#### Adaptation en présence d'un optimum phénotypique mobile

#### Lionel Roques, BioSP, INRAE

With : O Bonnefon, R Forien, G Martin & F Patout

Séminaire de la Chaire Modélisation Mathématique et Biodiversité 30 juin 2020







## Introduction



# Modelling evolutionary dynamics in asexuals

General objectives:

- To **predict** the evolution of asexual organisms such as viruses, bacteria, some insect and fungi species, or cancer lineages in response to a treatment

- To **understand** complex interplay of selection, mutation and **environmental changes** in asexuals

• Challenge: Better management strategies of resistance emergence, World Health Organization describes antibiotic resistance as one of the biggest threats to global health, food security, and development today.



# Modelling evolutionary dynamics in asexuals

• ANR Project RESISTE: Evolutionary rescue, stochastic effects and interactions with environmental stress. Partnership with Montpellier Institute of Evolutionary Sciences (experimental evolution of bacteria, theoretical models)

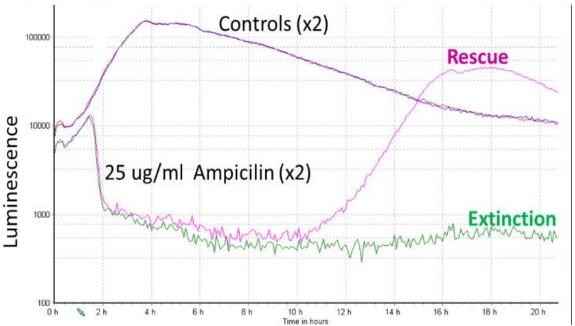






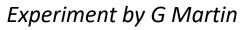
# **Evolutionary rescue**

When a population that initially declines because of exposure to an environment outside of its ecological niche can avoid extinction, via genetic adaptation. [Lynch and Lande 1993, Gomulkiewicz and Holt 1995]



#### Monitoring a rescue in live

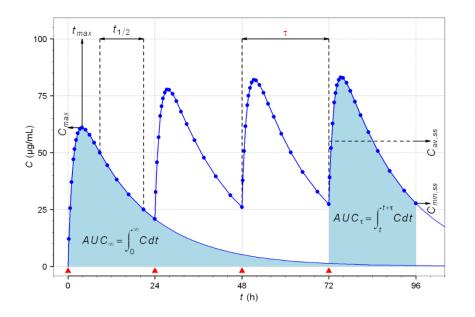
**Experimental illustration:** four pops of E. coli were monitored over time (hours) with either no antibiotics or 25ug/ml ampicillin

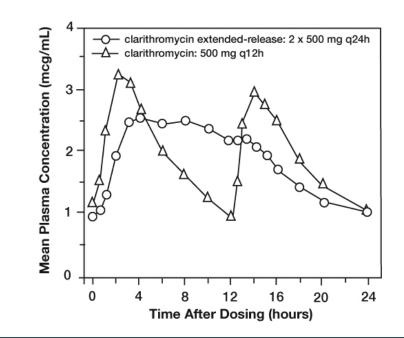




# Environmental changes (from the point of view of the pathogen):

- May be abrupt: host shift in a pathogen, antibiotic treatment (*in vitro*), ...
- May also be more progressive: temperature change, increase in salinity ...
- May have more or less periodic trajectories: time course of drug plasma concentrations

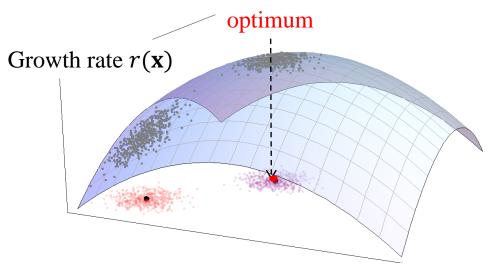






### Modelling the phenotype-fitness relationship: Isotropic Fisher's Geometrical Model with 1 optimum

Phenotype  $\mathbf{x} \in \mathbb{R}^n$  at *n* traits. Unique fitness optimum  $\mathcal{O}$ .

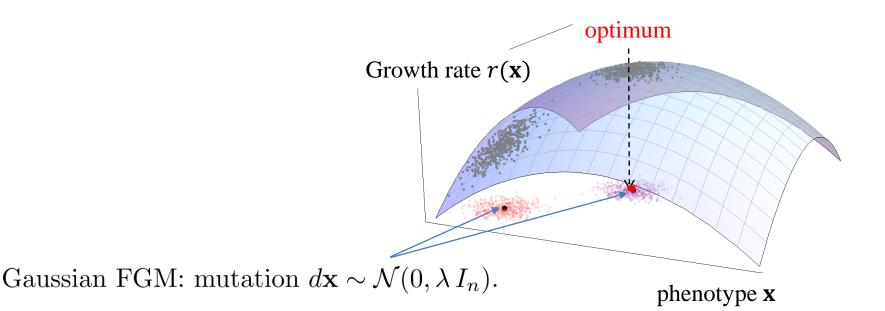


phenotype **x** 

Growth rate r (= fitness) of genotype **x**:

