Bats Monitoring: A Classification Procedure of Bats Behaviors based on Hawkes Processes École de printemps de la Chaire MMB 2024

Romain Lacoste, PhD student

In collaboration with C. Denis, C. Dion-Blanc, L. Sansonnet and Y. Bas

Aussois

June 12, 2024

Romain Lacoste

Aussois 2024

Hawkes Processes Classification Procedure for Bats Monitoring Ecological problematic Statistical methodology Results on real data

Support recovery of a multivariate Hawkes process in high dimension Statistical framework Theoretical results Numerical experiments

Hawkes Processes Classification Procedure for Bats Monitoring Ecological problematic

Statistical methodology Results on real data

Support recovery of a multivariate Hawkes process in high dimension Statistical framework

- Theoretical results
- Numerical experiments

Ecological problematic and motivation

Two behaviors:

- commuting mode;
- foraging mode.

Goal: predicting the majority behavior of bats at sites throughout France.

discriminate the foraging behavior from the commuting behavior.

Motivations:

- contribute to address spatial ecology issues;
- automate decision-making with few input variables.

Data: time of echolocation calls of **differents species** recorded as part of **Vigie-Chiro** participatory project.

• we focus on the **Common Pipistrelle**.

Echolocation: used by bats for foraging and commuting.

Behavioral characterization: via the way bats emit calls (see Griffin *et al.* (1960)).

Figure: Sonogram containing a feeding buzz.

- consider the temporal distribution of the calls.
- ▶ sequence of calls $(T_{\ell})_{\ell \ge 1}$ as a realization of a point process *N*.

Hawkes Processes Classification Procedure for Bats Monitoring Ecological problematic Statistical methodology

Results on real data

Support recovery of a multivariate Hawkes process in high dimension Statistical framework Theoretical results

Numerical experiments

Hawkes processes: family of point processes introduced in Hawkes (1971).

Exponential model: for $Y \in \{0, 1\}$, $\theta_Y \in \Theta$, conditional intensity given for $t \ge 0$ by:

$$\lambda_{\theta_Y}(t) := \mu_Y + \int_0^t \alpha_Y \beta_Y e^{-\beta_Y(t-s)} \, \mathrm{d}N(s) = \mu_Y + \sum_{T_\ell < t} \alpha_Y \beta_Y e^{-\beta_Y(t-T_\ell)},$$

where

- $\Theta = \{\mu > 0, 0 \le \alpha < 1, \ \beta \ge 0\};$
- $(T_{\ell})_{\ell \geq 1}$ are the **jump times** of the process, *Y* the label.

Modeling: the start time of a call considered as a **jump** of the Hawkes process.

Classification: procedure is based on the likelihood and relies on Empirical Risk Minimization (ERM).

Hawkes Processes Classification Procedure for Bats Monitoring Ecological problematic Statistical methodology Results on real data

Support recovery of a multivariate Hawkes process in high dimension Statistical framework Theoretical results Numerical experiments

Real data

• Calls recorded over one night at 755 sites in France.

Figure: Each point on the map represents a site and its colour refers to the number of events in the temporal sequences.

- 332 labeled sites.
- 423 unlabeled sites.

Results

Classification on labeled data: testing over 20 Monte-Carlo repetitions.

Figure: Confusion matrix of prediction on test data. Score: ERM: 68.13% (4.15), RF: 67.35% (2.21).

Prediction on unlabeled sites: tricky since bats have mixed behavior.

Figure: Predictive probability on unlabeled data as a function of environmental covariates.

Romain Lacoste

Conclusion and perspectives

Conclusion:

- Hawkes processes revelant for data modeling;
- classification procedure: prediction and behavioral confidence index;
- tool to ecologist for predicting bats behavior.

Bats Monitoring: A Classification Procedure of Bats Behaviors based on Hawkes Processes, C. Denis, C. Dion-Blanc, R.E. Lacoste, L. Sansonnet and Y. Bas (2023), The Journal of the Royal Statistical Society, Series C.

Perspectives:

- look at other species with more marked behavior;
- extension to multivariate Hawkes process.

Hawkes Processes Classification Procedure for Bats Monitoring Ecological problematic Statistical methodology Results on real data

Support recovery of a multivariate Hawkes process in high dimension Statistical framework

Theoretical results Numerical experiments **Multivariate Hawkes process:** $N = (N_1, ..., N_M)$ is defined by *M* point processes on \mathbb{R}^*_+ .

