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Ecological problematic and motivation

Two behaviors:
• commuting mode;
• foraging mode.

Goal: predicting the majority behavior of bats at sites throughout France.
▶ discriminate the foraging behavior from the commuting behavior.

Motivations:
• contribute to address spatial ecology issues;
• automate decision-making with few input variables.

Data: time of echolocation calls of differents species
recorded as part of Vigie-Chiro participatory project.
▶ we focus on the Common Pipistrelle.
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Echolocation and behavioral characterization

Echolocation: used by bats for foraging and commuting.

Behavioral characterization: via the way bats emit calls (see Griffin et al.
(1960)).

Figure: Sonogram containing a feeding buzz.

▶ consider the temporal distribution of the calls.
▶ sequence of calls (Tℓ )ℓ≥1 as a realization of a point process N .
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Data modeling with Hawkes processes

Hawkes processes: family of point processes introduced in Hawkes (1971).

Exponential model: for Y ∈ {0, 1}, 𝜃Y ∈ Θ, conditional intensity given for
t ≥ 0 by:

𝜆𝜃Y (t) := 𝜇Y +
∫ t

0
𝛼Y𝛽Ye−𝛽Y (t−s) dN (s) = 𝜇Y +

∑︁
Tℓ<t

𝛼Y𝛽Ye−𝛽Y (t−Tℓ ) ,

where
• Θ = {𝜇 > 0, 0 ≤ 𝛼 < 1, 𝛽 ≥ 0};
• (Tℓ )ℓ≥1 are the jump times of the process, Y the label.

Modeling: the start time of a call considered as a jump of the Hawkes
process.

Classification: procedure is based on the likelihood and relies on Empirical
Risk Minimization (ERM).
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Real data

• Calls recorded over one night at 755 sites in France.
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Figure: Each point on the map represents a site and its colour refers to the number of events in the
temporal sequences.

• 332 labeled sites.
• 423 unlabeled sites.
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Results

Classification on labeled data: testing over 20 Monte-Carlo repetitions.
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Figure: Confusion matrix of prediction on test data. Score: ERM: 68.13% (4.15), RF: 67.35% (2.21).

Prediction on unlabeled sites: tricky since bats have mixed behavior.
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Figure: Predictive probability on unlabeled data as a function of environmental covariates.
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Conclusion and perspectives

Conclusion:
• Hawkes processes revelant for data modeling;
• classification procedure: prediction and behavioral confidence index;
• tool to ecologist for predicting bats behavior.

Bats Monitoring: A Classification Procedure of Bats Behaviors based on
Hawkes Processes, C. Denis, C. Dion-Blanc, R.E. Lacoste, L. Sansonnet and Y.
Bas (2023), The Journal of the Royal Statistical Society, Series C.

Perspectives:
• look at other species with more marked behavior;
• extension to multivariate Hawkes process.
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Multidimensional linear Hawkes process (MHP)

Multivariate Hawkes process: N = (N1, . . . ,NM) is defined by M point
processes on ℝ∗

+.
▶ M > 1 is the dimension of the network.

j-th conditional intensity: given for t ≥ 0 by:

𝜆j (t) := 𝜇j +
M∑︁
j′=1

aj,j′
∫ t

0
h(t − s) dNj′ (s) = 𝜇j +

M∑︁
j′=1

aj,j′
∑︁

Tj′,ℓ<t

h(t − Tj′,ℓ ),

where

• 𝜇 = (𝜇1, . . . , 𝜇M) ∈ (ℝ∗
+)M is the exogenous intensity vector;

• A = (aj,j′)j,j′ ∈ ℝM×M
+ is the interaction matrix;

• h : ℝ+ → ℝ+ such that
∫ ∞
0 h(t)dt ≤ 1 is the kernel function.
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Modeling interaction within a network

Example: in a network of dimension M = 5.
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(b) Jump times of the associated MHP

▶ a MHP models mutual excitation effects between connected
components of a network, which depend on past interactions.
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Parametric model

Parametrization: each 𝜆j depends on an unknown parameter 𝜃 ∗ belonging
to:

Θ :=
{
𝜇 ∈ (ℝ∗

+)M, A ∈ ℝM×M
+ , 𝜌 (A) < 1

}
∈ ℝ

M×(M+1)
+ ,

where 𝜌 (A) is the spectral radius of A.

Assumption: N have finite exponential moment.

Modeling hypothesis: h known.