$$r(\mathbf{x}) = r_{max} - \frac{\|\mathbf{x} - \mathcal{O}\|^2}{2}.$$

## Modelling the phenotype-fitness relationship: Isotropic Fisher's Geometrical Model with 1 optimum



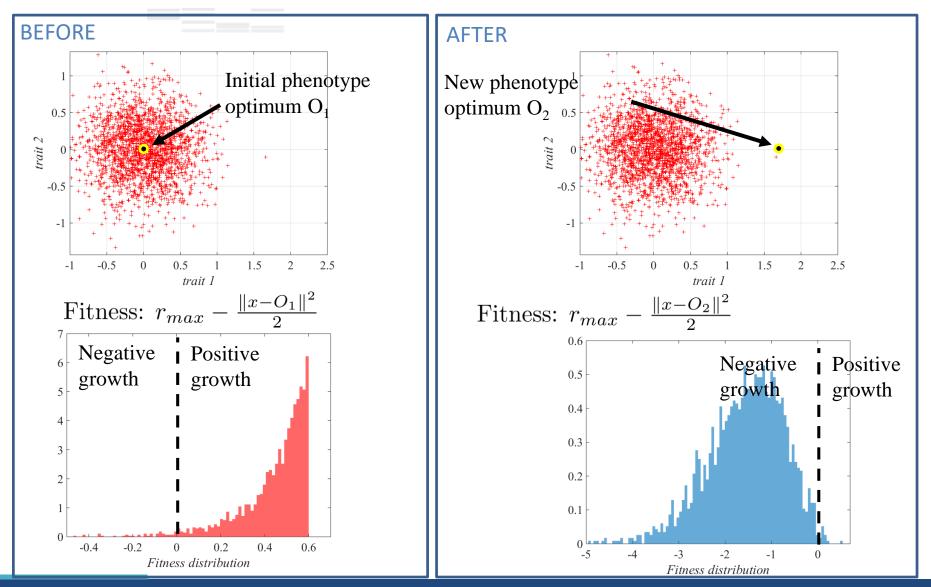
Mutation rate U

$$r(\mathbf{x}) = r_{max} - \frac{\|\mathbf{x} - \mathcal{O}\|^2}{2}$$

Induces epistasis: the distribution of fitness effects of mutations depends on the current phenotype

Consistent with various empirical patterns of mutation fitness effects in fungus, bacteria and viruses [Martin and Lenormand 2006, Schoustra and Hwang 2016]

#### Abrupt environmental change

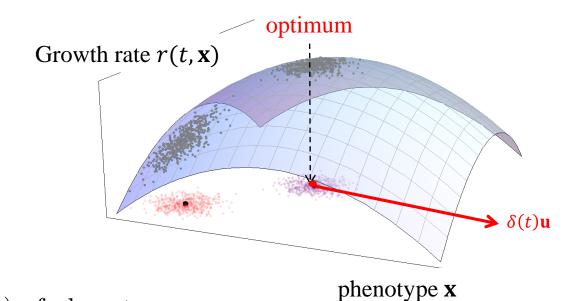




#### Arbitrarily moving optimum

Moving optimum  $\mathcal{O}(t) = \mathcal{O}_0 + \delta(t) \mathbf{u}$ 

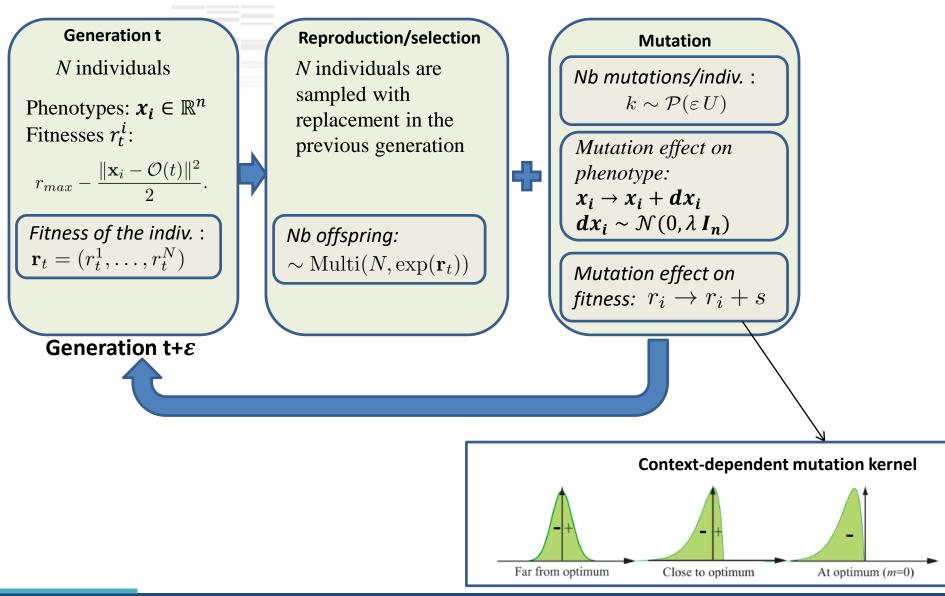
 $\delta(t)$  arbitrary function with  $\delta(0)=0$   ${\bf u}$  : unit vector in  $\mathbb{R}^n$ 



Growth rate  $r(t, \mathbf{x})$  (= fitness) of phenotype  $\mathbf{x}$ :

$$r(t, \mathbf{x}) = r_{max} - \frac{\|\mathbf{x} - \mathcal{O}(t)\|^2}{2}.$$

### FGM + Wright-Fisher IBM with constant population size





#### **Convergence towards an integro-differential equation**

 $q_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}$ : phenotype distribution of the population at time t.

