Modélisation aléatoire et étude de l'évolution génétique d'une petite population sexuée

Camille Coron

Ecole Polytechnique, Sylvie Méléard

13 Octobre 2009

Le sujet

Les questions Le vortex d'extinction Bibliographie

Le modèle

La population Les morts Les naissances

Etude de l'évolution de la population

Hypothèses sur la mutation Les calculs Ce que l'on pourrait faire après

Conclusion

Les questions que l'on se pose

- ▶ Qu'est-ce qu'une petite population?
- Quels sont les phénomènes biologiques caractéristiques d'une petite population?
- ▶ A partir de quelle taille de population peut-on considérer que ces phénomènes sont négligeables ?

Le vortex d'extinction

Population de petite taille

- ⇒ Les mutations délétères ont plus de chance de se fixer (il y a plus de consanguinité).
- \Rightarrow La fitness de la population est plus petite.
- ⇒ La taille de la population diminue.

Modélisation du vortex d'extinction

- ▶ Population de taille variable, sans hypothèse de grande taille.
- Population sexuée.
- Introduction de mutations délétères.
- Etude de la fixation de ces mutations.

Bibliographie

- Lande, R.: Risk of Population Extinction from fixation of New Deleterious Mutations. Evolution, Vol. 48, No. 5, (1994) pp.1460-1469.
- Champagnat, N., Lambert, A.: Evolution of Discrete Populations and the Canonical Diffusion of Adaptive Dynamics. The Annals of Applied Probability, Vol. 17, No. 1, (2007) pp.102-155

La population

- Population diploïde
- ▶ 1 gène
- ▶ 2 allèles, notés A et a.

 \Rightarrow 3 types : AA, Aa, et aa.

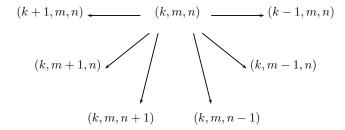
On appellera dorénavant ces types 1, 2, 3.

Population au temps t:

$$\nu_t := (k_t, m_t, n_t)$$

 $N_t := k_t + m_t + n_t$ est la taille de la population au temps t, $X_t := \frac{2n_t + m_t}{2(k_t + m_t + n_t)}$ est la proportion d'allèles a au temps t

Les transitions



Les morts

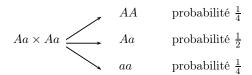
- Mort naturelle : Chaque individu de type i meurt de façon naturelle au taux di, i.e le temps d'attente avant sa mort (naturelle) est une variable aléatoire de loi exponentielle de paramètre di.
- ▶ Mort par compétition : Chaque individu de type i fait mourir par compétition chaque individu de type j au taux c_{ij}.

Au total, au temps t, chaque individu de type 1 meurt au taux :

$$d^{(1)}(\nu_t) = d_1 + c_{11}(k_t - 1) + c_{21}m_t + c_{31}n_t.$$

Les difficultés

► La ségrégation :



Les types des individus impliqués influencent la capacité de reproduction.

Rencontre et naissance

- ▶ Une rencontre a lieu dans la population au temps t au taux bN_t tant que $N_t > 1$.
- Chaque couple d'individu est équiprobable.
- La rencontre donne lieu a une naissance avec une probabilité qui dépend des deux types mis en jeu : p_{ij} est la probabilité que deux individus de types i etj donnent naissance à un autre individu lors de leur rencontre.

Les taux de naissance

Alors on peut déterminer le taux auquel un individu de type 1 nait dans la population dans l'état $(k, m, n) = \nu$:

$$b_1(\nu) = bN \times \frac{1}{\frac{N(N-1)}{2}} \left(p_{11} \frac{k(k-1)}{2} + \frac{p_{12}}{2} km + \frac{p_{22}}{4} \frac{m(m-1)}{2} \right)$$

$$=b_{11}\frac{k(k-1)}{N-1}+b_{12}\frac{km}{N-1}+b_{22}\frac{m(m-1)}{4(N-1)}.$$

$$(b_{ij}=bp_{ij})$$

- a allèle mutant
- On suppose que la mutation est petite et qu'elle n'agit que sur les taux de mort naturelle des individus :

$$d_1 = d$$
, $d_2 = d + \alpha$, $d_3 = d + \alpha'$, $b_{i,j} = b$, $c_{i,j} = c \quad \forall i, j$

On veut calculer la probabilité pour que l'allèle mutant se fixe, lorsque α et α' sont très proches de zéro.