Notation: 𝜃 ∗ = (𝜇∗,A∗) ∈ Θ the true and unknown parameter.
▶ 𝜆j,𝜃 ∗ the conditional intensity of the j-th componant associated with this
parameter.

Goal: recover the support of 𝜃 ∗: supp(𝜃 ∗).
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Statistical setting

Let T > 0 be the upper bound of the observation interval.

Notation: TT := {{Tj,ℓ }1≤ℓ≤Nj (T ) , 1 ≤ j ≤ M} the jump times of a MHP
N = (N1, . . . ,NM) observed in short time on [0, T ].

Data: training n-sample Dn := {T (1)
T , . . . ,T (n)

T } which consists of
independent copies of TT .

Asymptotic setting: in n → ∞ the number of trials (not in T as in Bacry,
Bompaire, Gaïffas, and Muzy (2020)).
▶ the path may not have reached stationary regime.
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High-dimensional framework

High-dimension: the dimension of the network M may be very large.
▶ in particular M(M + 1) may be larger than n.

Sparsity assumption: A∗ sparse.
▶ individuals in the network only impacted by a small portion of other

individuals.

Motivation:
• reduction of the problem dimension;
• facilitate interpretation;
• often very natural from a modeling standpoint.
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LASSO procedure for support recovery

Goodness-of-fit functional:

RT ,n(𝜃 ) =
1
n

n∑︁
i=1

(
1
T

M∑︁
j=1

∫ T

0
𝜆
(i)
j,𝜃 (t)

2
dt − 2

∫ T

0
𝜆
(i)
j,𝜃 (t) dN

(i)
j (t)

)
,

where 𝜆 (i)
j,𝜃 (t) and N (i)

j (t) are defined from the i-th repetition.

Estimator:

𝜃 ∈ argmin
𝜃 ∈ℝM×(M+1)

{
RT ,n(𝜃 ) + 𝜅

M∑︁
j=1

M∑︁
j′=1

|𝜃j,j′ |
}
,

where 𝜅 is the regularization constant to be calibrated.
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Some additional notations

For each t ∈ (0, T ] the random matrix ℍt ∈ ℝn×(M+1)

(ℍt)i,j = H (i)
j (t), with H (i)

j (t) :=
∫ t

0
h(t − s) dN (i)

j (s), j ≠ 0, H (i)
0 ≡ 1.

ℍ =
1
T

∫ T

0
ℍ′
tℍt dt .

• S∗j := {𝜃 ∗j,j′ ≠ 0, 0 ≤ j′ ≤ M} the support of the j-th line of 𝜃 ∗

▶ contains at least an element (as 𝜇∗j is non-zero).

• ℍS∗j ,S
∗
j
:= (ℍj′,j′)j′∈S∗j .

▶ submatrix given by deleting the rows and columns belonging to the
complementary of the support S∗cj := {𝜃 ∗j,j′ = 0, 0 ≤ j′ ≤ M}.
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Assumptions on ℍ (1/3)

Assumption 1: (Mutual incoherence)

There exists some 1 ≥ 𝛾 > 0 such that

max
j∈{1,...,M}

∥ℍS∗cj ,S∗j
ℍ−1
S∗j ,S

∗
j
∥∞ ≤ 1 − 𝛾 a.s.

▶ ensures there is not too much correlation between active and non-active
variables;

▶ the incoherence parameter 𝛾 ∈ (0, 1] must not be too small.
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Assumptions on ℍ (2/3)

Assumption 2: (Minimum eigenvalue)

There exists Λ0 > 0 such that

min
j∈{1,...,M}

Λmin

(
ℍS∗j ,S

∗
j

n

)
≥ Λ0 a.s.

▶ imposes each matrix ℍS∗j ,S
∗
j
to be invertible;

▶ identifiability of the problem restricted to each S∗j ;

▶ ensures that the submatrix ℍS∗j ,S
∗
j
does not have its columns linearly

dependent.
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Assumptions on ℍ (3/3)

Assumption 3: (Minimum signal condition)

min
j,j′ ∈S∗

���𝜃 ∗j,j′ ��� > Λ0max
j

���S∗j ���2 log4(nM2)
√
n

▶ ensures that the non-zero entries of the true parameter are big enough to
detect;
▶ imposes that the minimum value 𝜃 ∗min (non-zero) cannot decay to zero
faster than the regularization parameter 𝜅 chosen in the next theorem.
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Main result