**Lemma (Forien, R, 2020)** Fix T > 0. Assume that  $\varepsilon_N \to 0$  and  $\varepsilon_N^2 N \to +\infty$  as  $N \to \infty$ . The process  $(q_t^N, t \in [0, T])$  converges in distribution to the solution of the deterministic equation:

$$\partial_t q(t, \mathbf{x}) = U \ (J \star q - q) + q(t, \mathbf{x}) \ (r(t, \mathbf{x}) - \overline{r}(t)), \ t \in (0, T), \ \mathbf{x} \in \mathbb{R}^n$$

with

$$\overline{r}(t) = \int_{\mathbb{R}^n} r(t, \mathbf{x}) q(t, \mathbf{x}) \, d\mathbf{x},$$

and J the isotropic Gaussian kernel with variance  $\lambda$ .

Can be obtained by simple adaptations of *[Fournier, Méléard, 2004; Champag-nat, Ferrière, Méléard, 2006]*, to take into account discrete time - fixed population size.



### **Existing results**

- Fixed optimum (= abrupt change) [Martin and Roques 2016] isotropic FGM dimension n, [Alfaro and Carles 2017, Alfaro and Veruete 2019]: 1D diffusion approximation, full trajectory; [Gil, Hamel, Martin, Roques] Dynamics of fitness distribution w/o diffusion approximation; [Hamel, Lavigne, Martin, Roques 2019] Anisotropic mutations effects, diffusive case
- Optimum with constant speed in geographical space, w/o adaptation (local competition term, KPP eqs) : [Berestycki, Diekmann et al. 2009, Berestycki and Rossi 2008].
- Phenotype optimum with constant speed: [*Alfaro, Berestycki, Raoul 2017*]: diffusion, n-D, optimum moving at constant speed, asymptotic analysis
- Periodically fluctuating: *[Lorenzi, Chisholm, Desvillettes, and Hughe, 2015]* Gaussian periodic (stationary) solution 1D case; *[Carrère, Nadin 2020]* principal eigenfunction analysis in bounded domains, study of the mean limit population; *[Figueroa Iglesias and Mirrahimi, 2018, 2019]*: method of constrained Hamilton-Jacobi equations: large time-small mutation regime.



onel Roques

### **Existing results**

- Fixed optimum (= abrupt change) [Martin and Roques 2016] isotropic FGM dimension n, [Alfaro and Carles 2017, Alfaro and Veruete 2019]: 1D diffusion approximation, full trajectory; [Gil, Hamel, Martin, Roques] Dynamics of fitness distribution w/o diffusion approximation; [Hamel, Lavigne, Martin, Roques 2019] Anisotropic mutations effects, diffusive case
- Optimum with constant speed in geographical space, w/o adaptation (local competition term, KPP eqs) : [Berestycki, Diekmann et al. 2009, Berestycki and Rossi 2008].
- Phenotype optimum with constant speed: [*Alfaro, Berestycki, Raoul 2017*]: diffusion, n-D, optimum moving at constant speed, asymptotic analysis (TW),
- dynamics
   Periodically fluctuati Gaussian periodic (st
  - Periodically fluctuating: [Lorenzi, Chisholm, Desvillettes, and Hughe, 2015]
    Gaussian periodic (stationary) solution 1D case; [Carrère, Nadin 2020] principal eigenfunction analysis in bounded domains, study of the mean limit population; [Figueroa Iglesias and Mirrahimi, 2018, 2019]: method of constrained Hamilton-Jacobi equations: large time-small mutation regime.



Large-time

#### Here

- Description of the full dynamics (not only the asymptotics in time): of critical importance for the study of rescue events
- Do not need a small mutation regime assumption (but a diffusion approximation ~ weak selection-strong mutation regime)
- We consider a general form of moving optimum (+ general time-dependent strength of selection)

$$r(t, \mathbf{x}) = r_{max} - \frac{\|\mathbf{x} - \mathcal{O}(t)\|^2}{2\sigma(t)^2}.$$



## **Distribution of phenotype**

We focus on the dynamics of the deterministic phenotype distribution  $q(t, \mathbf{x})$ under a diffusion approximation:

$$\partial_t q(t, \mathbf{x}) = \frac{\lambda U}{2} \Delta q + q(t, \mathbf{x}) \left( m(t, \mathbf{x}) - \overline{m}(t) \right), \ t > 0, \ \mathbf{x} \in \mathbb{R}^n$$
  
with  $m(t, \mathbf{x}) = r(t, \mathbf{x}) - r_{max} = -\frac{\|\mathbf{x} - \mathcal{O}(t)\|^2}{2}.$ 

