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Darwinian or Adaptive Evolution
The population has the propensity to generate as well to select
individual diversity.

Three main ingredients :
I Heredity.
I Mutation.
I Selection.

Adaptive Dynamics (Hofbauer-Sigmund 1990,
Marrow-Law-Cannings 1992, Metz-Geritz-Meszéna et al. 1992,
1996, Dieckmann-Law 1996)

I Focus on the interplay between ecology and evolution.
I Emphasis on the ecological interactions :

density-dependent selection model.
I BUT

I Asexual (clonal) reproduction
I No genetics in the reproduction



Three biological assumptions :
I (1) large populations
I (2) rare mutations
I (3) small mutation steps

and long (evolutive) time scale.

I Our approach ( Metz et al., Champagnat 06) : (1) + (2)
then (3).

I Individual-based model with stochastic tools mixed with
dynamical system arguments.
(Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Fournier-M.
04, Ferrière-Champagnat-M. 06, Champagnat-M. 10)

I OUR AIM IN THIS PAPER : To generalize this approach
to diploid populations : a link between ecology, genetics
and evolution



The Microscopic Model

I Each individual i is characterized by two allelic traits
(ui

1, u
i
2). (ui real number or vector).

I The corresponding phenotypic trait is given by a
symmetric function φ(ui

1, u
i
2).

I K scales the size of the population : K large .
I uK scales the probability of mutation : uK small. (Only

rare mutations affect the phenotype of the individual).

I Population of NK (t) individuals with weights 1
K and

allelic traits (u1
1 , u

1
2), . . . , (uNK (t)

1 , uNK (t)
2 ).

The size of the allelic trait vector evolves with time.



Transitions for an individual with trait (u1, u2) in
the population

I Fertility rate f (u1, u2). An individual i is chosen with
probability

f (ui
1, u

i
2)∑NK

j=1 f (uj
1, u

j
2)
.

I With probability 1− uK µ , sexual Mendelian
reproduction : 4 possibilities

(u1, ui
1), (u1, ui

2), (u2, ui
1), (u2, ui

2),

with probability 1/4.
I With probability uK µ : mutation on an allele. Let ε

denote the scale of the mutation.
A mutant from the allelic trait u1 is u1 + εh, with |h| ≤ 1
chosen following a distribution m(u1, h)dh . (Example : a
Gaussian law centered on u1 and conditioned to [−1, 1]).



Death rate :

D0(u1, u2) +
1
K

NK∑
j=1

α(u1, u2; uj
1, u

j
2).

D0 is the natural death and α describes the competition
between individuals.

Biologically, all coefficients (except the mutation law) are
depending on their allelic traits u1 and u2 by their phenotypic
trait φ(u1, u2).

Example :

φ(u1, u2) =
u1 + u2

2
.

=⇒ symmetry of all (rate) functions in (u1, u2).



Assumptions :

I Initial size of order K (large).
I f , D0, α, and m smooth enough.
I f , D0 and α are bounded.

I "Natural growth rate" of the population of type (u1, u2) :
f (u1, u2)− D0(u1, u2) > 0.

I Interaction rate :
α(u1, u2; v1, v2) > 0, ∀u1, u2, v1, v2 ∈ U .

Notation : If we consider two alleles A and a, we identify uA

and A, ua and a :

fAA = f (uA, uA); D0
AA = D0(uA, uA); αAA,AA = α(uA, uA; uA, uA),

and the same for Aa and aa.



Behavior of the population for large population and
rare mutation. Time scale of order 1

Large K ; small mutation probability uK ' 0.

Theorem (Fournier-M. 04) : For large K , the dynamics of
the population is almost deterministic. The density Wt(u, v)
of the allelic pair (u, v) is solution of the equation

∂tWt(u, v) = −Wt(u, v)
(
D0(u, v) +

∫
α(uv ; u′v ′)Wt(u′, v ′)du′dv ′)

+

( ∫
f (u, u1)Wt(u, u1)du1

)( ∫
f (v , v1)Wt(v , v1)dv1

)∫
f (u1, u2)Wt(u1, u2)du1du2

.

No mutation appears at this time scale (uK ' 0).



Monomorphic homozygote case AA
If the initial population is composed of individuals with allelic
trait (uA, uA), it will stay monomorphic with trait (uA, uA) at
this time scale.
The population process is a birth and death process with birth
rate fAA and death rate D0

AA + αAA,AAN, if N is the typical
state.

For large K , the population size NK (t) is close to n(t),
solution of the logistic equation

ṅ = (fAA − D0
AA − αAA,AA n) n.

A unique stable equilibrium

n̄AA =
fAA − D0

AA

αAA,AA
.



Three genotypes case AA, Aa and aa

I t 7→ (XK
t ,Y

K
t ,Z

K
t ) : population process of individuals

with genotype AA, Aa and aa.

I Birth and death process with three types and birth rates
bAA, bAa, baa and death rates dAA, dAa, daa.

I If (x , y , z) is the typical state of the population process,
the birth rates are given by :

bAA =
(fAA x + fAa y/2)2

fAA x + fAa y + faa z
,

bAa =
2(fAA x + fAa y/2)(faa z + fAa y/2)

fAA x + fAa y + faa z
,

baa =
(faa z + fAa y/2)2

fAA x + fAa y + faa z
.



