Random modeling of adaptive dynamics for diploid populations

Pierre Collet, Sylvie Méléard, Ecole Polytechnique J.A.J. Metz, Leiden University

Chaire MMB, February 2011

イロト イポト イヨト イヨト

Darwinian or Adaptive Evolution

The population has the propensity to generate as well to select individual diversity.

Three main ingredients :

- Heredity.
- Mutation.
- Selection.

Adaptive Dynamics (Hofbauer-Sigmund 1990, Marrow-Law-Cannings 1992, Metz-Geritz-Meszéna et al. 1992, 1996, Dieckmann-Law 1996)

► Focus on the interplay between ecology and evolution.

- Emphasis on the ecological interactions : density-dependent selection model.
- BUT
 - Asexual (clonal) reproduction
 - No genetics in the reproduction

Three biological assumptions :

- ▶ (1) large populations
- ▶ (2) rare mutations
- (3) small mutation steps

and long (evolutive) time scale.

- ► Our approach (Metz et al., Champagnat 06) : (1) + (2) then (3).
- Individual-based model with stochastic tools mixed with dynamical system arguments. (Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Fournier-M. 04, Ferrière-Champagnat-M. 06, Champagnat-M. 10)
- OUR AIM IN THIS PAPER : To generalize this approach to diploid populations : a link between ecology, genetics and evolution

The Microscopic Model

- Each individual i is characterized by two allelic traits (u₁ⁱ, u₂ⁱ). (uⁱ real number or vector).
- ► The corresponding phenotypic trait is given by a symmetric function φ(uⁱ₁, uⁱ₂).
- ► K scales the size of the population : K large .
- ► u_K scales the probability of mutation : u_K small. (Only rare mutations affect the phenotype of the individual).
- ▶ Population of $N^{\kappa}(t)$ individuals with weights $\frac{1}{\kappa}$ and allelic traits $(u_1^1, u_2^1), \ldots, (u_1^{N^{\kappa}(t)}, u_2^{N^{\kappa}(t)})$.

The size of the allelic trait vector evolves with time.

Transitions for an individual with trait (u_1, u_2) in the population

► Fertility rate f(u₁, u₂). An individual i is chosen with probability

$$\frac{f(u_1^i, u_2^i)}{\sum_{j=1}^{N^{\kappa}} f(u_1^j, u_2^j)}.$$

• With probability $1 - u_K \mu$, sexual Mendelian reproduction : 4 possibilities

$$(u_1, u_1^i), (u_1, u_2^i), (u_2, u_1^i), (u_2, u_2^i),$$

with probability 1/4.

With probability u_K µ : mutation on an allele. Let ε denote the scale of the mutation.
 A mutant from the allelic trait u₁ is u₁ + εh, with |h| ≤ 1 chosen following a distribution m(u₁, h)dh. (Example : a Gaussian law centered on u₁ and conditioned to [-1, 1]).

Death rate :

$$D^{0}(u_{1}, u_{2}) + \frac{1}{\kappa} \sum_{j=1}^{N^{\kappa}} \alpha(u_{1}, u_{2}; u_{1}^{j}, u_{2}^{j}).$$

 D^0 is the natural death and α describes the competition between individuals.

Biologically, all coefficients (except the mutation law) are depending on their allelic traits u_1 and u_2 by their phenotypic trait $\phi(u_1, u_2)$.

Example :

$$\phi(u_1,u_2)=\frac{u_1+u_2}{2}.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 \implies symmetry of all (rate) functions in (u_1, u_2) .

Assumptions :

- Initial size of order K (large).
- f, D^0 , α , and m smooth enough.
- f, D^0 and α are bounded.
- ▶ "Natural growth rate" of the population of type (u_1, u_2) : $f(u_1, u_2) D^0(u_1, u_2) > 0$.
- ► Interaction rate : $\alpha(u_1, u_2; v_1, v_2) > 0, \quad \forall u_1, u_2, v_1, v_2 \in \mathcal{U}.$

Notation : If we consider two alleles A and a, we identify u_A and A, u_a and a :

 $f_{AA} = f(u_A, u_A); \ D^0_{AA} = D^0(u_A, u_A); \ \alpha_{AA,AA} = \alpha(u_A, u_A; u_A, u_A),$

and the same for Aa and aa.

Behavior of the population for large population and rare mutation. Time scale of order 1

Large K ; small mutation probability $u_K \simeq 0$.

Theorem (Fournier-M. 04) : For large K, the dynamics of the population is almost **deterministic**. The density $W_t(u, v)$ of the allelic pair (u, v) is solution of the equation

$$\partial_t W_t(u, v) = -W_t(u, v) (D^0(u, v) + \int \alpha(uv; u'v') W_t(u', v') du' dv') \\ + \frac{(\int f(u, u_1) W_t(u, u_1) du_1) (\int f(v, v_1) W_t(v, v_1) dv_1)}{\int f(u_1, u_2) W_t(u_1, u_2) du_1 du_2}.$$

No mutation appears at this time scale $(u_K \simeq 0)$.