Equivalent to the study of eqs of the form:

$$\partial_t n(t, \mathbf{x}) = \frac{\mu^2}{2} \Delta n + n(t, \mathbf{x}) \left( r(t, \mathbf{x}) - \rho(t) \right), \ t > 0, \ \mathbf{x} \in \mathbb{R}^n,$$

with  $n(t, \mathbf{x})$  the total population density and  $\rho(t)$  its integral over  $\mathbb{R}^n$ , as in/Lorenzi, Chisholm, Desvillettes, and Hughe, 2015; Alfaro, Berestycki, Raoul 2017; Figueroa Iglesias and Mirrahimi, 2018, 2019; Carrère, Nadin 2020]. Simply set

$$q(t, \mathbf{x}) = n(t, \mathbf{x}) / \rho(t).$$



## **Distribution of phenotype**

We focus on the dynamics of the deterministic phenotype distribution  $q(t, \mathbf{x})$ under a diffusion approximation:

$$\partial_t q(t, \mathbf{x}) = \frac{\mu^2}{2} \Delta q + q(t, \mathbf{x}) \left( m(t, \mathbf{x}) - \overline{m}(t) \right), \ t > 0, \ \mathbf{x} \in \mathbb{R}^n$$
  
with  $m(t, \mathbf{x}) = r(t, \mathbf{x}) - r_{max} = -\frac{\|\mathbf{x} - \mathcal{O}(t)\|^2}{2}.$ 

Equivalent to the study of eqs of the form:

$$\partial_t n(t, \mathbf{x}) = \frac{\mu^2}{2} \Delta n + n(t, \mathbf{x}) \left( r(t, \mathbf{x}) - \rho(t) \right), \ t > 0, \ \mathbf{x} \in \mathbb{R}^n,$$

with  $n(t, \mathbf{x})$  the total population density and  $\rho(t)$  its integral over  $\mathbb{R}^n$ , as in/Lorenzi, Chisholm, Desvillettes, and Hughe, 2015; Alfaro, Berestycki, Raoul 2017; Figueroa Iglesias and Mirrahimi, 2018, 2019; Carrère, Nadin 2020]. Simply set

$$q(t, \mathbf{x}) = n(t, \mathbf{x}) / \rho(t).$$



# Strategy that we had developed in previous works (fixed optimum)

**1. Derive a 1D equation satisfied by the distribution of fitness** p(t,m) $\partial_t p(t,m) = U(J_y \circledast p - p)(t,m) + p(t,m)(m - \overline{m}(t)), t \ge 0, m \in \mathbb{R},$ 

with 
$$(J_y \circledast p - p)(t, m) = \int_{\mathbb{R}} J_y(m - y) p(t, y) dy - p(t, m).$$

2. Diffusive approximation

$$\partial_t p(t,m) = -\mu^2 m \,\partial_{mm} p(t,m) + \mu^2 \left(\frac{n}{2} - 2\right) \partial_m p(t,m) + \left(m - \overline{m}(t)\right) p(t,m),$$

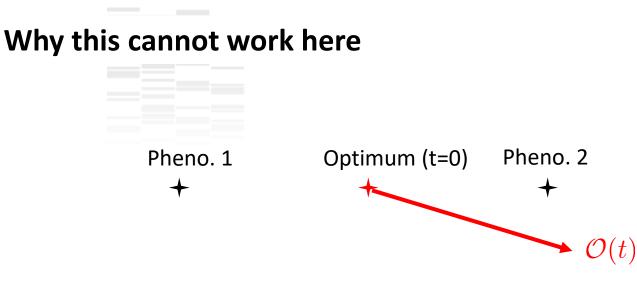
3. Define the cumulant generating function

$$C(t,z) = \ln\left(\int_{\mathbb{R}} p(t,s) e^{s z} ds\right)$$

4. Solve (explicitly) the equation satisfied by the CGF.

$$C(t,z) = (1 - \mu^2 z^2) \partial_z C(t,z) - \frac{n}{2} \mu^2 z - \overline{m}(t), \ t \ge 0, \ z \in \mathbb{R}_+$$





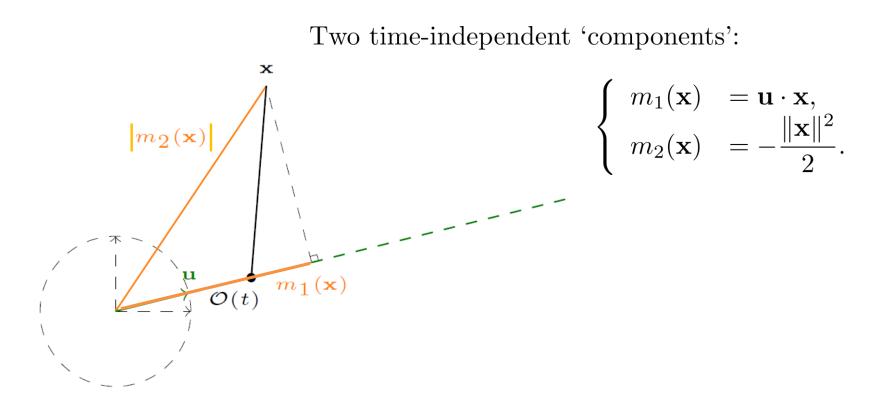
Pheno. 1 and 2 have the same fitness at t = 0.