• M > 1 is the dimension of the network.

j-th conditional intensity: given for $t \ge 0$ by:

$$\lambda_j(t) := \mu_j + \sum_{j'=1}^M a_{j,j'} \int_0^t h(t-s) \, \mathrm{d}N_{j'}(s) = \mu_j + \sum_{j'=1}^M a_{j,j'} \sum_{T_{j',\ell} < t} h(t-T_{j',\ell}),$$

where

μ = (μ₁,..., μ_M) ∈ (ℝ^{*}₊)^M is the exogenous intensity vector;
A = (a_{j,j'})_{j,j'} ∈ ℝ^{M×M}₊ is the interaction matrix;

• $h: \mathbb{R}_+ \to \mathbb{R}_+$ such that $\int_0^\infty h(t) dt \le 1$ is the **kernel function**.

Modeling interaction within a network

Example: in a network of dimension M = 5.

(b) Jump times of the associated MHP

a MHP models mutual excitation effects between connected components of a network, which depend on past interactions.

Parametrization: each λ_j depends on an unknown parameter θ^* belonging to:

$$\Theta := \left\{ \mu \in (\mathbb{R}^*_+)^M, \; A \in \mathbb{R}^{M \times M}_+, \; \rho(A) < 1 \right\} \in \mathbb{R}^{M \times (M+1)}_+,$$

where $\rho(A)$ is the spectral radius of *A*.

Assumption: *N* have finite exponential moment.

Modeling hypothesis: h known.

Notation: $\theta^* = (\mu^*, A^*) \in \Theta$ the true and **unknown** parameter.

► λ_{j,θ^*} the conditional intensity of the *j*-th componant associated with this parameter.

Goal: recover the support of θ^* : supp (θ^*) .

Let T > 0 be the upper bound of the observation interval.

Notation: $\mathcal{T}_T := \{\{T_{j,\ell}\}_{1 \le \ell \le N_j(T)}, 1 \le j \le M\}$ the jump times of a MHP $N = (N_1, \ldots, N_M)$ observed in short time on [0, T].

Data: training *n*-sample $D_n := \{\mathcal{T}_T^{(1)}, \ldots, \mathcal{T}_T^{(n)}\}$ which consists of independent copies of \mathcal{T}_T .

Asymptotic setting: in $n \to \infty$ the number of trials (not in *T* as in Bacry, Bompaire, Gaïffas, and Muzy (2020)).

• the path may not have reached stationary regime.

High-dimensional framework

High-dimension: the dimension of the network *M* may be very large.

▶ in particular M(M + 1) may be larger than *n*.

Sparsity assumption: *A*^{*} **sparse**.

► individuals in the network only impacted by a small portion of other individuals.

Motivation:

- reduction of the problem dimension;
- facilitate interpretation;
- often very natural from a modeling standpoint.

Goodness-of-fit functional:

$$R_{T,n}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{T} \sum_{j=1}^{M} \int_{0}^{T} \lambda_{j,\theta}^{(i)}(t)^{2} dt - 2 \int_{0}^{T} \lambda_{j,\theta}^{(i)}(t) dN_{j}^{(i)}(t) \right),$$

where $\lambda_{j,\theta}^{(i)}(t)$ and $N_j^{(i)}(t)$ are defined from the *i*-th repetition.

Estimator:

$$\hat{\theta} \in \operatorname*{argmin}_{\theta \in \mathbb{R}^{M \times (M+1)}} \left\{ R_{T,n}(\theta) + \kappa \sum_{j=1}^{M} \sum_{j'=1}^{M} |\theta_{j,j'}| \right\},\$$

where κ is the regularization constant to be calibrated.

Hawkes Processes Classification Procedure for Bats Monitoring Ecological problematic Statistical methodology Results on real data

2 Support recovery of a multivariate Hawkes process in high dimension

Statistical framework

Theoretical results

Numerical experiments

For each $t \in (0, T]$ the **random matrix** $\mathbb{H}_t \in \mathbb{R}^{n \times (M+1)}$

$$(\mathbb{H}_t)_{i,j} = H_j^{(i)}(t), \text{ with } H_j^{(i)}(t) := \int_0^t h(t-s) \, \mathrm{d}N_j^{(i)}(s), \ j \neq 0, \ H_0^{(i)} \equiv 1.$$

$$\mathbb{H} = \frac{1}{T} \int_0^T \mathbb{H}'_t \mathbb{H}_t \, \mathrm{d}t.$$

S^{*}_j := {θ^{*}_{j,j'} ≠ 0, 0 ≤ j' ≤ M} the support of the *j*-th line of θ^{*}
 contains at least an element (as μ^{*}_i is non-zero).

