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Group dispersal has been reported for many types of organisms and
biological propagules:

I terrestrial and marine animals

I plant seeds and pollen

I fungal spores, peat moss spores, bacteria, viruses

Group dispersal

I can occur as rare extreme events (e.g. rains of organic
matters caused by extreme storms; McAtee, 1917)

I or can be the rule (e.g. seed dispersal by frugivores; Pizo and
Simao, 2001)



Living things raining down from the sky

(McAtee, 1917, Monthly Weather
Review)

(Gravure de Magnus, 1555)

(Le Magasin Pittoresque,
1836)



Long-distance seed dispersal by frugivores may increase
seed survival and yield plant aggregates

(Gautier-Hion et al., 1985) (Fragaso et al., 2003)



Group dispersal for H. sapiens

“The clearest demonstration of
the effectiveness of the social
networks and technological
efficiency of H. sapiens lies in the
evidence for our species’ dispersal
into new habitats. [...] Three of
this dispersals (Sahul, the
Philippines and Paleo-Honshu)
could only have been
accomplished by using boats or
rafts that could be steered and
that probably needed sails or oars
for propulsion...”
(Dennell, chap. 3, In Boivin et
al., 2017)

(Bae et al., 2017)

(Homo sapiens, J. Malaterre, 2005)



The airplane: a semi-closed setting facilitating
transmission and synchronous movements of pathogens

(Benjamin Arthur for NPR)

(ANSYS) (The Wall Street Journal, 2011)

http://www.ansys-blog.com/simulation-confirms-your-mom-was-right-cover-up-when-sneezing/?utm_source=youtube&utm_medium=social&utm_content=sneeze&utm_campaign=fluids 


Clumps of pollen grains

Examples of pollen dispersal units:
(Pacini and Franchi, 1999)

Rk: Clumping also classically
occurs for fungal spores
(Ingold, 1971; Rapilly, 1979)



Release of groups of spores

Ejection of spores from a
Sphagnum moss capsule

(Whitaker and Edwards, 2010)

Ejection of spores of Sclerotinia sclerotiorum:
(Roper et al., 2010)



Aggregates of spores in the atmosphere

Large-scale distribution
of Cladosporium spores
in the air:
(Hirst et al., 1967)



Let’s mark out group dispersal for this talk

Definition (Soubeyrand et al., 2015)

Group dispersal occurs when groups of individuals/propagules start
movement from the same place and time, travel following
correlated paths and then settle at positively correlated locations
(i.e. at nearby locations)

I We will only consider the dispersal of windborne propagules

I Propagules forming a group have the same time and point of
origin

I A group is not only a cluster of propagules observed on the
ground as the result of several dispersal events from several
parental sources



Dispersal of windborne propagules

Sources of particles generate a spatially structured rain of particles

I rain of particles → spatial point process

I spatial structure → inhomogeneous intensity of the process

Examples: fungal spores, pollen grains, seeds



Intensity of the spatial point process formed by the deposit
locations of the particles

The intensity is often obtained by a convolution between

I the source process (spatial pattern and strengths) and

I a parametric dispersal kernel



Intensity of the spatial point process formed by the deposit
locations of the particles

The intensity is often obtained by a convolution between

I the source process (spatial pattern and strengths) and

I a parametric dispersal kernel



Dispersal kernel

Definition
The dispersal kernel is the probability density function of the
deposit location of a particle released at the origin

The shape of the kernel is a major topic in dispersal studies: it
partly determines

I the propagation speed

I the spatial structure of the population

I the genetic structure of the population



Main characteristics of dispersal kernels:

I short- or long-distance dispersal (Minogue, 1989)

I possible non-monotonicity (Stoyan and Wagner, 2001)

I anisotropy (Soubeyrand et al., 2007-2008)
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Beyond models with i.i.d. deposit locations

I In independent dispersal models (IDM), deposit locations of
particles released by a given source are i.i.d. under the
dispersal kernel

Therefore, the set of deposit locations X satisfies:

X | {xi , λi : i ∈ I} ∼ Poisson Point Process

(
x 7→

∑
i∈I

λi f (x − xi )

)
I = set of particle sources xi = location of source i

f = dispersal kernel λi = strength of source i

I In contrast, group dispersal models (GDM) incorporate
dependencies in deposit locations of particles