Pheno. 2 has a better fitness at larger times.

Contrarily to the « fixed optimum » case, the distribution of fitness does not fully determine its own evolution



#### **Definition of 2D fitness components**



At any time,

$$m(t, \mathbf{x}) = -\frac{\|\mathbf{x} - \mathcal{O}(t)\|^2}{2} = \delta(t) m_1(\mathbf{x}) + m_2(\mathbf{x}) - \frac{\delta(t)^2}{2}.$$



#### **Distribution of the fitness components**

 $p(t, m_1, m_2)$ : bivariate distribution of the components  $(m_1, m_2)$ 

#### Defined by:

Theorem (Bonnefon, Martin, Patout, Roques, 2020) There exists a unique nonnegative density function  $p \in C^1(\mathbb{R}_+, L^2(\mathbb{R} \times \mathbb{R}_-))$  that satisfies the following relationship

$$\int_{\mathbb{R}^n} q(t, \mathbf{x}) \phi(m_1(\mathbf{x}), m_2(\mathbf{x})) d\mathbf{x} = \int_{\mathbb{R} \times \mathbb{R}_-} p(t, m_1, m_2) \phi(m_1, m_2) dm_1 dm_2,$$

for every test functions  $\phi \in L^2(\mathbb{R} \times \mathbb{R}_-)$  and all  $t \ge 0$ .



#### **2D** cumulant generating function

Define the CGF of the components  $m_1, m_2$ : for all  $(z_1, z_2) \in \mathbb{R} \times \mathbb{R}_+$ 

$$C(t, z_1, z_2) := \ln \left( \int_{\mathbb{R} \times \mathbb{R}_-} p(t, m_1, m_2) e^{m_1 z_1 + m_2 z_2} dm_1 dm_2 \right).$$

Simple characterizations of the central moments of the fitness distribution:

$$\overline{m}(t) = \delta(t) \,\partial_1 C(t,0,0) + \partial_2 C(t,0,0) - \frac{\delta(t)^2}{2},$$
$$V_m(t) = \delta(t)^2 \partial_{11} C(t,0,0) + \partial_{22} C(t,0,0) + 2\delta(t) \partial_{12} C(t,0,0).$$



#### **2D** cumulant generating function

$$C(t, z_1, z_2) := \ln\left(\int_{\mathbb{R} \times \mathbb{R}_-} p(t, m_1, m_2) e^{m_1 z_1 + m_2 z_2} dm_1 dm_2\right)$$

**Theorem (Bonnefon, Martin, Patout, R. 2020)** The CGF satisfies, for  $t \ge 0$  and  $(z_1, z_2) \in \mathbb{R} \times \mathbb{R}_+$ :

$$\partial_t C(t, z_1, z_2) = \mathbf{a}(t) \cdot (\nabla C(t, z_1, z_2) - \nabla C(t, 0, 0)) + \mathbf{k}(z_1, z_2) \cdot \nabla C(t, z_1, z_2)$$

where 
$$\mathbf{a}(t) = (\delta(t), 1) \in \mathbb{R}^2$$
 and  $\begin{cases} \mathbf{k}(z_1, z_2) = -\mu^2(z_1 \, z_2, z_2^2), \\ \gamma(z_1, z_2) = \mu^2(z_1^2/2 - n \, z_2/2). \end{cases}$ 



#### Solving the CGF equation

Define a change of variable  $\phi_t : \mathbb{R}^2_+ \to \mathbb{R} \times \mathbb{R}_+$ , such that

$$Q(t, z, \tilde{z}) := C(t, \phi_t(z, \tilde{z}))$$

solves a simpler equation:

$$\partial_t Q(t, z, \tilde{z}) = (1, 1) \cdot (\nabla Q(t, z, \tilde{z}) - \nabla Q(t, 0, 0)) + \beta(t, z, \tilde{z}),$$

for  $(t, z, \tilde{z}) \in \mathbb{R}^3_+$ .

**Proposition (Bonnefon, Martin, Patout, R., 2020)** Q is given by the expression:

$$Q(t, z, \tilde{z}) = \int_0^t \beta(t - s, z + s, \tilde{z} + s) - \beta(t - s, s, s) \, ds + Q_0(z + t, \tilde{z} + t) - Q_0(t, t).$$



#### Solving the CGF equation

Define the change of variable  $\phi_t : \mathbb{R}^2_+ \to \mathbb{R} \times \mathbb{R}_+$ , by

$$\phi_t(z,\tilde{z}) = (y_1(t,z,\tilde{z}), y_2(z))$$

#### with

$$\begin{cases} y_1(t,z,\tilde{z}) := \int_0^z \delta(z+t-s) \frac{\cosh(\mu s)}{\cosh(\mu z)} \, ds + (z-\tilde{z}) \frac{\cosh(\mu(z+t))}{\cosh(\mu z)}, \\ y_2(z) := \frac{\tanh(\mu z)}{\mu}. \end{cases}$$
Note: surjectivity is not needed