Theorem 1

Under assumptions 1, 2, et 3. Let 𝜅 =
log4(nM2)

√
n

. For n large enough,

with probability greater than 1 − C0
n with C0 > 0, the penalized least-

squares contrast admits a unique solution 𝜃 which satisfies the fol-
lowing properties:

1 𝜃j,j′ ≥ 0

2 supp(𝜃 ) = supp(𝜃 ∗);

3

𝜃 − 𝜃 ∗

∞
≤

Λ0maxj |S∗j |2 log
4(nM2)

√
n

The proof follows the primal-dual-witness method (see Hastie, Tibshirani
and Wainwright (2015)).
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Implementation details (1/2)

Objective function : written as the sum of two functions.

RT ,n(𝜃 ) + 𝜅
M∑︁
j=1

M∑︁
j′=1

|𝜃j,j′ |

▶ use first-order optimization algorithm based on proximal methods with
Nesterov’s momentum method, namely FISTA (see Beck and Teboulle
(2009)).

FISTA: new iterate is based on a specific linear combination of the previous
two points.
• significantly faster rate of convergence than ISTA;
• additional computation cost is marginal (requires only one gradient

evaluation per iteration as for ISTA);
• descent step used is 1/L with L the Lipschitz constant of the gradient
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Implementation details (2/2)

Calibration of 𝜿 : use EBIC criteria (see Chen (2008)).

EBIC: for some 𝛾 ∈ [0, 1], 𝜅 ∈ Δ

EBIC𝛾 (𝜅) := −2LT ,n
(
𝜃 (𝜅)

)
+

���S𝜃 (𝜅 ) ��� log(n) + 2𝛾 log ©«
(

M2���S𝜃 (𝜅 ) ���
)ª®¬

where 𝜃 (𝜅) is the LASSO estimates with the tuning parameter 𝜅, LT ,n is the

log-likelihood of the model,
���S𝜃 (𝜅 ) ��� is the number of active coefficients of

𝜃 (𝜅).
• relevant in a high-dimensional setting with parsimony assumptions;
• we choose the constant 𝛾 = 1
• we explore a grid of size |Δ| = 40
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Simulation scheme and evaluation

Synthetic data generation: paths simulated by cluster process
representation algorithm;

Panel of scenarios: vary the sparsity rate of A∗ as well as its structure
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Figure: 𝜃∗ = (𝜇∗,A∗ ) in both scenarios. Sparsity rate A∗ in Scenario 1 : 92%, in Scenario 2 : 85%.

Evaluation: using the following metrics

dH
(
A∗, Â

)
=

1
M2

M∑︁
j,j′=1

𝟙{
A∗
j,j′≠Âj,j′

}, and dℓ2
(
A∗, Â

)
=

√√√ M∑︁
j,j′=1

|A∗
j,j′ − Âj,j′ |

2
;
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Visual results for one repetition

• M = 25, T = 5, h(s) = 𝛽 exp(−𝛽s) with 𝛽 = 3.
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Â, n = 1000
0

5

10

15

20

0

1

Figure: True support supp(𝜃∗ ) and recovered support supp(𝜃 ) in Scenario 2. The impact of n is
investigated.
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Results for 30 Monte-Carlo repetitions

dH dl2
n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000

Scenario 1 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.96 (0.11) 0.44 (0.04) 0.32 (0.04)
Scenario 2 0.10 (0.01) 0.05 (0.01) 0.04 (0.01) 1.04 (0.10) 0.47 (0.06) 0.32 (0.03)

Table: Lasso results

▶ larger n is, the better the support is reconstructed, either in terms of
Hamming distance or ℓ2 distance.

n # events time (sec)

Scenario 1
100 9524 (147) 68.64 (0.22)
500 47651 (354) 334.13 (1.30)
1000 95737 (632) 670.51 (2.67)

Table: Number of observed events, average execution time for Scenario 1.

▶ fast computational time (optimized C++ code).
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Conclusion and perspectives

Conclusion:
• consistency of the support and the convergence of the estimator;
• good numerical results on synthetic data;

ERM-LASSO classification rule for Multivariate Hawkes Processes paths,
C. Denis, C. Dion-Blanc, R.E. Lacoste and L. Sansonnet, Soon on Hal.
Sparkle: a statistical learning toolkit for Hawkes process modeling in Python,
R.E. Lacoste, In progress.

Perspectives:
• include inhibition interactions;
• ecological bat problem: each component of the MHP would model

echolocation calls associated with a species;
▶ model the effects of inter-species cooperation and competition between

species.
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Thank you for your attention!