Contents of the talk

I Construction of group dispersal models and resulting
dependencies between deposit locations of particles

Independent dispersal Clump dispersal Group dispersalIndependent dispersal Clump dispersal Group dispersalIndependent dispersal Clump dispersal Group dispersal

I Implications of group dispersal on population dynamics and
evolution



The Group Dispersal Model (GDM): A Neyman-Scott
point process with double inhomogeneity
Soubeyrand, Roques, Coville and Fayard (2011)

Deposit equation for particles

I Single point source of particles located at the origin of R2

I J: number of groups of particles released by the source

I Nj : number of particles in group j ∈ {1, . . . , J}
I Xjn: deposit location of the n-th particle of group j satisfying

Xjn = Xj + Bjn(ν||Xj ||),

where Xj : final location of the “center” of group j ,
Bjn: isotropic Brownian motion describing the relative
movement of the n-th particle in group j with respect to Xj

ν: positive parameter governing the dislocation of groups



Assumptions about the deposit equation

I The random variables J, Nj , Xj and the random processes
{Bjn : n = 1, . . . ,Nj} are mutually independent

I Number of groups: J ∼ Poisson(λ)

I Number of particles in group j : Nj
indep.∼ pµ,σ2(·)

I Group center location: Xj
indep.∼ fXj

(·)
(features of fXj : decrease at the origin is more or less steep, tail

more or less heavy, shape more or less anisotropic...)

I The Brownian motions Bjn are centered, independent and
with independent components
They are stopped at time t = ν||Xj ||
Then,

Bjn(ν||Xj ||)
indep.∼ Normal(0, ν||Xj ||I )



Dispersal from a single source under the GDM

I Simulations:
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I This model can be viewed as a Neyman-Scott point process
with double inhomogeneity (in the center pattern and in the
offspring diffusion) or a non-stationary Cox point process



Discrepancies from independent dispersal

I Marginal probability density function (dispersal kernel):

fXjn
(x) =

∫
R2

fXjn|Xj
(x | y)fXj

(y)dy =

∫
R2

φν,y (x)fXj
(y)dy .

I The particles are n.i.i.d. (not independently but identically
distributed) from this p.d.f. while in the classical dispersal
models the particles are i.i.d. from a dispersal kernel

I The Group Dispersal Model (GDM) is compared with the
independent dispersal model (IDM1) having the same
marginal dispersal kernel

I IDM1: the number of particles in each group is assumed to be
one ⇒ particles are independently drawn under the p.d.f. fXjn



Moments analysis and spatial structure of the population
X : Deposit location of a particle
Q(x + dx): Count of points in x + dx

Criterion Model Value

E(X ) GDM ( 0
0 )

IDM1 ( 0
0 )

V (X ) GDM V (Xj) + νE(||Xj ||)I
IDM1 V (Xj) + νE(||Xj ||)I

E(||X ||2) GDM E(||Xj ||2) + 2νE(||Xj ||)
IDM1 E(||Xj ||2) + 2νE(||Xj ||)

E{Q(x + dx)} GDM λµfXjn (x)dx
IDM1 λfXjn (x)dx

V {Q(x + dx)} GDM λ[µfXjn (x)dx + (σ2 + µ2 − µ)E{φν,Xj (x)
2}(dx)2]

IDM1 λfXjn (x)dx

cov{Q(x1 + dx) GDM λ(σ2 + µ2 − µ)E{φν,Xj (x1)φν,Xj (x2)}(dx)
2

,Q(x2 + dx)} IDM1 0

⇒ GDM: larger variance of Q(x + dx) and positive covariance
(decreasing with distance)
⇒ A characterization of clusters of particles under the GDM



Spatio-temporal simulations

GDM IDM1
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⇒ Observation of multiple foci under the GDM



Farthest particle

Definition
The maximum dispersal distance in one generation is

Rmax = max{Rjn : j ∈ J, n ∈ Nj}

where Rjn = ||Xjn||
J = {1, . . . , J} if J > 0 and the empty set otherwise
Nj = {1, . . . ,Nj} if Nj > 0 and the empty set otherwise

By convention, if no particle is released (J = 0 or Nj = 0 for all j),
then Rmax = 0



