Modelling DNA sequence evolution with interacting particle systems

Mikael Falconnet

Laboratoire Statistique et Génome, Université d'Évry Val d'Essonne – CNRS

Chaire Modélisation Mathématique et Biodiversité, Museum National d'Histoire Naturelle, the 16th of November 2012

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

Stochastic nucleotidic substitution models

Common assumptions of the usual models

- A DNA sequence is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- Rate matrix ($\lambda > 0$)

	A	Т	С	G
А	•	λ	λ	λ
Т	λ		λ	λ
С	λ	λ	•	λ
G	λ	λ	λ	

- **Diagonal** entry $-q_{aa}$ is the substitution rate of nucleotide *a*, here $q_{aa} = -3\lambda$. - **Non-diagonal** entry q_{ab} is the substitution rate of nucleotide *a* by *b*, here $q_{ab} = \lambda$.

Modelisation

- At any site x, we run a **Poisson point process** with parameter 3λ .
- At any **point**, the nucleotide $\eta(x)$ is substituted by $a \in \{A, T, C, G\} \setminus \{\eta(x)\}$ with probability 1/3.

Stochastic nucleotidic substitution models

Consequences

- Convergence in distribution at any site
- Convergenge in distribution of the whole sequence to the **product measure**.

Problems

- $(a_1 \dots a_\ell)_{\mathrm{obs}} \neq (a_1)_{\mathrm{obs}} \dots (a_\ell)_{\mathrm{obs}}.$
- The substitution rate $\eta(x) \rightarrow a$ may **dépend** de $\eta(x-1)$, $\eta(x)$ and $\eta(x+1)$.

Famous example : CpG dinucleotides

- Rate $C \to T$ up to ten times larger when C is involved in a CpG (in fact $C^\star pG).$

• The origins: Jukes and Cantor model

• Entering the field of interacting particle systems

Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

JC+CpG model

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- A DNA sequence is now doubly infinite, that is, an element of $\{A,T,C,G\}^{\mathbb{Z}}.$
- Keep Jukes and Cantor model

	A	Т	С	G
А	•	1	1	1
Т	1	•	1	1
С	1	1	•	1
G	1	1	1	

- Superimpose "double" substitution mechanism

\mathscr{R}^{a}	r	\ldots if $\eta(x, x+1) = CG$ and $a = T$
		or if $\eta(x-1,x) = CG$ and $a = A$.

r	\dots if $\eta(x, x+1) = CG$ and $a =$
	or if $\eta(x-1,x) = CG$ and $a = A$

u	1	unconditionally.
\mathscr{R}^{a}	r	if $\eta(x, x+1) = CG$ and $a = T$ or if $\eta(x-1, x) = CG$ and $a = A$.

<i>u</i> -	1	unconditionally.
\mathscr{R}^{a}	r	if $\eta(x, x+1) = CG$ and $a = T$ or if $\eta(x-1, x) = CG$ and $a = A$.

To know more about interacting particle systems

Bible: Liggett, Interacting particle systems, Springer (1985) Durrett, Ten lectures on interacting particle systems, Springer (1993)

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

Properties

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- There exists a unique Markov process on $\mathscr{A}^{\mathbb{Z}}$ with the transition rates defined before.

- The process is **ergodic**, its unique invariant probability measure π on $\mathscr{A}^{\mathbb{Z}}$ is **translation invariant** and **ergodic** with respect to the translations on \mathbb{Z} .

- Starting from equilibrium, any collections $(\eta_x)_{x \in I}$ and $(\eta_y)_{y \in J}$ are **indépendent** as soon as $dist(I, J) \ge 3$.

Simulate the evolution of a finite DNA sequence

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

Definition with Markov generator

Translocation process

$$\mathscr{L}_{2}f(\eta) = \sum_{x,y\in\mathbb{Z}} p(x,y)[f(\eta\circ\sigma_{x,y}) - f(\eta)],$$
(1)

with $\sigma_{x,y}$ defined for any x < y by

- Mark (\circlearrowright , x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark $(\circlearrowright, x, y)$ distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark $(\circlearrowright, x, y)$ distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark $(\circlearrowright, x, y)$ distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x < y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

Spin + stirring

Ferrari, Annals of Probability (1990)

To prove ergodicity, Ferrari introduces the construction of a dual process

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

- Adding translocation mechanism
- How to use the dual process
- Results

Results for independent evolution models

Falconnet, Gantert and Saada, (2012)

Assume that the substitution rates are **independent** and are Markovian. The the process is **ergodic** and the invariant measure is the product measure on \mathbb{Z} .

- Especially, for any usual substitution model (JC69, K80, T92, etc.) and any translocation mechanism invariant by translation, the dynamic of the process is ergodic.

Results for spin + stirring models

Neuhauser, Annals of Probability (1990)

Consider the Ising model. If the rate of stirring is small enough, then the process remains **ergodic**.

Ferrari, Annals of Probability (1990)

Define

$$m = \inf\{c(x,\eta) : x \in \mathbb{Z}, \eta \in X\},\$$

$$K = \sup\{c(x,\eta) : x \in \mathbb{Z}, \eta \in X\},\$$

$$h = \max_{x \in \mathbb{Z}} |R_x|.$$
(2)

Then if m > 0 and if

$$(h-1)(K-m) < 2m$$

the process is exponentially ergodic.

Results for substitution process with translocation mechanism

Falconnet, Gantert et Saada, (2012)

Ferrari's result can be transposed. Define

$$m = \inf\{c(x, a, \eta) : x \in \mathbb{Z}, a \in \mathscr{A}, \eta \in X\},\$$

$$K = \sup\{c(x, a, \eta) : x \in \mathbb{Z}, a \in \mathscr{A}, \eta \in X\},\$$

$$h = \max_{x \in \mathbb{Z}, a \in \mathscr{A}} |R_x^a|.$$
(3)

Then if m > 0 and if

$$(h-1)(K-m) < |\mathscr{A}|m,$$

the process is exponentially ergodic.

Especially, JC+CpG+Translocation model is ergodic as soon as

$$r < 4\lambda$$
.

Open questions

Contact process

The contact process is such that

$$c(x,\eta) = \begin{cases} \lambda[\eta(x-1) + \eta(x+1)] & \text{if } \eta(x) = 0, \\ 1 & \text{if } \eta(x) = 1, \end{cases}$$

where $\lambda \ge 0$. One can see that

$$m = \inf\{c(x,\eta) : x \in \mathbb{Z}, \eta \in X\} = 0,$$

hence the theorem cannot be used there.

One can show that there exists a critical value $\lambda_c(\rho)$ depending on ρ , but we do not know its behavior. At the moment, we only know that

$$orall
ho \geqslant 0, \quad \lambda_c(
ho) \geqslant rac{1}{2}, \quad ext{and}$$
 $\lambda_c(0) -
ho \leqslant \lambda_c(0) \leqslant (1 + 2
ho)\lambda_c(0).$

Questions ouvertes

Modèle d'Ising

The one dimensional Ising model is defined as

$$c(x,\eta) = \begin{cases} e^{-2\beta} & \text{if} & \eta(x-1) = \eta(x) = \eta(x+1), \\ e^{2\beta} & \text{if} & \eta(x) \neq \eta(x-1) = \eta(x+1), \\ 1 & \text{else.} \end{cases}$$

This process is ergodic for any $\beta \ge 0$. We think that translocation mechanism should not change this fact.

Statistics

Would it be possible to use this model to improve DNA sequences alignment ?