Viral Phylogeography

Paul Bastide¹, Gilles Didier², Stéphane Guindon³

- ¹ MAP5, Université Paris Cité, CNRS
- ² IMAG, Université de Montpellier, CNRS
- ³ LIRMM, Université de Montpellier, CNRS

Rencontre de la chaire MMB, 29 janvier 2025

West Nile Virus (WNV)

(Pybus et al., 2012)

Bayesian Phylogenetics

Goal:

$p(\theta, \mathcal{T}, \psi \mid \mathbf{Y}, \mathbf{S}) \propto p(\mathbf{Y}, \mathbf{S} \mid \theta, \mathcal{T}, \psi) p(\theta, \mathcal{T}, \psi)$

Bayesian Phylogenetics

Goal:

$$\begin{split} p\left(\boldsymbol{\theta}, \mathcal{T}, \boldsymbol{\psi} \mid \mathbf{Y}, \mathbf{S}\right) &\propto p\left(\mathbf{Y}, \mathbf{S} \mid \boldsymbol{\theta}, \mathcal{T}, \boldsymbol{\psi}\right) p\left(\boldsymbol{\theta}, \mathcal{T}, \boldsymbol{\psi}\right) \\ &\propto p\left(\mathbf{Y} \mid \boldsymbol{\theta}, \mathcal{T}\right) p\left(\mathbf{S} \mid \mathcal{T}, \boldsymbol{\psi}\right) p\left(\boldsymbol{\theta}, \mathcal{T}, \boldsymbol{\psi}\right) \end{split}$$

Assumption: **Y** and **S** independent conditionally on \mathcal{T} .

Bayesian Phylogenetics

Goal:

$p(\theta, \mathcal{T}, \psi \mid \mathbf{Y}, \mathbf{S}) \propto p(\mathbf{Y}, \mathbf{S} \mid \theta, \mathcal{T}, \psi) p(\theta, \mathcal{T}, \psi)$ $\propto p(\mathbf{Y} \mid \theta, \mathcal{T}) p(\mathbf{S} \mid \mathcal{T}, \psi) p(\theta, \mathcal{T}, \psi)$ $\propto p(\mathbf{Y} \mid \theta, \mathcal{T}) p(\theta) p(\mathbf{S} \mid \mathcal{T}, \psi) p(\mathcal{T}, \psi)$

Assumption: **Y** and **S** independent conditionally on \mathcal{T} .

This talk: Conditional on \mathcal{T} .

Outline

● From the Brownian Motion to the Cauchy Process

- Brownian Motion
- Relaxed Brownian Motion
- Cauchy Process
- 2 Cauchy Process on a Tree
 - CP on a Tree
 - Likelihood Computation
 - Ancestral State Reconstruction
- Integrated Processes
 - Velocity Statistic
 - Integrated Brownian Motion
 - Belief Propagation

Brownian Motion Relaxed Brownian Motion Cauchy Process

Outline

1 From the Brownian Motion to the Cauchy Process

- Brownian Motion
- Relaxed Brownian Motion
- Cauchy Process

O Cauchy Process on a Tree

Integrated Processes

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motio Cauchy Process

Brownian Motion on a Tree

- The trait evolves like a BM in time
- Speciation \rightarrow two independent processes
- Only tip values are measured

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

Brownian Motion on a Tree

- SDE: $dX_t = \sigma dB_t$
- Heredity: $X_8|X_7 \sim \mathcal{N}(X_7, \sigma^2 t_8)$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

Brownian Motion Cauchy Process

Bi-variate Brownian Motion on a Tree

longitude

- Heredity: $\mathbf{X}_8 | \mathbf{X}_7 \sim \mathcal{N}(\mathbf{X}_7, t_8 \mathbf{\Sigma})$
- Distribution: $\mathbf{Y} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \boldsymbol{\Sigma})$

Brownian Motion Cauchy Process

Bi-variate Brownian Motion on a Tree

longitude

- Heredity: $\mathbf{X}_8 | \mathbf{X}_7 \sim \mathcal{N}(\mathbf{X}_7, t_8 \mathbf{\Sigma})$
- Distribution: $\mathbf{Y} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \boldsymbol{\Sigma})$
- Note: $\mathbf{Y}_3 | \mathbf{X}_7 \sim \mathcal{N}(X_7, (t_8 + t_3) \mathbf{\Sigma})$