Distribution of Rmax

Rmax = max{Rjn : j ∈ J, n ∈ Nj}

Under the GDM and IDMs, the distribution of the distance
between the origin and the furthest deposited propagule is
zero-inflated and satisfies:

P(Rmax = 0) = exp
[
λ{pµ,σ2(0)− 1}

]
fRmax (r) = λfRmax

j
(r) exp{λ(FRmax

j
(r)− 1)}, ∀r > 0,

where fRmax
j

is the p.d.f. of the distance Rmax
j = max{Rjn : n ∈ Nj}

between the origin and the furthest deposited propagule of group j ,
and FRmax

j
is the corresponding cumulative distribution function

(FRmax
j

(r) = P(Rmax
j = 0) +

∫ r
0 fRmax

j
(u)du).

→ Distribution of Rmax
j ?



Distribution of Rmax
j under the IDM1

Under the IDM1, Nj = 1 for all j ∈ J and, consequently,
pµ,σ2(0) = 0 and

fRmax
j

(r) = fRjn
(r)

=

∫ 2π

0
rfXjn

((r cos θ, r sin θ))dθ



Distribution of Rmax
j under the GDM

Under the GDM, the distribution of Rmax
j is zero-inflated and

satisfies:

P(Rmax
j = 0) = pµ,σ2(0)

fRmax
j

(r) =

∫
R2

fRmax
j |Xj

(r | x)fXj
(x)dx

=
+∞∑
q=1

qpµ,σ2(q)

∫
R2

fRjn|Xj
(r | x)FRjn|Xj

(r | x)q−1fXj
(x)dx , ∀r > 0.

where fRjn|Xj
is the conditional distribution of Rjn given Xj satisfying:

fRjn|Xj
(r | x) = 2r

∫ r2

0

h1(u, x)h2(r
2 − u, x)du,

hi (u, x) =
fi (
√
u, x) + fi (−

√
u, x)

2
√
u

, ∀i ∈ {1, 2},

fi (v , x) =
1√

2πν||x ||
exp

(
− (v − x (i))2

2ν||x ||

)
, ∀i ∈ {1, 2},

x = (x (1), x (2)) and FRjn|Xj
(r | x) =

∫ r

0
fRjn|Xj

(s | x)ds.



Farthest particle and spatial structure of the population

Expressions of the distribution of Rmax for the GDM and the IDM1
lead to:

Theorem
Consider a GDM and an IDM1 characterized by the same
parameter values except that:
- for the GDM: E (J) = λ̃, E (Nj) = µ̃ and V (Nj) = σ2,
- for the IDM1: E (J) = λ̃µ̃, E (Nj) = 1 and V (Nj) = 0,
(⇒ same marginal dispersal kernel).
Then, for all r > 0 the probability P(Rmax ≥ r) is lower for the
GDM than for the IDM1.

Interpretation: The population of particles is less concentrated in
probability for the IDM1 than for the GDM

Consequence: With group dispersal, one can generate multiple foci
whereas the particles are more concentrated



Evolution between independent, clump and group dispersal
Soubeyrand, Sache, Hamelin and Klein (2015)

Three dispersal strategies:

I I variants: independent movements of all propagules

I C variants: clumps of propagules sticked together and
settling at the same location

I G variants: groups of propagules simultaneously released and
settling at different but correlated locations

Independent dispersal Clump dispersal Group dispersalIndependent dispersal Clump dispersal Group dispersalIndependent dispersal Clump dispersal Group dispersal

Question: how
limits and
fragmentation of
the habitat shape
the frequencies of I,
C and G variants?