• $\mathbb{H}_{S_{j}^{*},S_{j}^{*}} := (\mathbb{H}_{j',j'})_{j' \in S_{j}^{*}}.$

▶ submatrix given by deleting the rows and columns belonging to the complementary of the support $S_i^{*c} := \{\theta_{i,i'}^* = 0, 0 \le j' \le M\}$.

Assumption 1: (Mutual incoherence)

There exists some $1 \ge \gamma > 0$ such that

$$\max_{j \in \{1,...,M\}} \|\mathbb{H}_{S_j^{*c}, S_j^*} \mathbb{H}_{S_j^*, S_j^*}^{-1}\|_{\infty} \le 1 - \gamma \text{ a.s.}$$

ensures there is not too much correlation between active and non-active variables;

▶ the incoherence parameter $\gamma \in (0, 1]$ must not be too small.

Assumption 2: (Minimum eigenvalue)

There exists $\Lambda_0 > 0$ such that

$$\min_{j \in \{1,...,M\}} \Lambda_{\min}\left(\frac{\mathbb{H}_{S_j^*,S_j^*}}{n}\right) \ge \Lambda_0 \text{ a.s.}$$

▶ imposes each matrix $\mathbb{H}_{S_i^*, S_i^*}$ to be invertible;

► identifiability of the problem restricted to each S^{*}_i;

• ensures that the submatrix $\mathbb{H}_{S_j^*, S_j^*}$ does not have its columns linearly dependent.

Assumption 3: (Minimum signal condition)

$$\min_{j,j' \in S^*} \left| \theta_{j,j'}^* \right| > \Lambda_0 \max_j \left| S_j^* \right|^2 \frac{\log^4(nM^2)}{\sqrt{n}}$$

 ensures that the non-zero entries of the true parameter are big enough to detect;

▶ imposes that the minimum value θ^*_{\min} (non-zero) cannot decay to zero faster than the regularization parameter κ chosen in the next theorem.

Theorem 1

Under assumptions 1, 2, et 3. Let $\kappa = \frac{\log^4(nM^2)}{\sqrt{n}}$. For *n* large enough, with probability greater than $1 - \frac{C_0}{n}$ with $C_0 > 0$, the penalized least-squares contrast admits a unique solution $\hat{\theta}$ which satisfies the following properties:

1
$$\hat{\theta}_{j,j'} \ge 0$$

2 $\operatorname{supp}(\hat{\theta}) = \operatorname{supp}(\theta^*);$
3 $\left\|\hat{\theta} - \theta^*\right\|_{\infty} \le \frac{\Lambda_0 \max_j |S_j^*|^2 \log^4(nM^2)}{\sqrt{n}}$

The proof follows the primal-dual-witness method (see Hastie, Tibshirani and Wainwright (2015)).

Hawkes Processes Classification Procedure for Bats Monitoring Ecological problematic Statistical methodology Results on real data

2 Support recovery of a multivariate Hawkes process in high dimension

Statistical framework Theoretical results

Numerical experiments

Objective function : written as the sum of two functions.

$$R_{T,n}(\theta) + \kappa \sum_{j=1}^{M} \sum_{j'=1}^{M} |\theta_{j,j'}|$$

▶ use first-order optimization algorithm based on proximal methods with Nesterov's momentum method, namely **FISTA** (see Beck and Teboulle (2009)).

FISTA: new iterate is based on a specific linear combination of the previous two points.

• significantly faster rate of convergence than ISTA;

• additional computation cost is marginal (requires only one gradient evaluation per iteration as for ISTA);

• descent step used is 1/L with L the Lipschitz constant of the gradient

Calibration of κ : use EBIC criteria (see Chen (2008)).