Monomorphic homozygote case AA

If the initial population is composed of individuals with allelic trait (u_A, u_A) , it will stay monomorphic with trait (u_A, u_A) at this time scale.

The population process is a birth and death process with birth rate f_{AA} and death rate $D_{AA}^0 + \alpha_{AA,AA}N$, if N is the typical state.

For large K, the population size $N^{K}(t)$ is close to n(t), solution of the logistic equation

$$\dot{n} = (f_{AA} - D^0_{AA} - \alpha_{AA,AA} n) n_A$$

A unique stable equilibrium

$$\bar{n}_{AA} = \frac{f_{AA} - D^0_{AA}}{\alpha_{AA,AA}}.$$

Three genotypes case AA, Aa and aa

- $t \mapsto (X_t^K, Y_t^K, Z_t^K)$: population process of individuals with genotype AA, Aa and aa.
- ► Birth and death process with three types and birth rates b_{AA}, b_{Aa}, b_{aa} and death rates d_{AA}, d_{Aa}, d_{aa}.
- If (x, y, z) is the typical state of the population process, the birth rates are given by :

$$b_{AA} = \frac{(f_{AA} x + f_{Aa} y/2)^2}{f_{AA} x + f_{Aa} y + f_{aa} z},$$

$$b_{Aa} = \frac{2(f_{AA} x + f_{Aa} y/2)(f_{aa} z + f_{Aa} y/2)}{f_{AA} x + f_{Aa} y + f_{aa} z},$$

$$b_{aa} = \frac{(f_{aa} z + f_{Aa} y/2)^2}{f_{AA} x + f_{Aa} y + f_{aa} z}.$$

Death rates given by

$$d_{AA} = (D^0_{AA} + \alpha_{AA,AA} x + \alpha_{AA,Aa} y + \alpha_{AA,aa} z) x$$

$$d_{Aa} = (D^0_{Aa} + \alpha_{Aa,AA} x + \alpha_{Aa,Aa} y + \alpha_{Aa,aa} z) y,$$

$$d_{aa} = (D^0_{aa} + \alpha_{aa,AA} x + \alpha_{aa,Aa} y + \alpha_{aa,aa} z) z.$$

Theorem : For large K, the population dynamics is close to the solution $(\psi(t), t \in [0, T])$ of the dynamical system DS(AA,Aa,aa) :

$$\dot{\psi}(t)=ec{X}\circ\psi(t)=ec{X}(\psi_1(t),\psi_2(t),\psi_3(t)),$$

where \vec{X} is the vector field

$$ec{X}(x,y,z) = \left(egin{array}{c} b_{AA} - d_{AA} \ b_{Aa} - d_{Aa} \ b_{aa} - d_{aa} \end{array}
ight)(x,y,z).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Long time behavior of DS(AA,Aa,aa) The vector field has a lot of fixed points, but two main points : $(\bar{n}_{AA}, 0, 0)$, $(0, 0, \bar{n}_{aa})$ with

$$\bar{n}_{AA} = \frac{f_{AA} - D^0_{AA}}{\alpha_{AA,AA}} , \ \bar{n}_{aa} = \frac{f_{aa} - D^0_{aa}}{\alpha_{aa,aa}}$$

Theorem : The Jacobian matrix DX_{AA} is a triangular matrix with two negative eigenvalues and the third one is equal to the invasion fitness of mutant Aa in the resident population AA :

$$S_{Aa,AA} = f_{Aa} - D^0_{Aa} - \alpha_{Aa,AA} \, \bar{n}_{AA}$$

and a similar property for DX_{aa} .

The non linear vector fields in dimension 3 may have complex long time behavior. To study \vec{X} , we will assume that mutants have small amplitudes (*a* is close to *A*).

Neutral case (all parameters are equal : AA = aa) : **Theorem :**The vector field has a curve of fixed points.

Small mutations : $u_a = u_A + \varepsilon h$ with $|h| \le 1$.

Fitness of a mutant Aa in the resident population AA :

$$S_{Aa,AA} \simeq \varepsilon \frac{dS_{Aa,AA}}{d\varepsilon}(0)$$
, for ε sufficiently small.

Theorem : For ε small enough, if $\frac{dS_{Aa,AA}}{d\varepsilon}(0) \neq 0$, only two equilibria which are the homozygote populations AA and aa.

if $\varepsilon \frac{dS_{Aa,AA}}{d\varepsilon}(0) > 0$, the fixed point AA is unstable and we have invasion (by aa) for the macroscopic dynamics.

If $\varepsilon \frac{dS_{Aa,AA}}{d\varepsilon}(0) < 0$, the fixed point AA is stable and the mutant disappears in the macroscopic dynamics.

