries

Marine Ecosystems Food security

Marine Ecosystems Food security

Need for a good representation of growth and shape even for early stages !

Existing DEB models

Kooijman (2000)

Existing DEB models

~ 12 parameters in a standard DEB model

Existing DEB models

Existing DEB models

Temperature correction to the metabolic rates

Existing DEB models

. .

Generalized DEB model

Methods Life cycle and shape changes

Growth types

$$\frac{H_e}{L_e} = h_e (constant) \qquad \frac{W_e}{L_e} = w_e (constant) + simplification : \frac{H_e}{W_e} = constant$$

$$V = \frac{\pi}{6} h_e w_e L_e^3$$

$$\frac{dV}{dt} = \frac{\pi}{6} h_e w_e 3 L_e^2 \left(\frac{dL_e}{dt}\right)_i$$
$$\left(\frac{dL_e}{dt}\right)_i = \frac{2}{\pi H_e W_e} \frac{dV}{dt}$$

Growth types

$$\frac{dV}{dt} = \frac{\pi}{6} \left(H_e \ L_e \ \frac{dW_e}{dt} + \ W_e \ L_e \ \frac{dH_e}{dt} + \ W_e \ H_e \ \frac{dL_e}{dt} \right)$$

21

Results

Model vs data - adult stage

Results

Model vs data - adult stage

Model vs data - early stages

Results

Model vs data - early stages

Temperature effect on growth

Temperature effect on growth

> lower survival at extreme temperatures for early stages

Results

Temperature effect on growth

> lower survival at extreme temperatures for early stages

Results Combined effect on metamorphosis

Speed to reach metamorphosis

Results Combined effect on metamorphosis

Results Combined effect on metamorphosis

Discussion

Prospects

Impact of the other individuals/populations/communities on SPF variations ?

Integration within the APECOSM framework (focus species, Benguela encosystem)

Represents the spatialized dynamics of open ocean pelagic ecosystems in the global ocean

Merci !

For further details : Lola De Cubber lola.decubber@gmail.com and Olivier Maury olivier.maury@ird.fr

agriculture, forestry & fisheries

Department: Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA

DEB model equations

Impact de la température : équation d'Arrhénius

En général, en dehors d'un range optimal de température (T_L < Topt < T_H), les taux métaboliques diminuent :

- Températures trop basses (T < T_L) et solidification des membranes lipidiques avec diminution des fluxs membranaires
- Températures trop hautes (T > T_H) et dénaturation des enzymes (structures quaternaires) L'équation devient :

$$r(T) = r(T_1)e^{\left(\frac{T_A}{T_1} - \frac{T_A}{T}\right)} \left(1 + e^{\left(\frac{T_{AL}}{T} - \frac{T_{AL}}{T_L}\right)} + e^{\left(\frac{T_{AH}}{T_H} - \frac{T_{AH}}{T}\right)}\right)^{-1}$$

 T_{AH} Température d'Arrhénius quand T > T_{H} T_{AL} Température d'Arrhénius quand T < T_{L}

Estimation des paramètres DEB

Paramètres

 ${\dot{p}}_{Am}$: Flux assimilé max par unité de surface structurelle $(J.d^{-1}.cm^{-2})$ κ_{X} : constante de demisaturation **K** : proportion d'énergie allouée à la croissance $[\dot{p}_M]$: taux spécifique de maintenance (J.d⁻¹.cm⁻³) OU L_{∞} : longueur structurelle maximale à l'infini (cm) avec $L_{\infty} = \frac{\kappa f\{\dot{p}_{Am}\}}{[\dot{p}_{M}]}$ [E₆] : couts spécifiques de structure (J.cm⁻³)

➡ 12 paramètres à ajuster dans un modèle standard

[E_m] : densité d'énergie maximale des réserves (J.cm⁻³) OU \dot{v} : conductance énergétique (cm.d⁻¹), avec $\dot{\boldsymbol{\mathcal{V}}} = \frac{\{\dot{\boldsymbol{p}}_{Am}\}}{[E_m]}$ k_{I} : taux de maintenance de maturation (d⁻¹) K_R : proportion of the reproductive energy allocated to the gametes $E_{H^{b}}, E_{H^{p}}$: niveaux d'énergie dans le compartiment EH pour atteindre le first feeding et la puberté (J) 39

Croissance

 $\frac{dV}{dt} = \frac{\kappa f\{\dot{p}_{Am}\}V^{\frac{1}{3}} - [\dot{p}_{M}]V}{\kappa f[E_{m}] + [E_{G}]} \qquad \text{Quand la croissance atteint son max}: \quad \frac{dV}{dt}$

$$\frac{V}{2t} = 0 \implies V_{\infty}^{\frac{1}{3}} = \frac{\kappa f(\dot{p}_{Am})}{[\dot{p}_{M}]}$$

Λ

Les corrections de températures appliqueée aux flux s'annulent

La taille à l'infini dépend uniquement de la quantité de nourriture

Analytiquement, on montre que le croissance de von Bertalanffy est un cas particulier du DEB à Température et nourriture constantes :

avec $V = L^3 = (\delta . L_w)^3$, L_w Longueur observée L Longueur structurelle

 H_h / L_h

 H_p / L_p

 H_j / L_j

 $\mathsf{E}\mathsf{H}^\mathsf{h}$

 $\mathsf{E}\mathsf{H}^\mathsf{j}$

Methods

Attractor value (Height / Length ratio)

 $\mathsf{E}\mathsf{H}^\mathsf{p}$

EΗ

modified DEB

Modified DEB with extra maintenance costs

Growth types

Results

Food effect on growth

Results

Food effect on growth

Food effect on growth

Existing DEB models

Isomorphic DEB

~ constant shape coefficient

Existing DEB models

Isomorphic DEB

~ constant shape coefficient

DEB with V1-morphy and metabolic acceleration

Existing DEB models

Isomorphic DEB

~ constant shape coefficient

DEB with V1-morphy and metabolic acceleration

Existing DEB models

Isomorphic DEB

~ constant shape coefficient

DEB with V1-morphy and metabolic acceleration

> Early stages shapes are not accurately represented

> Deviations from isomorphy are not accurately represented

> Metabolic rates are not defined ad hoc

Results

Model comparison

	Generalized	Isomorphy
pAm	51	1802.07
kX_adult	107	739
kX_early	181	419
Linf	27.6	27
Eg	294	376.70
Карра	0.74	0.74