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Biological context

Myeloproliferative Neoplasms (MPN): family of cancers affecting blood
cells.

JAK2V617 mutation related MPNs: Essential Thrombocytemia and
Vaquez disease.

Goal
Estimate the distribution of the age of detection for these MPNs.
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Data

Ages of detection of both diseases in the presence of JAK2V617 mutation
in the Côte d’Or region.

Age PV JAK2+ ET JAK2+ Total JAK2+ cases
0 to 4 0 0 0
5 to 9 0 0 0

10 to 14 0 0 0
15 to 19 0 0 0
20 to 24 0 0 0
25 to 29 0 0 0
30 to 34 1 4 5
35 to 39 0 4 4
40 to 44 1 4 5
45 to 49 5 4 9
50 to 54 2 7 9
55 to 59 8 11 19
60 to 64 10 6 16
65 to 69 13 15 28
70 to 74 12 14 26
75 to 79 14 29 43
80 to 85 15 30 45

More than 85 11 23 34
Total number 92 151 243
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Data
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Modelisation: time to detection TM

Two independent elements:

T1: active mutation time;

T2: MPN growing time.

Time to detection
TM = T1 + T2
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Models with constant active mutation rate

Assumptions:

Mutations from stem cells occur at a constant rate τ .

Each mutant cell has a probability p of eventually having its
population reach detection size.

=⇒ T1 ∼ Exp(δ).

δ = τp: active mutation rate.
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Simplest case: constant MPN growing time

T2 = α constant.

Distribution of TM

fM(t) = δe−δ(t−α).

Estimation of δ and α through least squares.
Goodness of fit test.
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Chi-squared goodness of fit test
Testing the hypotheses:

H0 =the data follows the model distribution,
H1 =the data does not follow said distribution.

Test statistic:

χ2 =
k∑

i=1

(Oi − Ei)2

Ei
,

with
Oi: frequency in bin i,
Ei = N(F(Xi

u)− F(Xi
l)),

Null hypothesis is rejected if

χ2 ⩾ χ2
1−α,k−m.
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Constant MPN growing time: results

Model was rejected.
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Two possible solutions

Random MPN growing time:

T2 ∼ lognormal(µ, σ2)

Individual variability: each individual has a different active mutation
rate δi, i = 1, 2, . . . ,N, considered as a sample of a lognormal(m, s2)
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Estimation of both models

Both models were rejected.
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Age dependency on active mutation rate

Age dependency of δ:

δ(t) = A exp(kt)

.

=⇒ f1(t) = A exp
(A

k
)
exp (kt) exp

(
−A

k exp(kt)
)
.
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Two age-dependant models
Model 1: T2 = α constant.

Model 1: distribution of TM

fM(t) = A exp

(
A
k

)
exp (k(t − α)) exp

(
−A

k exp(k(t − α))

)
.

Model 2: T2 ∼ lognormal(µ, σ2).

Model 2: distribution of TM

fM(t) =
∫ t

0
A exp

(
A
k

)
exp (ks) exp

(
−A

k exp(ks)
)

× 1
(t − s)σ

√
2π

exp

(
−(log(t − s)− µ)2

2σ2

)
ds
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Estimation: generalized EM algorithm

X ∼ fX(x; θ): observed data of ages of detection .

Z ∼ fZ(z; θ): missing data (values of T2).

(x, z) ∼ fX,Z(x, z; θ): complete data.

Goal
Find θ that maximizes

log LX,Z(θ) = log fX,Z(x, z; θ).
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Generalized EM algorithm

θ0: initial value.

Iteration k + 1:

E-step: computing

Q(θ; θk) = Eθk(log LX,Z(θ)|x).

M-step: choose θk+1 such that

Q(θk+1; θk) ⩾ Q(θk; θk).
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M-step

(Rai and Matthews, 1993)

θk+1: one Newton-Raphson step from θk over the function Q(θk+1; θk),
that is

θk+1 = θk + akδk,

where

δk = −
[
∂2(Q(θ; θk))

∂θ∂θT

]−1∣∣∣∣∣
θ=θk

[
∂(Q(θ; θk))

∂θ

]∣∣∣∣
θ=θk

and 0 < ak ⩽ 1.
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Choice of ak

First: staying in the parameters space and nondecreasing likelihood.

Start with a0
k = 1

aj+1
k =

aj
k

2 .

=⇒ aj∗
k .

Then: backtracking line search with Armijo condition.

Start with aj∗
k .

While Q(θk + ai
kδk; θk) < Q(θk; θk) + 10−4ak∇Q(θk; θk)Tδk

ai+1
k = 0.8ai

k.
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Age-dependency models estimations

Both models were not rejected.
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Comparing the models: BIC

Bayesian Information Criterion (BIC)

BIC = k log n − 2 log L̂.

k: number of parameters of the model,
n: size of data sample,
L̂: maximized value of the likelihood function.

A lower BIC is preferred.
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Comparing the models

Model 1: T2 = α constant:

BIC1 = 2079.048.

Model 2: T2 ∼ lognormal(µ, σ2):

BIC2 = 2085.299.

=⇒ the gain of adding variability is small and not compensated by the
cost of adding a new parameter.
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Model validation

French national registry of MPN (FIMBANK): 1111 individuals.

Model was not rejected.

25 / 29



Quantitative results

Under the age-dependent model:

Time of emergence of the cancer (T1): mean of 60 years.

Time from tumor emergence to diagnosis (T2): 8.7 years.
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Comparing PV and ET

ET: majority of heterozygous cells.

PV: majority of homozygous cells (mitotic recombination needed).

Estimated time of emergence approximately 1.5 years higher for PV.
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