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

Relaxed Random Walk

(Lemey et al., 2010)

• Brownian Motion:

 $\boldsymbol{X}_8 | \boldsymbol{X}_7 \sim \mathcal{N}(\boldsymbol{X}_7, t_8 \boldsymbol{\Sigma})$

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

Relaxed Random Walk

(Lemey et al., 2010)

- Brownian Motion:
- Relaxed Brownian Motion:

 $egin{aligned} \mathbf{X}_8 | \mathbf{X}_7 &\sim \mathcal{N}(\mathbf{X}_7, t_8 \mathbf{\Sigma}) \ \mathbf{X}_8 | \mathbf{X}_7, \phi_8 &\sim \mathcal{N}(\mathbf{X}_7, \phi_8 imes t_8 \mathbf{\Sigma}) \end{aligned}$

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

Relaxed Random Walk

(Lemey et al., 2010)

- Brownian Motion:
- Relaxed Brownian Motion:
- Regularisation:

 $egin{aligned} &oldsymbol{\mathsf{X}}_8|oldsymbol{\mathsf{X}}_7\sim\mathcal{N}(oldsymbol{\mathsf{X}}_7,t_8oldsymbol{\Sigma})\ &oldsymbol{\mathsf{X}}_8|oldsymbol{\mathsf{X}}_7,\phi_8\sim\mathcal{N}(oldsymbol{\mathsf{X}}_7,\phi_8 imes t_8oldsymbol{\Sigma})\ &\phi_j\sim\mathcal{L}(oldsymbol{ heta}) ext{ iid } \end{aligned}$

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

RRW: Not Sampling Consistent

- Relaxed Brownian Motion: $\mathbf{X}_i | \mathbf{X}_{pa(i)}, \phi_i \sim \mathcal{N}(\mathbf{X}_{pa(i)}, \phi_i \times t_i \mathbf{\Sigma})$
- Regularisation: $\phi_j \sim \mathcal{L}(\boldsymbol{\theta})$ iid
- Unsampled tip:

Changes the whole distribution.

Brownian Motion Relaxed Brownian Motion Cauchy Process

Inverse-Gamma Normal Mixture

$$\begin{split} \phi_j \mid \nu \sim \mathsf{Inv-Gamma}(\nu/2,\nu/2) \\ \mathbf{X}_j \mid \mathbf{X}_{\mathsf{pa}(j)}, \phi_j, \mathbf{\Sigma} \sim \mathcal{N}(\mathbf{X}_{\mathsf{pa}(j)}, \phi_j \times t_j \mathbf{\Sigma}) \end{split}$$

Brownian Motion Relaxed Brownian Motion Cauchy Process

Inverse-Gamma Normal Mixture

$$\begin{split} \phi_j \mid \nu \sim \mathsf{Inv-Gamma}(\nu/2,\nu/2) \\ \mathbf{X}_j \mid \mathbf{X}_{\mathsf{pa}(j)}, \phi_j, \mathbf{\Sigma} \sim \mathcal{N}(\mathbf{X}_{\mathsf{pa}(j)}, \phi_j \times t_j \mathbf{\Sigma}) \end{split}$$

gives:

$$\mathbf{X}_{j} \mid \mathbf{X}_{\mathsf{pa}(j)}, \mathbf{\Sigma},
u \sim \mathcal{T}_{
u}(\mathbf{X}_{\mathsf{pa}(j)}, t_{j}\mathbf{\Sigma})$$

Brownian Motion Relaxed Brownian Motion Cauchy Process

Inverse-Gamma Normal Mixture

$$\begin{split} \phi_j \mid \nu \sim \mathsf{Inv-Gamma}(\nu/2,\nu/2) \\ \mathbf{X}_j \mid \mathbf{X}_{\mathsf{pa}(j)}, \phi_j, \mathbf{\Sigma} \sim \mathcal{N}(\mathbf{X}_{\mathsf{pa}(j)}, \phi_j \times t_j \mathbf{\Sigma}) \end{split}$$

gives:

$$\mathbf{X}_{j} \mid \mathbf{X}_{\mathsf{pa}(j)}, \mathbf{\Sigma},
u \sim \mathcal{T}_{
u}(\mathbf{X}_{\mathsf{pa}(j)}, t_{j}\mathbf{\Sigma})$$

Student: not a stable distribution.

$$\mathbf{X}_{j} \mid \mathbf{X}_{\mathsf{pa}(\mathsf{pa}(j))}, \mathbf{\Sigma}, \nu \nsim \mathcal{T}_{\nu}(\mathbf{X}_{\mathsf{pa}(\mathsf{pa}(j))}, (t_{j} + t_{\mathit{pa}(j)})\mathbf{\Sigma})$$

 \rightarrow adding a node changes the whole distribution.