Main theorem (Bonnefon, Martin, Patout, Roques, 2020) For all  $t \ge 0$  and  $(z, \tilde{z}) \in \mathbb{R}^2_+$ , the CGF satisfies:

$$C(t,\phi_t(z,\tilde{z})) = Q(t,z,\tilde{z}).$$



#### **Cumulant generating function: explicit solution**

Main theorem (Bonnefon, Martin, Patout, Roques, 2020) For all  $t \ge 0$  and  $(z, \tilde{z}) \in \mathbb{R}^2_+$ , the CGF satisfies:

 $C(t,\phi_t(z,\tilde{z})) = Q(t,z,\tilde{z}).$ 

Corollary

$$\overline{m}(t) = -\mu \frac{n}{2} \tanh(\mu t) - \frac{1}{2} \left(H_{\delta}(t) - \delta(t)\right)^2 + R'_0(t)$$

with 
$$H_{\delta}(t) := \mu \int_{0}^{t} \delta(u) \frac{\sinh(\mu u)}{\cosh(\mu t)} du$$
 and

$$R'_{0}(t) = \frac{1}{\cosh(\mu t)} \left( \delta(t) - H_{\delta}(t) \right) \partial_{1} C_{0}(\phi_{0}(t, t)) + \left(1 - \tanh^{2}(\mu t)\right) \partial_{2} C_{0}(\phi_{0}(t, t)).$$



#### **Cumulant generating function: explicit solution**

Clonal case  $(\mathcal{O}(0) = 0)$   $\overline{m}(t) = -\mu \frac{n}{2} \tanh(\mu t) - \frac{1}{2} (H_{\delta}(t) - \delta(t))^2$ with  $H_{\delta}(t) := \mu \int_0^t \delta(u) \frac{\sinh(\mu u)}{\cosh(\mu t)} du$  $\overline{m}(t)$  with a steady optimum  $(\delta \equiv 0)$ ,

Squared distance between  $\mathcal{O}(t)$ , and a 'weighted history' of  $\mathcal{O}(s)$  for  $s \in (0, t)$ .



## Example 1. Optimum shifting with a constant speed

Standard assumption in theoretical papers [e.g., Alfaro, Berestycki, Raoul 2017; Figueroa Iglesias and Mirrahimi, 2019]

But, linear environmental change does not necessarily mean linear shift of the optimum

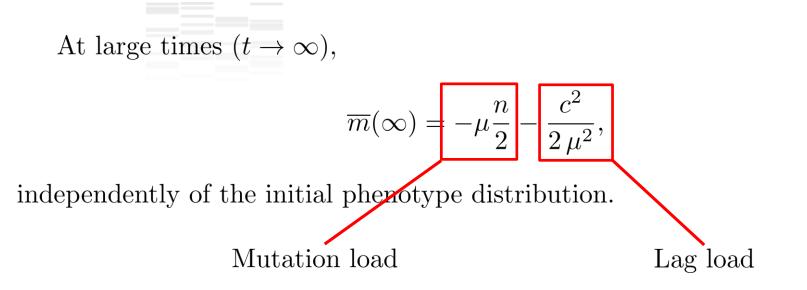
Proposition (Bonnefon, Martin, Patout, R, 2020) Assume that  $\delta(t) = ct$  for some  $c \in \mathbb{R}$  and clonal initial population at  $\mathcal{O}(0)$ . Then,  $\overline{m}(t) = -\mu \frac{n}{t} \tanh(\mu t) - \frac{c^2}{t} \tanh^2(\mu t)$ 

$$\overline{m}(t) = \frac{\mu}{2} \operatorname{tann}(\mu t)$$
  $2\mu^2 \operatorname{tann}(\mu t)$   
 $\overline{m}(t)$  with a steady optimum ( $\delta \equiv 0$ ), Effect of the speed  $c$ .

Shifting and fluctuating environments, as those considered in [Figueroa Iglesias and Mirrahimi, 2019], could be treated as well, by taking:  $r(t, \mathbf{x}) = r_{max} - \frac{\|\mathbf{x} - \mathcal{O}(t)\|^2}{2\sigma(t)^2}.$ 



#### Example 1. Optimum shifting with a constant speed



- $\mu$  tends to increase the mutation load and to decrease the lag load  $\rightarrow$  optimum value  $\mu^* = (2 c^2/n)^{1/3}$ .
- critical speed  $c^*$  for persistence  $(r(t, \mathbf{x}) = r_{max} + m(t, \mathbf{x}))$ :

$$c^* = \mu \sqrt{2 r_{max} - \mu n}.$$

Consistent with [Alfaro, Berestycki, Raoul 2017]



### Example 1. Optimum shifting with a constant speed

At large times  $(t \to \infty)$ ,

$$V_m(\infty) = \mu^2 \frac{n}{2} + \frac{c^2}{\mu}$$

- increases with the speed c
- nonmonotonic function of  $\mu$ . Critical value reached at  $\mu = (c^2/n)^{1/3}$