EBIC: for some $\gamma \in [0, 1], \kappa \in \Delta$

$$\operatorname{EBIC}_{\gamma}(\kappa) := -2L_{T,n}\left(\hat{\theta}(\kappa)\right) + \left|S_{\hat{\theta}(\kappa)}\right| \log(n) + 2\gamma \log\left(\binom{M^2}{\left|S_{\hat{\theta}(\kappa)}\right|}\right)$$

where $\hat{\theta}(\kappa)$ is the LASSO estimates with the tuning parameter κ , $L_{T,n}$ is the log-likelihood of the model, $|S_{\hat{\theta}(\kappa)}|$ is the number of active coefficients of $\hat{\theta}(\kappa)$.

- relevant in a high-dimensional setting with parsimony assumptions;
- we choose the constant $\gamma = 1$
- we explore a grid of size $|\Delta| = 40$

Synthetic data generation: paths simulated by cluster process representation algorithm;

Panel of scenarios: vary the sparsity rate of A^* as well as its structure

Figure: $\theta^* = (\mu^*, A^*)$ in both scenarios. Sparsity rate A^* in *Scenario* 1: 92%, in *Scenario* 2: 85%. **Evaluation:** using the following metrics

$$d_{H}\left(A^{*},\hat{A}\right) = \frac{1}{M^{2}} \sum_{j,j'=1}^{M} \mathbb{1}_{\left\{A^{*}_{j,j'} \neq \hat{A}_{j,j'}\right\}}, \text{ and } d_{\ell_{2}}\left(A^{*},\hat{A}\right) = \sqrt{\sum_{j,j'=1}^{M} \left|A^{*}_{j,j'} - \hat{A}_{j,j'}\right|^{2}};$$

• M = 25, T = 5, $h(s) = \beta \exp(-\beta s)$ with $\beta = 3$.

Figure: True support supp (θ^*) and recovered support supp $(\hat{\theta})$ in *Scenario 2*. The impact of *n* is investigated.

	d _H			d_{l_2}		
	<i>n</i> = 100	<i>n</i> = 500	<i>n</i> = 1000	<i>n</i> = 100	<i>n</i> = 500	<i>n</i> = 1000
Scenario 1	0.03 (0.01)	0.03 (0.01)	0.03 (0.01)	0.96 (0.11)	0.44 (0.04)	0.32 (0.04)
Scenario 2	0.10 (0.01)	0.05 (0.01)	0.04 (0.01)	1.04 (0.10)	0.47 (0.06)	0.32 (0.03)

Table: Lasso results

larger n is, the better the support is reconstructed, either in terms of Hamming distance or ℓ_2 distance.

	n	# events	time (sec)
	100	9524 (147)	68.64 (0.22)
Scenario 1	500	47651 (354)	334.13 (1.30)
	1000	95737 (632)	670.51 (2.67)

Table: Number of observed events, average execution time for Scenario 1.

► fast computational time (optimized C++ code).

D	
- R(M)	 1 3771610
1.011	 Lacoste

Conclusion:

- consistency of the support and the convergence of the estimator;
- good numerical results on synthetic data;

ERM-LASSO classification rule for Multivariate Hawkes Processes paths, C. Denis, C. Dion-Blanc, R.E. Lacoste and L. Sansonnet, Soon on Hal. Sparkle: a statistical learning toolkit for Hawkes process modeling in Python, R.E. Lacoste, In progress.

Perspectives:

- include inhibition interactions;
- ecological bat problem: each component of the MHP would model echolocation calls associated with a species;

model the effects of inter-species cooperation and competition between species.

Thank you for your attention!

Any questions?

Modeling the sequence of calls

Point processes: model the occurrence of random events over time.

Figure: On the left are represented the start times of echolocation calls sequences, on the right it is the autocorrelation as a function of the lag for four nights.

presence of strong temporal dependence in data.

Let $\mathcal{D}_n^L = \{(\mathcal{T}_T^1, Y^1), \dots, (\mathcal{T}_T^n, Y^n)\}$ be a sample of i.i.d. observations such that:

- Label: $Y \sim \mathcal{B}(p^*)$;
- **Feature:** $\mathcal{T}_T = (T_1, \ldots, T_{N_T})$ of intensity $\lambda_{\theta_Y^*}(t)$ on [0, T] with $\theta_Y^* \in \Theta$.

Goal: learn a decision rule g from \mathcal{D}_n^L such that $g(\mathcal{T}_T)$ is a prediction of the label Y.