Model
Approximately the same spatio-temporal model than above

Except:

I fXj
is an isotropic case of the normal inverse Gaussian (NIG)

dispersal kernel (Klein et al., 2003): for x ∈ R2,

fXj
(x) =

δ2eτ

2π

{(1 + δ2||x ||2)−1/2 + τ}
1 + δ2||x ||2

exp{−τ(1+δ2||x ||2)1/2},

fXj
includes a settling velocity parameter that depends on the

mass and the volume of the dispersed entities
⇒ clumps will disperse at shorter distances

I Incorporation of an evolutionary process for the dispersal
strategy

I Evolution between I, C and G variants
I Evolution of the distribution of the clump/group size

I Incorporation of a density-dependence



Simulations of the demo-genetic model
4 settings: invasive/endemic dynamic × fragmented/continuous
habitat (I variants; C variants; G variants)
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Co-existence of the three dispersal strategies
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I Increasing the horizontal turbulence parameter σh (i.e.
increasing the mean dispersal distance) advantages C variants
at the expense of I variants

I G variants are never dominant but less affected than I variants
by the increase of C variants with σh

I Spatial heterogeneity in dispersal strategies: C and G variants
tend to be located closer to the habitat borders than I variants



Effect of fragmentation on the frequencies of variants
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I Fragmentation is in favor of C variants



Effect of fragmentation on the clump and group sizes
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I Similar group and clump sizes in each setting “σh×
fragmentation”

I For high values of σh, larger sizes in fragmented habitats

I Optimal clump and group sizes: trade-off determined by the
density-dependence and the probability for propagules released
by C and G variants to be deposited outside the habitat



Group dispersal and metapopulation dynamics
Soubeyrand and Laine (2017)

I Markovian random walk for the size of a metapopulation
whose dynamics includes group dispersal and Allee effect

⇒ Discrete-time Stochastic Patch Occupancy Model (SPOM) in
the metapop. terminology

I Question: How the interaction between group dispersal and
Allee effect shape the metapopulation dynamics?



Model skeleton

I Migration/destruction event: a source population is
simultaneously affected by:

I the migration of a fraction λm of the population
I the destruction of a fraction λd of the population

(because of an extreme weather event for example)

Source'
popula+on'

Colonizing'
popula+on'

Upward'
move'

Deposi+on'

Horizontal'move'

I Random dispersal distance ⇒ Random diffusion of the
colonization population

I Allee effect: threshold for survival of source pop. and for
emergence of colonizing pop.



Dynamic of the metapopulation size

I Ni : metapopulation size after the migration/destruction event
occurring at time ti

I The process {Ni}i is a Markovian random walk

I Specifying the model allows us to provide explicit forms for
transition probabilities:

P(Ni+1 = Ni + 1)

P(Ni+1 = Ni − 1)

P(Ni+1 = Ni )



Quasi-stationary distribution and extinction time

I In general, after a sufficiently large time, any metapopulation
governed by the transition probabilities provided above
vanishes

I Quasi-stationary distribution of the metapopulation size:
conditional probability distribution for the size of the
metapopulation given that the metapopulation has not
reached extinction

I Expected time to extinction: average number of
migration/destruction events that leads to the extinction of
the metapopulation, given the initial size of the
metapopulation



Effect of the Allee threshold on the quasi-distribution of the
metapopulation size

Metapopulation size
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I Smaller the Allee threshold, larger the population size in the
quasi-stationary state



Effect of the maximum migrating fraction αm on the
quasi-distribution of the metapopulation size and the
expected time to extinction
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I Small αm: ≈ metapopulation dynamic without group dispersal
I Non-monotonous effect of αm: intermediate values of αm lead

to larger and more sustainable metapopulations
I Heuristically, large values of αm plays against the survival of

SP; small values of αm plays against the emergence of CP



Conclusions
I Group dispersal is encountered in many cases ... but dispersal

models generally assume independent transports of particles
I Group dispersal generates patterns with multiple foci
→ this is obvious!

I Group dispersal generates patterns with multiple foci whereas
the population is more concentrated
→ remarkable difference b/n group and long-distance dispersal
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Conclusions

I Clump dispersal (a special case of group dispersal) is favored
by habitat fragmentation and limits

I A theoretical study of group dispersal in fragmented habitat:
Soubeyrand, Mrkvička and Penttinen (2014)

I Intermediate group sizes may lead to larger and more
sustainable metapopulations in the presence of an Allee effect

I Perspective: Fitting group dispersal model to data and testing
independent vs group dispersal
→ MCMC for Neyman-Scott point processes with double
inhomogeneity (Mrkvička and Soubeyrand, 2017)



Example of dynamic with eventual group dispersal

Wheat yellow rust epidemic in an experimental field
(Sache and Schermesser)

t = 1 t = 2

t = 3 t = 4
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