Any questions?
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Modeling the sequence of calls

Point processes: model the occurrence of random events over time.

0 2 4 6 8 10 12
Times of jumps

0 20 40 60 80 100
Lag

0.0

0.2

0.4

0.6

0.8

1.0

Figure: On the left are represented the start times of echolocation calls sequences, on the right it is the
autocorrelation as a function of the lag for four nights.

▶ presence of strong temporal dependence in data.
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Mixture model

Let DL
n =

{
(T 1

T ,Y 1), . . . , (T n
T ,Y n)

}
be a sample of i.i.d. observations such

that:

• Label: Y ∼ B (p∗);
• Feature: TT =

(
T1, . . . , TNT

)
of intensity 𝜆𝜃 ∗Y (t) on [0, T ] with 𝜃 ∗Y ∈ Θ.

Goal: learn a decision rule g fromDL
n

such that g(TT ) is a prediction of the
label Y .

▶ given a new unlabeled feature
T n+1
T , our guess for Yn+1 is g

(
T n+1
T

)
.
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Quality of label prediction: measured by its missclassification risk

R(g) := ℙ
(
g
(
T n+1
T

)
≠ Y n+1) .
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Bayes rule and empirical risk minimization

Bayes rule: characterized by

gp∗,𝜽 ∗ (TT ) = 𝟙{𝜂p∗,𝜽∗ (TT )> 1
2 }

where 𝜂p∗,𝜽 ∗ (TT ) := ℙ (Y = 1|TT ) =
p∗ exp

(
F𝜃∗1

(TT )
)

p∗ exp
(
F𝜃∗1

(TT )
)
+(1−p∗ ) exp

(
F𝜃∗0

(TT )
)

Empirical risk: based on Dn estimates p̂ = 1
n

∑n
i=1 𝟙{Y i=1} and solve :

𝜽 ∈ argmin
𝜽 ∈Θ2

1
n

n∑︁
i=1

𝟙{gp̂,𝜽 (T i
T )≠Y i }

▶ minimize this require to solve a non convex optimization problem.
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ERM procedure

Convexification: replace the 0 − 1 loss by a convex surrogate (see Zhang
(2004)) and based on Dn solve instead :

𝜽 ∈ argmin
𝜽 ∈Θ2

1
n

n∑︁
i=1

(
Z i − fp̂,𝜽 (T i

T )
)2

where Z i = 2Yi − 1 and fp̂,𝜽 (TT ) = 2𝜂p̂,𝜽 (TT ) − 1.

Model: F̂ = {2𝜂 − 1 : 𝜂 ∈ Ĥ} where

Ĥ =

{
𝜂p̂,𝜽 (TT ) =

p̂ exp
(
F𝜃1 (TT )

)
p̂ exp

(
F𝜃1 (TT )

)
+ (1 − p̂) exp

(
F𝜃0 (TT )

) }
Classifier: ĝ(TT ) = 𝟙{

f̂ (TT )≥0
} .

Romain Lacoste Aussois 2024 June 12, 2024 26 / 26



Goodness-of-fit test

ERM procedure: provides estimates of (𝜃 ∗0, 𝜃 ∗1).
▶ gives a model for the behavior within each class.

Model evaluation: by performing a goodness-of-fit test.
▶ using the Time-Rescaling Theorem (see Daley and Vere-Jones (2003)).

Theorem

LetΛ(t) =
∫ t
0 𝜆(s) ds be the compensator of the processN . Then, a.s.,

the transformed sequence {𝜏j = Λ(Tj)} is a realization of a unit-rate
Poisson process if and only if the original sequence {Tj} is a realization
from the point process N .

Test H0: “the sequence of observations is a realization of the point process
with intensity 𝜆

𝜃k
”.

▶ test if {Λ
𝜃k
(Tj+1) − Λ

𝜃k
(Tj)} iid∼ E(1)
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Test results

Labeled data:
ĝ(T )

p-value Acceptance Rate
Class 0 0.26 (0.06) 0.66 (0.11)
Class 1 0.15 (0.03) 0.45 (0.07)

Table: Mean p-values and reject rate for a 5% significance level test.

Unlabeled data:

ĝ(T )
p-value Acceptance Rate

Class 0 0.15 0.43
Class 1 0.21 0.49

Table: Mean p-values and acceptance rate for a 5% significance level test.
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