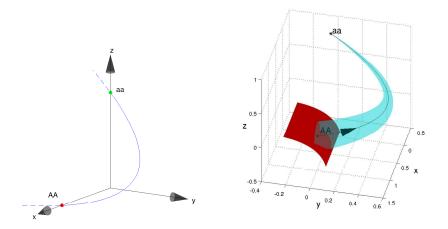
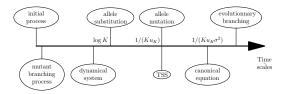


Figure: Left : neutral case - Right : small mutant case

The time scales



▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Mutation time scale : of order $\frac{t}{K u_K}$

Dynamics of the microscopic process :

Theorem : Monomorphic homozygote initial population with trait A_0A_0 . Assume that

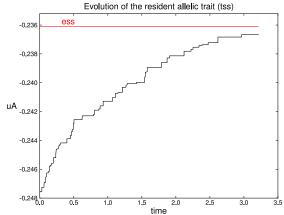
$$\forall C > 0, \quad \ln K \ll \frac{1}{Ku_K} \ll \exp(CK), \quad \text{ for large } K.$$
 (1)

Then, for ε small enough, the population process at time $\frac{t}{Ku_K}$ is approximated by a jump process defined as follows : The initial process : individuals with traits (u_{A_0}, u_{A_0}) .

The process jumps from \bar{n}_{AA} individuals with trait (u_A, u_A) to \bar{n}_{aa} individuals with trait (u_a, u_a) , with $u_a = u_A + \varepsilon h$.

The jump happens after an exponential time with parameter $2\mu f_{AA} \bar{n}_{AA} \frac{[S_{Aa,AA}]_+}{f_{Aa}}$.

The amplitude of the jump is distributed following $m(u_A, h)dh$.

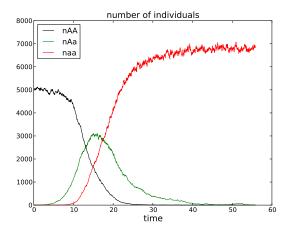


・ロト ・個ト ・モト ・モト æ

Generalization of the trait substitution sequence (TSS) . Monomorphic as exual case : Metz et al. 1996; Champagnat 06.

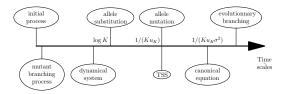
Philosophy of the proof :

- The selection process has sufficient time between two mutations to eliminate disadvantaged types (time scale separation).
- Assumption of large populations : between mutations, the population is close to the deterministic population dynamics, so that one can predict the outcome of competition between the traits.
- Succession of phases of mutant invasion, and phases of competition between traits



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The time scales



▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

The Canonical Equation of Adaptive Dynamics When ε small?

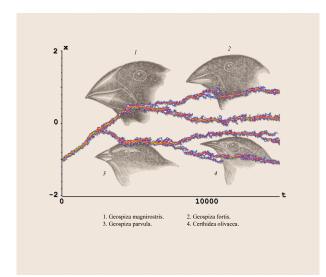
- At its time scale, the TSS process disappears (no more jumps).
- We need to rescale the time : longer time $\frac{t}{K u_{\kappa} \varepsilon^2}$.
- ► **Theorem** : When ε is small, the dynamics of equilibria allelic traits is given by

$$\frac{du}{dt}=2\mu\,\bar{n}_{uu}\,\partial_1S(u,u;u,u)\int_{\mathbb{R}}h^2\,m(u,h)dh.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Canonical equation of the adaptive dynamics.

Evolutionary singularities : points (u, u) such that $\partial_1 S(u, u; u, u) = 0$: possibility of evolutionary branching.



Evolutionary branching for $u \in \mathbb{R}$ such that $\partial_1 S(u, u; u, u) = 0$. Champagnat-M. 2010 (asexual case).

Before the first mutation, K large

- Monomorphic population with genotype AA: the size of the population for t large enough is close to \bar{n}_{AA} .
- If ¹/_{KuK} ≪ e^{CK}, the first mutation occurs before the exit time of a neighborhood of n
 _{AA} with high probability. (Large deviations).
- Before this exit time, the rate of mutation from trait (u_A, u_A) is close to $2\mu u_K f_{AA} K \bar{n}_{AA}$.

• On the time scale $\frac{t}{\kappa u_{\kappa}}$: $2\mu f_{AA} \bar{n}_{AA}$.

After the first mutation : competition phasis

- ▶ An allelic mutant trait appears at time t₀.
- ▶ between t_0 and t_1 : the number of mutant individuals with trait A_a is close to a branching process with birth rate f_{A_a} and death rate $D^0_{A_a} + \alpha_{A_a,AA} \bar{n}_{AA}$.
- Growth rate = fitness function :

$$S_{Aa;AA} = f_{Aa} - D^0_{Aa} - \alpha_{Aa,AA} \, \bar{n}_{AA}.$$

- Survival probability : $\frac{[S_{Aa,AA}]_+}{f_{Aa}}$.
- ► After t₁ : close to *DS*(*AA*, *Aa*, *aa*).

- Convergence of DS(AA, Aa, aa) to the equilibrium \bar{n}_{aa} .
- The population density of genotype *aa* reaches the η-neighborhood of n
 _{aa} at time t₂.
- ► After t₂ : the densities of genotypes AA and Aa are approximated by sub-critical branching process.
- ► Time scale : In K.
- ► If $\ln K \ll \frac{1}{\kappa u_{\kappa}}$, the next mutation occurs after these three phases with high probability.
- We reiterate the procedure by Markovian arguments.