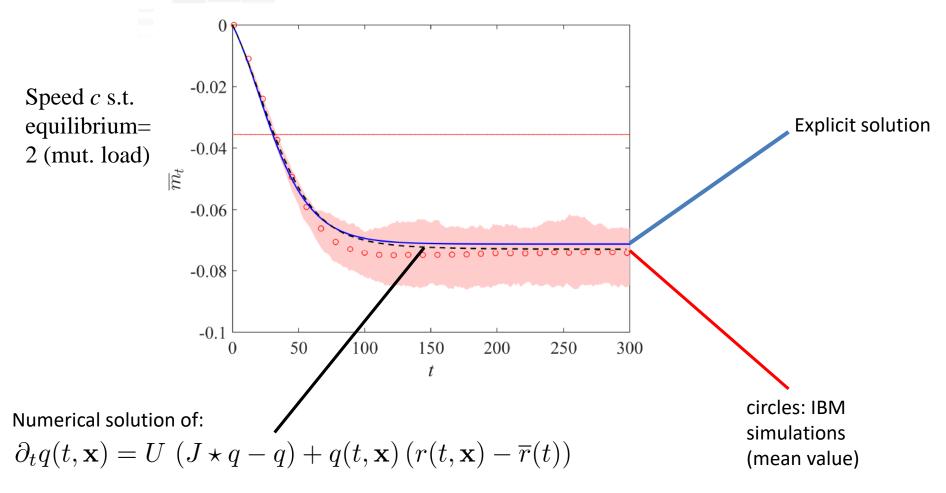
Skewness

Skew<sub>m</sub>(
$$\infty$$
) =  $-\frac{\mu^3 n + 3 c^2}{V_m(t)^{3/2}}$ 

- negative skewness: distribution is asymmetrical, with a longer left tail.
- c is increased: reinforces the asymmetry of the distribution.



# Example 1. Optimum shifting with a constant speed Comparison with individual-based simulations



Parameters:  $N = 10^4$  invid, n = 3,  $\lambda = 0.005 \ U = 10 \ U_c \ (U_c := n^2 \ \lambda/4)$ 



#### **Example 2. Sub- and superlinear cases**

Proposition (Bonnefon, Martin, Patout, R, 2020) Assume that  $\delta(t) = c t^{\alpha}$  for some  $c \in \mathbb{R}^*$  and  $\alpha > 0$ .

(i) If  $\alpha < 1$ , then  $\overline{m}(t) \to -\mu n/2$  and  $V_m(t) \to \mu^2 n/2$ , as  $t \to +\infty$ .

(ii) If  $\alpha > 1$ , then  $\overline{m}(t) \to -\infty$  and  $V_m(t) \to +\infty$ , as  $t \to +\infty$ .



#### **Example 3. Periodically varying optimum**

Proposition (Bonnefon, Martin, Patout, R, 2020) Assume that  $\delta(t) = \delta_{max} \sin(\omega t)$ . Then:

$$\overline{m}(t) = -\mu \frac{n}{2} \tanh(\mu t) - \frac{1}{2} \left( \frac{\delta_{max} \omega}{\omega^2 + \mu^2} \right)^2 (\omega \sin(\omega t) + \mu \cos(\omega t) \tanh(\mu t))^2$$

In *[Figueroa Iglesias and Mirrahimi, 2018]* same example (with n = 1). Asymptotics at large time, small mutation regime:

$$\overline{m}(t) \approx -\frac{\mu}{2} - \frac{1}{2} \left(\frac{\delta_{max}}{\omega}\right)^2 (\omega \, \sin(\omega \, t) + \mu \, \cos(\omega \, t))^2.$$

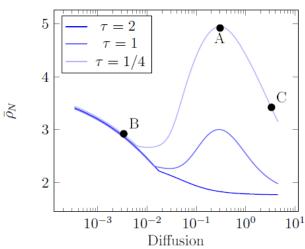


#### **Example 3. Periodically varying optimum**

At large times, average value over one period:

$$\langle \overline{m}_{\infty} \rangle := \lim_{t \to +\infty} \frac{\omega}{\pi} \int_{t}^{t+\pi/\omega} \overline{m}(s) \, ds = -\mu \, \frac{n}{2} - \frac{\delta_{max}^2 \, \omega^2}{2\omega^2 + 2\mu^2} \, ds$$

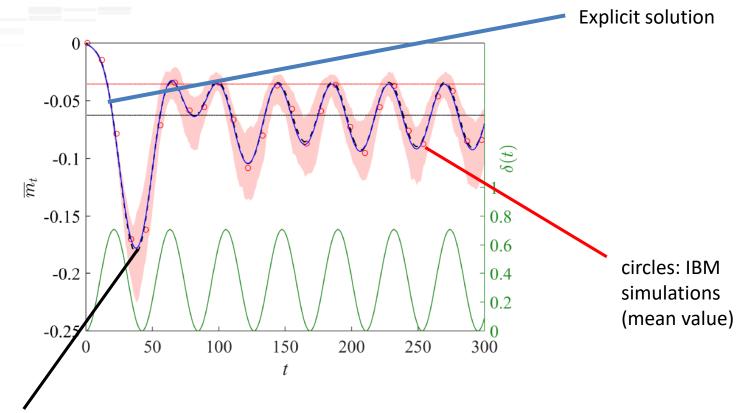
- higher frequencies tend to impede adaptation
- as  $\omega \to +\infty$ , the average lag load converges to  $-\delta_{max}^2/2$
- reaches a maximum for some other value of  $\mu = K \omega$ , with  $K > \omega/\sqrt{3}$  the root of  $-n/2 + \delta_{max}^2 K/[\omega^2(K^2+1)]^2 = 0$ .