Stable Distributions

Stable distribution: X is stable if, for X_1 and X_2 iid copies of X:

$$aX_1 + bX_2 \equiv cX + d$$
 $(a, b, c > 0)$

Characteristic function: Symmetric α stable distributions :

Paul Bastide

$$\mathbb{E}\left[e^{iuX}\right] = \phi(u; \alpha, \gamma, \mu) = \exp(iu\mu - |\gamma u|^{\alpha})$$

Density: Only tractable in two special cases:

- $\alpha = 2$: Gaussian distribution.
- $\alpha = 1$: Cauchy distribution.

Viral Phylogeography

From the Brownian Motion to the Cauchy Process Cauchy Process on a Tree

Brownian Motion Relaxed Brownian Motion Cauchy Process

Cauchy Process (CP)

Cauchy Propagation:

$$X_j \mid X_{\mathsf{pa}(j)}, \sigma \sim \mathcal{C}(X_{\mathsf{pa}(j)}, \sigma t_j)$$

Stable Distribution:

$$X_j \mid X_{\mathsf{pa}(\mathsf{pa}(j))}, \sigma \sim \mathcal{C}(X_{\mathsf{pa}(\mathsf{pa}(j))}, \sigma(t_j + t_{\mathsf{pa}(j)}))$$

Density:

$$p\left(X_{j} \mid X_{\mathsf{pa}(j)}, \sigma\right) = \frac{1}{\pi \sigma t_{j}} \frac{1}{1 + \left(\frac{X_{j} - X_{\mathsf{pa}(j)}}{\sigma t_{j}}\right)^{2}}$$

- $X_{pa(j)}$ is the location parameter.
- σt_j is the scale parameter.

Brownian Motion Relaxed Brownian Motion Cauchy Process

Inverse-Gamma Normal Mixture

$$\phi_j \mid \nu \sim \mathsf{Inv-Gamma}(1/2, 1/2)$$

 $X_j \mid X_{\mathsf{pa}(j)}, \phi_j, \sigma^2 \sim \mathcal{N}(X_{\mathsf{pa}(j)}, \phi_j imes \sigma^2 t_j)$

gives:

$$X_j \mid X_{\mathsf{pa}(j)}, \sigma^2 \sim \mathcal{T}_1(X_{\mathsf{pa}(j)}, \sigma^2 t_j)$$

Brownian Motion Relaxed Brownian Motion Cauchy Process

Inverse-Gamma Normal Mixture

$$\phi_j \mid \nu \sim \mathsf{Inv-Gamma}(1/2, 1/2)$$

 $X_j \mid X_{\mathsf{pa}(j)}, \phi_j, \sigma^2 \sim \mathcal{N}(X_{\mathsf{pa}(j)}, \phi_j \times \sigma^2 t_j)$

gives:

$$egin{aligned} X_j \mid X_{\mathsf{pa}(j)}, \sigma^2 &\sim \mathcal{T}_1(X_{\mathsf{pa}(j)}, \sigma^2 t_j) \ &\sim \mathcal{C}(X_{\mathsf{pa}(j)}, \sigma \sqrt{t_j}) \end{aligned}$$

"Cauchy-RRW" \rightarrow Still not stable !