Death rates given by

dAA = (D0
AA + αAA,AA x + αAA,Aa y + αAA,aa z) x

dAa = (D0
Aa + αAa,AA x + αAa,Aa y + αAa,aa z) y ,

daa = (D0
aa + αaa,AA x + αaa,Aa y + αaa,aa z) z .

Theorem : For large K , the population dynamics is close to
the solution (ψ(t), t ∈ [0,T ]) of the dynamical system
DS(AA,Aa,aa) :

ψ̇(t) = ~X ◦ ψ(t) = ~X (ψ1(t), ψ2(t), ψ3(t)),

where ~X is the vector field

~X (x , y , z) =

 bAA − dAA

bAa − dAa

baa − daa

 (x , y , z).



Long time behavior of DS(AA,Aa,aa)
The vector field has a lot of fixed points, but two main
points : (n̄AA, 0, 0) , (0, 0, n̄aa) with

n̄AA =
fAA − D0

AA

αAA,AA
, n̄aa =

faa − D0
aa

αaa,aa
.

Theorem : The Jacobian matrix DXAA is a triangular matrix
with two negative eigenvalues and the third one is equal to the
invasion fitness of mutant Aa in the resident population AA :

SAa,AA = fAa − D0
Aa − αAa,AA n̄AA,

and a similar property for DXaa.

The non linear vector fields in dimension 3 may have complex
long time behavior. To study ~X , we will assume that mutants
have small amplitudes (a is close to A).



Neutral case (all parameters are equal : AA = aa) :
Theorem :The vector field has a curve of fixed points.

Small mutations : ua = uA + ε h with |h| ≤ 1.

Fitness of a mutant Aa in the resident population AA :

SAa,AA ' ε
dSAa,AA

dε
(0) , for ε sufficiently small.

Theorem : For ε small enough, if dSAa,AA
dε (0) 6= 0, only two

equilibria which are the homozygote populations AA and aa.

if ε dSAa,AA
dε (0) > 0, the fixed point AA is unstable and we have

invasion (by aa) for the macroscopic dynamics.

If ε dSAa,AA
dε (0) < 0, the fixed point AA is stable and the mutant

disappears in the macroscopic dynamics.



Figure: Left : neutral case - Right : small mutant case



The time scales
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Mutation time scale : of order t
K uK

Dynamics of the microscopic process :

Theorem : Monomorphic homozygote initial population with
trait A0A0. Assume that

∀C > 0, lnK � 1
KuK

� exp(CK ), for large K . (1)

Then, for ε small enough, the population process at time t
KuK

is approximated by a jump process defined as follows :
The initial process : individuals with traits (uA0 , uA0).

The process jumps from n̄AA individuals with trait (uA, uA) to
n̄aa individuals with trait (ua, ua), with ua = uA + εh .

The jump happens after an exponential time with parameter
2µ fAA n̄AA

[SAa,AA]+
fAa

.

The amplitude of the jump is distributed following m(uA, h)dh.





Generalization of the trait substitution sequence (TSS) .
Monomorphic asexual case : Metz et al. 1996 ; Champagnat
06.

Philosophy of the proof :
I The selection process has sufficient time between two

mutations to eliminate disadvantaged types (time scale
separation).

I Assumption of large populations : between mutations, the
population is close to the deterministic population
dynamics, so that one can predict the outcome of
competition between the traits.

I Succession of phases of mutant invasion, and phases of
competition between traits
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The Canonical Equation of Adaptive Dynamics
When ε small ?

I At its time scale, the TSS process disappears (no more
jumps).

I We need to rescale the time : longer time t
KuK ε2

.

I Theorem : When ε is small, the dynamics of equilibria
allelic traits is given by

du
dt

= 2µ n̄uu ∂1S(u, u; u, u)

∫
R

h2 m(u, h)dh.

Canonical equation of the adaptive dynamics.

Evolutionary singularities : points (u, u) such that
∂1S(u, u; u, u) = 0 : possibility of evolutionary branching.



Evolutionary branching for u ∈ R such that
∂1S(u, u; u, u) = 0. Champagnat-M. 2010 (asexual case).



Before the first mutation, K large

I Monomorphic population with genotype AA : the size of
the population for t large enough is close to n̄AA .

I If 1
KuK
� eCK , the first mutation occurs before the exit

time of a neighborhood of n̄AA with high probability.
(Large deviations).

I Before this exit time, the rate of mutation from trait
(uA, uA) is close to 2µ uK fAA K n̄AA.

I On the time scale t
KuK

: 2µ fAA n̄AA.



After the first mutation : competition phasis

I An allelic mutant trait appears at time t0.
I between t0 and t1 : the number of mutant individuals

with trait Aa is close to a branching process with birth
rate fAa and death rate D0

Aa + αAa,AA n̄AA.
I Growth rate = fitness function :

SAa;AA = fAa − D0
Aa − αAa,AA n̄AA.

I Survival probability : [SAa,AA]+
fAa

.

I After t1 : close to DS(AA,Aa, aa).



I Convergence of DS(AA,Aa, aa) to the equilibrium n̄aa.

I The population density of genotype aa reaches the
η-neighborhood of n̄aa at time t2.

I After t2 : the densities of genotypes AA and Aa are
approximated by sub-critical branching process.

I Time scale : lnK .

I If lnK � 1
KuK

, the next mutation occurs after these
three phases with high probability.

I We reiterate the procedure by Markovian arguments.