Numerical simulations in [Carrère, Nadin 2020]



# Example 3. Periodically varying optimum Comparison with individual-based simulations



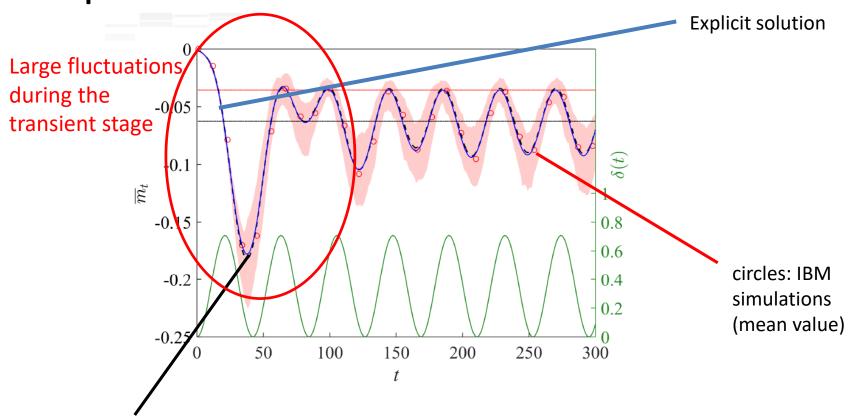
Numerical solution of:

$$\partial_t q(t, \mathbf{x}) = U \left( J \star q - q \right) + q(t, \mathbf{x}) \left( r(t, \mathbf{x}) - \overline{r}(t) \right)$$

Parameters:  $N = 10^3$  invid, n = 3,  $\lambda = 0.005$   $U = 10 U_c$   $(U_c := n^2 \lambda/4)$ 



# Example 3. Periodically varying optimum Comparison with individual-based simulations



Numerical solution of:

$$\partial_t q(t, \mathbf{x}) = U \left( J \star q - q \right) + q(t, \mathbf{x}) \left( r(t, \mathbf{x}) - \overline{r}(t) \right)$$

Parameters:  $N = 10^3$  invid, n = 3,  $\lambda = 0.005$   $U = 10 U_c$   $(U_c := n^2 \lambda/4)$ 



#### **Example 4. Stochastic position of the optimum.**

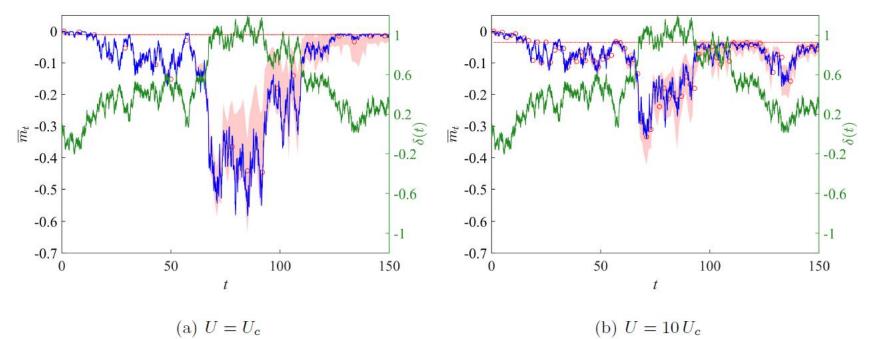
 $\delta(t)$  is an Ornstein-Uhlenbeck process:

$$d\delta(t) = -\nu\delta(t)\,dt + \beta\,dW_t,$$

We use the general formula (initially clonal population):

$$\overline{m}(t) = -\mu \frac{n}{2} \tanh(\mu t) - \frac{1}{2} \left(H_{\delta}(t) - \delta(t)\right)^2$$
  
with  $H_{\delta}(t) := \mu \int_0^t \delta(u) \frac{\sinh(\mu u)}{\cosh(\mu t)} du.$ 





#### Example 4. Stochastic position of the optimum.

- dynamics of the mean fitness simulated by the IBM are well-described by our theory
- complex interplay between the environment and the mutation rate: the same environment leads to very different dynamics of adaptation



#### What next

Theoretical problems:

- Coupling with Feller diffusion SDEs (birth-death process) to describe the population dynamics, and compute the probability of rescue depending on the strategy. As in [Anciaux, Lambert, Ronce, Roques, Martin, 2019].
- Consider an optimum moving along a curve

Forthcoming experiments (ISEM):

• In vitro adaptation of *E. coli* to a saline solution. Various  $\delta(t)$  functions will be imposed by different regimes of salinity increase. Mean fitness over time (growth rate) will be followed by fluoroluminometric measures.





# Thank you!

Preprint: Adaptation in general temporally changing environments, Arxiv:2002.09542



.040