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

Pure Jump Lévy Process

time

Brownian Motion:

$$\mathbb{E}\left[e^{iuX(t)}\right] = e^{-t\frac{\sigma^2}{2}u^2}$$

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

Pure Jump Lévy Process

time

Cauchy Process:

$$\mathbb{E}\left[e^{iuX(t)}\right] = \exp\left(\frac{\sigma t}{\pi} \int_{\mathbb{R}} \left(e^{iux} - 1 - iux\mathbb{I}\{|x| < 1\}\right) \frac{\mathrm{d}x}{x^2}\right) = e^{-\sigma t|u|}$$

Cauchy Process on a Tree Integrated Processes Brownian Motion Relaxed Brownian Motion Cauchy Process

Pure Jump Lévy Process

time

Cauchy Process:

$$X_t^{Cau} = X_t^0 + \sum_{k \ge 1} (X_t^k - \mathbb{E}[X_t^k])$$

$$X_t^k \sim \text{Compound Poisson} \quad \text{rate:} \ \frac{2\sigma}{\pi} \quad \text{dist:} \ \frac{dx}{2x^2} \text{ on } I_k$$
$$I_0 =] - \infty; -1] \cup [1; +\infty[, I_k =] - \frac{1}{k}; -\frac{1}{k+1}] \cup \left[\frac{1}{k+1}; \frac{1}{k}\right[k \ge 1$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Outline

1 From the Brownian Motion to the Cauchy Process

2 Cauchy Process on a Tree

- CP on a Tree
- Likelihood Computation
- Ancestral State Reconstruction

Integrated Processes

CP on a Tree Likelihood Computation Ancestral State Reconstruction

CP on a Tree

- Heredity: $X_8|X_7 \sim \mathcal{N}(X_7, \sigma^2 t_8)$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Marginal: $Y_i \sim \mathcal{N}(\mu, \sigma^2 V_{ii})$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

CP on a Tree

- Heredity: $X_8|X_7 \sim C(X_7, \sigma t_8)$
- Covariances: do not exist.
- Marginal: $Y_i \sim C(\mu, \sigma \tau_i)$
- Distribution: $\mathbf{Y} \sim ?$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

CP on a Tree

- Heredity: $X_8 | X_7 \sim \mathcal{C}(X_7, \sigma t_8)$
 - Covariances: do not exist.
- Marginal: $Y_i \sim C(\mu, \sigma \tau_i)$
- Distribution: $\mathbf{Y} \sim \mathcal{MC}(\mu \mathbf{1}, \gamma_{phy}(\cdot))$

Multivariate Cauchy

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Likelihood:

Characteristic Function

$$p(\mathbf{Y} \mid \mu, \sigma) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\mathbf{u}^T \mathbf{Y}} \phi_{\mathbf{Y} \mid X_{\text{root}}} (\mathbf{u}; \sigma) \, \mathrm{d} \, \mathbf{u}$$

Exact Algorithm:

Can compute the integral explicitly, with one traversal of the tree.

Complexity: Quadratic in the number of tips.

Stability: Sums of large positive and negative numbers: numerical issues.

From the Brownian Motion to the Cauchy Process CP on a Tr Cauchy Process on a Tree Integrated Processes Ancestral S

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Ancestral State Reconstruction

Density for an ancestral state:

$$p(X_j = v \mid \mathbf{Y}, X_r = \mu, \sigma) = \frac{p(\mathbf{Y}^j \mid X_j = v, \sigma)p(\mathbf{Y}^{-j}, X_j = v \mid X_r = \mu, \sigma)}{p(\mathbf{Y} \mid X_r = \mu, \sigma)}$$

Can be computed for a grid of values *v*. (Linear in the number of grid values.)

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Ancestral State Reconstruction

Density for an ancestral state:

$$p(X_j = v \mid \mathbf{Y}, X_r = \mu, \sigma) = \frac{p(\mathbf{Y}^j \mid X_j = v, \sigma)p(\mathbf{Y}^{-j}, X_j = v \mid X_r = \mu, \sigma)}{p(\mathbf{Y} \mid X_r = \mu, \sigma)}$$

Can be computed for a grid of values *v*. (Linear in the number of grid values.)

Can be multimodal !

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Identifiability Issues

Cauchy reconstruction:

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Identifiability Issues

Cauchy reconstruction:

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Identifiability Issues

Cauchy reconstruction:

Shifted BM: Some shift configuration are not identifiable.

WNV using Evolaps

CP:

WNV using Evolaps

(Pybus et al., 2012; Chevenet et al., 2024)

Cauchy RRW:

CP:

/elocity Statistic ntegrated Brownian Motion Belief Propagation

Outline

1 From the Brownian Motion to the Cauchy Process

2 Cauchy Process on a Tree

Integrated Processes

- Velocity Statistic
- Integrated Brownian Motion
- Belief Propagation

Velocity Statistic Integrated Brownian Motion Belief Propagation

How fast is the virus going ?