• given a new unlabeled feature \mathcal{T}_T^{n+1} , our guess for Y^{n+1} is $g(\mathcal{T}_T^{n+1})$.

Quality of label prediction: measured by its missclassification risk

$$\mathcal{R}(g) := \mathbb{P}\left(g\left(\mathcal{T}_T^{n+1}\right) \neq Y^{n+1}\right).$$

Bayes rule: characterized by

$$g_{p^*,\theta^*}\left(\mathcal{T}_T\right) = \mathbb{1}_{\left\{\eta_{p^*,\theta^*}\left(\mathcal{T}_T\right) > \frac{1}{2}\right\}}$$

where
$$\eta_{p^*, \theta^*}(\mathcal{T}_T) := \mathbb{P}(Y = 1 | \mathcal{T}_T) = \frac{p^* \exp\left(F_{\theta_1^*}(\mathcal{T}_T)\right)}{p^* \exp\left(F_{\theta_1^*}(\mathcal{T}_T)\right) + (1-p^*) \exp\left(F_{\theta_0^*}(\mathcal{T}_T)\right)}$$

Empirical risk: based on \mathcal{D}_n estimates $\hat{p} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{Y^i=1\}}$ and solve :

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta^2} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{g_{\hat{\boldsymbol{p}},\boldsymbol{\theta}}^{i}(\mathcal{T}_{T}^{i}) \neq Y^{i}\}}$$

> minimize this require to solve a non convex optimization problem.

Convexification: replace the 0 - 1 loss by a **convex surrogate** (see Zhang (2004)) and based on \mathcal{D}_n solve instead :

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \Theta^2}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \left(Z^i - f_{\hat{p}, \boldsymbol{\theta}}(\mathcal{T}_T^i) \right)^2$$

where
$$Z' = 2Y_i - 1$$
 and $f_{\hat{p},\theta}(\mathcal{T}_T) = 2\eta_{\hat{p},\theta}(\mathcal{T}_T) - 1$.
Model: $\hat{\mathcal{F}} = \{2\eta - 1: \eta \in \hat{H}\}$ where

$$\hat{H} = \left\{ \eta_{\hat{p},\theta} \left(\mathcal{T}_{T} \right) = \frac{\hat{p} \exp\left(F_{\theta_{1}}(\mathcal{T}_{T}) \right)}{\hat{p} \exp\left(F_{\theta_{1}}(\mathcal{T}_{T}) \right) + (1-\hat{p}) \exp\left(F_{\theta_{0}}(\mathcal{T}_{T}) \right)} \right\}$$

Classifier: $\hat{g}(\mathcal{T}_T) = \mathbb{1}_{\{\hat{f}(\mathcal{T}_T) \ge 0\}}$.

ERM procedure: provides estimates of (θ_0^*, θ_1^*) .

gives a model for the behavior within each class.

Model evaluation: by performing a goodness-of-fit test.

using the Time-Rescaling Theorem (see Daley and Vere-Jones (2003)).

Theorem

Let $\Lambda(t) = \int_0^t \lambda(s) \, ds$ be the **compensator** of the process *N*. Then, a.s., the transformed sequence $\{\tau_j = \Lambda(T_j)\}$ is a realization of a unit-rate Poisson process if and only if the original sequence $\{T_j\}$ is a realization from the point process *N*.

Test H_0 : "the sequence of observations is a realization of the point process with intensity $\lambda_{\hat{\theta}_k}$ ".

► test if
$$\{\Lambda_{\hat{\theta}_k}(T_{j+1}) - \Lambda_{\hat{\theta}_k}(T_j)\} \stackrel{\text{iid}}{\sim} \mathcal{E}(1)$$

Labeled data:

	$\hat{g}(\mathcal{T})$		
	<i>p</i> -value	Acceptance Rate	
Class 0	0.26 (0.06)	0.66 (0.11)	
Class 1	0.15 (0.03)	0.45 (0.07)	

Table: Mean p-values and reject rate for a 5% significance level test.

Unlabeled data:

	$\hat{g}(\mathcal{T})$		
	<i>p</i> -value	Acceptance Rate	
Class 0	0.15	0.43	
Class 1	0.21	0.49	

Table: Mean p-values and acceptance rate for a 5% significance level test.