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Motivation and goals



Motivation

Cancer initiation:

Need to be accumulated multiple driver mutations to induce an outgrowing population.

Flagella in bacteria:

Partially functional intermediate stages of flagella yield an evolutionary disadvantage

but fully functional apparatuses lead to increased fitness.
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Figure 1: Population at an evolutionary stable state (©Konstanze Ebel)
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The individual-based model of adaptive dynamics

Individuals are determined by a trait taken from a finite trait space V .

Count individuals by Markov Process t 7→ N(t) = (Nv (t), v ∈ V ) ∈ NV
0 driven by

v w

†

cv,w

bwµmw,v
bv

dv

bv(1− µ)

bvµ

Birth: Nvbv (1− µ) +
∑

w∈V Nwbwµmw,v

Death: Nv
(
dv +

∑
w∈V Nw cv,w

)
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Scaling

Scale the competition kernel cK (v ,w) = c(v ,w)/K , by carrying capacity K →∞.

This leads to a total population size of |N| = O(K).

Small mutation rate: µK ↘ 0.

An LLN for Markov processes gives us convergence for finite times.

Theorem (Ethier, Kurtz ’86)

On finite time intervals [0,T ](
NK (t)

K

)
t∈[0,T ]

K↗∞−→ (n(t))t∈[0,T ] ,

where n solves to the competitive Lotka-Volterra equations

ṅv (t) = nv (t)

[
bv − dv −

∑
w∈v

cv,wnw (t)

]
∀v ∈ V .
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Equilibria and invasion fitness

Lotka-Volterra equation

ṅv (t) = nv (t)

[
b(v)− d(v)−

∑
w∈v

c(v ,w)nw (t)

]
∀v ∈ V .

Lotka-Volterra equilibrium

Stable fixed point n̄(v) ∈ Rv
>0 and solving

0 = b(v)− d(v)−
∑
w∈v

c(v ,w)n̄w (v) ∀v ∈ v.

concering a set of resident traits v ⊂ V

Invasion fitness

Initial growth rate of a new mutant w ∈ V \v

f (w , v) = b(w)− d(w)−
∑
v∈v

c(w , v)n̄v (v).
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Phases of Invasion

εK

n̄v(v)K

n̄w(w)K

O(logK) O(1) O(logK)O(1/KµK)

εK

εK
population size

time

II. III. IV.I.

0. equilibrium state (LDP, stability analysis)

I. mutation phase ∼ Pois(KµK )

II. growth phase ∼ supercritical BD-process (exponential growth)

III. invasion phase ∼ deterministic Lotka-Volterra (LLN)

IV. extinction phase ∼ subcritical BD-process
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Very rare mutations, TSS/PES

Champagnat Scaling 1/KµK � log K

• Dominant time scale: Occurrence of mutants 1/KµK

• Mutations are separated

Theorem (Champagnat ’06, Méléard-Champagnat’11)

As K ↗∞,

(
NK (t/KµK )

K

)
t≥0

converges to a Markov jump process

with transition rates r(v 7→ w) = n̄(v)b(v)m(v ,w)︸ ︷︷ ︸
rate to produce mutant

· [f (w , v)]+

b(w)︸ ︷︷ ︸
fixation probability

.

Evolution:

• only to next-neighbours

• stops in local fitness maxima
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Fitness valleys
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Evolutionary stable conditions (ESC)

Moderately small mutation rate: µK = K−1/α, 0 < α < L

population size

v0 v1 v2 vbαc vbαc+1 vL−1 vL

∼ K

∼ KµK

∼ Kµ2K

∼ Kµ
bαc
K

V

? ? ?

subcritical excursionsliving traits
fitness
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General graphs

• General trait graph with possible mutations

• Set of coexisting resident traits at equilibrium n̄(v)

• Mutation spreading neighbourhood Vα(v)

• Some traits outside Vα(v) are fit

• Only the nearest traits are reachable Vmut(v)

• Rates are computed along paths γ : v→ w
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Pathwise approach

Independence of Paths

R(v,w) =
∑
γ:v→w

R(v, γ), R(v) =
∑

w∈Vmut (v)

R(v,w)

p(v,w) =
R(v,w)

R(v)
. v

v

Vα
Vα

Vmut

Vmut

α ∈ (2, 3), f (•,v) < 0, f (•,v) < 0, f (•,v) > 0

γ

α ∈ (2, 3),

Fixation of a mutant leads to next ESC vESC (v,w).
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Figure 2: Population has reached a new ESC and thus changes the fitness-landscape.
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Metastability graph (E.,Kraut ’21)

We can witness consecutive jumps on different state dependend time scales. These

can be represented as chains in a metastability graph GESC .

v(3)

v
(4)
2

v
(4)
3

v(2)

v
(4)
1

v(1)

v(0)
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Limiting process

Focusing on a particular timescale 1/KµLK

• larger valleys (d(v,w) > L) cannot be crossed,

• smaller valleys (d(v,w) < L) are crossed immediately.