On suppose que l'un des allèles se fixe avant l'extinction de la population.

 $u_{k,m,n}$:= probabilité que ce soit le mutant (a) qui se fixe sachant que la population part de l'état (k, m, n).

- $\qquad \qquad \textbf{Cas neutre} : u_{k,m,n} = \frac{2n+m}{2(k+m+n)}.$
- ▶ Déviation du cas neutre (petite mutation) : (α, α') proche de (0,0).

$$u_{k,m,n}(\alpha,\alpha') = \frac{2n+m}{2(k+n+m)} + \alpha v_{k,m,n}^{\alpha} + \alpha' v_{k,m,n}^{\alpha'} + o(|\alpha| + |\alpha'|).$$

Equation de Kolmogorov forward et Propriété de Markov

$$u_{k,m,n} = p_{(k,m,n)\to(k+1,m,n)}u_{k+1,m,n} + p_{(k,m,n)\to(k,m+1,n)}u_{k,m+1,n} + p_{(k,m,n)\to(k,m,n+1)}u_{k,m,n+1} + p_{(k,m,n)\to(k-1,m,n)}u_{k-1,m,n} + p_{(k,m,n)\to(k,m-1,n)}u_{k,m-1,n} + p_{(k,m,n)\to(k,m,n-1)}u_{k,m,n-1}$$

$$u_{k,m,n}(\alpha) = \frac{2n+m}{2(k+m+n)} + \alpha v_{k,m,n}^{\alpha} + o(\alpha).$$

Equation pour v^{α}

On obtient une équation pour v^{α} :

$$\Delta v_{k,m,n}^{\alpha} = \frac{m(k-n)}{2N(N-1)},$$

οù

$$\Delta v_{k,m,n}^{\alpha} = (bN + dN + cN(N-1))v_{k,m,n}^{\alpha}$$

$$-b_1(\nu)v_{k+1,m,n}^{\alpha} - b_2(\nu)v_{k,m+1,n}^{\alpha} - b_3(\nu)v_{k,m,n+1}^{\alpha}$$

$$-d^{(1)}(\nu)v_{k-1,m,n}^{\alpha} - d^{(2)}(\nu)v_{k,m-1,n}^{\alpha} - d^{(3)}(\nu)v_{k,m,n-1}^{\alpha}$$

Un début de solution

On trouve qu'une solution de la forme :

$$v_{k,m,n}^{\alpha} = \frac{m(k-n)}{N} \beta_N + (k-n) \frac{N^2 - (k-n)^2}{N^2} \gamma_N$$

conviendrait à condition que $\zeta_N := \begin{pmatrix} \beta_N \\ \gamma_N \end{pmatrix}$ soit borné (en N) et solution d'une équation de récurrence de la forme :

$$\zeta_{N+1} = L_N \zeta_N + \lambda_N \qquad \forall N \geqslant 3$$

Les conditions initiales

▶
$$b = 1$$
,

▶
$$d = 0$$
,

▶
$$c = 1$$
,

On trouve

$$\zeta_3 = \begin{pmatrix} \beta_3 \\ \gamma_3 \end{pmatrix} \approx \begin{pmatrix} 0.1 \\ 0.08 \end{pmatrix}.$$

Vortex d'extinction :

- ▶ Ajouter d'autres gènes, prendre en compte leurs interactions.
- ► Ajouter d'autres mutations.

Conclusion

- ► Modélisation de la ségrégation.
- Proposition d'une solution pour la probabilité de fixation d'un allèle délétère.
- Solution différente du cas haploïde.
- Modèle très simpliste mais qui pourra être amélioré.
- Questions?