The metastability graph collabses to a L-scale graph GL. And we can deduce

convergence to a Markov jump process.

Theorem (E., Kraut ’21)

NK
v (t/KµLK )

K

K↗∞−→ N L
v (t) = 1v∈vL(t)n̄v (vL(t)), ∀v ∈ V , in D([0,T ])
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First example

α ∈ (1, 2)

0

r(v)

V

1 2 3 4 5 6 7 8

GESC {0} {3} {5}

G2 {0} {3} {5}

G3 {0}

{8}{6}

{8}

{8}

{6}

{5}
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Second example

α ∈ (1, 2)

0

r(v)

1 42 3

6

V

5

{0} {5}

{3}

GESC

G3 {0} {5}

G2 {0} {5}{3}
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Conclusion

What we have:

• Full description of limiting adaptive jump process on general trait graphs.

• Different phenomena are visible on different time scales.

• Dynamic fiteness landscape determines transition rates/probabilities and time

scales

Work in progress:

• Relax assumptions on the stability on lower time scales.

• Analyse processes of cyclic bahaviour.

• Investigate periodic changes in the environment.
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Changing environment

Varry system parameters periodically on an intermediate timescale 1� λK � lnK .

timeT1λK T2λK

paramteres

b1

d1

b2

d2
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Changing environment

Quick adaptation of the residents in time of order O(1)

time
O(1) O(1)

NK
res

φ+(t)

φ−(t)
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Changing environment

Averaging of exponential growth of a mutant population on the time scale lnK

timeT1λK T2λK

f 1
f 2

f av

lnNK
mut
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Thank you for your attention!
Questions?
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Stability degree

The length of the valley is referred to as stability degree.

L(v) := min
w∈V :f (w,v)>0

d(v,w).

The time scale for the first arrival of fit individual is

1/Kµ
L(v)
K

We consider the nearest fit traits as mutant candidates

Vmut(v) := {w ∈ V : f (w , v) > 0 ∧ d(v,w) = L(v)}.
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Rates

The rates of the exponentials can be computed pathwise

R(v, γ) :=n̄γ0 (v)

bαc∏
i=1

b(γi−1)m(γi−1, γi )

|f (γi , v)|

 b(γbαc)m(γbαc, γbαc+1)

×

 L(v)−1∏
j=bαc+1

λ(ρ(γj , v))m(γj , γj+1)

 · f (γL(v), v)

b(γL(v))
,

R(v,w) :=
∑

γ:v→w,
|γ|=L(v)

R(v, γ), R(v) :=
∑

w∈Vmut(v)

R(v,w).
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Small valleys (L < α)

Theorem (Bovier-Coquille-Smadi 2019, Thm. 3.2)

lim inf
K→∞

P
(

(1− cε)
1

α

L

fL,0
<

T
(K ,L)
ε

log K

<
T

(K ,L)
z̄L−ε

log K
< (1 + cε)

1

α

L

fL,0

)
≥ 1− cε.
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Large valleys (L > α)

Theorem (Bovier-Coquille-Smadi 2019, Thm. 3.3)

There exist two exponential rv. E± ∼ Exp(a±) such that

lim inf
K→∞

P
(
E− ≤

(
T

(K ,L)
z̄L−ε ∨ T

(K ,ΣL)
0

)
KµL ≤ E+

)
≥ 1− cε.

The frequencies are given by

a± = (1± cε)z̄0

b0 · b1 · · · bbαc−1

|f1,0| |f2,0| · · ·
∣∣fbαc,0∣∣ bbαc

 L−1∏
i=bαc+1

λ(ρi )

 fL,0

bL
,

ρi =
bi

bi + di + ci,0z̄0
, λ(ρ) =

∞∑
k=1

(2k)!

(k + 1)!(k − 1)!
ρk (1− ρ)k+1.
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logK -limit

fitness− +

τ1 τ2 τ3

1

0

β∗(t)

2 mutations

1 mutation

3

4

2

1

t

• Trait 2 grows exponentially and produces an increasing number of type 3-mutants

• An O(1)-amount of type 4-mutants is produced and has a higher fitness

• Trait 2 invades and thus the fitness landscape gets changed

• Trait 4 invades and trait 1 becomes fit again

Theorem (Coquille, Kraut, Smadi ’21)

Algorithmic characterisation of limiting deterministic growth process in term of the

fitness landscape for power law mutation rates µK = K−1/α on general finite graphs.

βK (t)
K↗∞−→ β(t), in D([0,T ],RV ),

where the functions t 7→ βv (t) are continuous and piecewise affine.
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