Velocity Statistic:

$$WLDV = \frac{\sum_{i \in \text{branches } d_i}}{\sum_{i \in \text{branches } t_i}}$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Velocity Statistic

MCMC: Sample $(\boldsymbol{\theta}_k, \mathcal{T}_k, \boldsymbol{\psi}_k)$ from

 $p(\theta, \mathcal{T}, \psi \mid \mathbf{Y}, \mathbf{S})$

Ancestral reconstruction: Sample ancestral positions X_k from

 $p(\mathbf{X} | \mathbf{Y}, \boldsymbol{\theta}_k, \mathcal{T}_k)$

Displacement: for each branch i at iteration k

 $\begin{aligned} d_k^i &= \|X_k^{\text{pa}(i)} - X_k^i\|_2 = \text{distance covered on branch } i \\ t_k^i &= \text{length of branch } i \text{ in tree } \mathcal{T}_k \end{aligned}$

Velocity Statistic:

$$WLDV_k = \frac{\sum_{i=1}^N d_k^i}{\sum_{i=1}^N t_k^i}$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Problem with the Velocity Statistic

(Dellicour et al., 2024)

Models: Brownian Motion, Relaxed Random Walk, Cauchy

Velocity Statistic Integrated Brownian Motion Belief Propagation

Problem with the Velocity Statistic

(Dellicour et al., 2024)

Models: Brownian Motion, Relaxed Random Walk, Cauchy Velocity is not defined ! processes have infinite variation.

Velocity Statistic Integrated Brownian Motion Belief Propagation

Problem with the Velocity Statistic

(Dellicour et al., 2024)

Models: Brownian Motion, Relaxed Random Walk, Cauchy Velocity is not defined ! processes have infinite variation. Sampling inconsistent: the more densely sampled, the faster the process appears

Velocity Statistic Integrated Brownian Motion Belief Propagation

Brownian Motion

Brownian Motion

$$X(t) = x_0 + \int_0^t \sigma dB_t \qquad \sim \mathcal{N}(x_0, \sigma^2 t)$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Integrated Brownian Motion

Integrated Brownian Motion

$$V(t) = v_0 + \int_0^t \sigma dB_t$$
$$X(t) = x_0 + \int_0^t V(s) ds$$

$$\sim \mathcal{N}(v_0, \sigma^2 t)$$

 $\sim \mathcal{N}(x_0 + v_0 t, \frac{\sigma^2}{3}t^3)$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Integrated Brownian Motion

Velocity Statistic Integrated Brownian Motion Belief Propagation

Integrated Brownian Motion is Gaussian

Integrated Brownian Motion

$$\mathbf{V}(t) = \mathbf{V}_{
ho} + \int_{0}^{t} \sigma d\mathbf{B}_{t}$$
 $\mathbf{X}(t) = \mathbf{X}_{
ho} + \int_{0}^{t} \mathbf{V}(s) ds$

Velocity (BM):

$$\mathbb{E}[\mathbf{V}_i] = \mathbf{V}_{
ho}$$

 \mathbb{V} ar $[\mathbf{V}_i; \mathbf{V}_j] = \mathbf{\Sigma} au_{ij}$

Position (IBM):

$$\mathbb{E}[\mathbf{X}_i] = \mathbf{V}_{\rho}\tau_i + \mathbf{X}_{\rho}$$
$$\mathbb{V}ar[\mathbf{X}_i; \mathbf{X}_j] = \mathbf{\Sigma}\tau_{ij}\left[\tau_i\tau_j + \tau_{ij}\left(\frac{\tau_{ij}}{3} - \frac{\tau_i + \tau_j}{2}\right)\right]$$

•

Velocity Statistic Integrated Brownian Motion Belief Propagation

Efficient Computation

Pruning: Likelihood $p_{\theta}(\mathbf{X}_{obs})$ in O(n). Belief Propagation: Ancestral density $p_{\theta}(\mathbf{X}_{anc}|\mathbf{X}_{obs})$ in O(n). \rightarrow with missing data.

Velocity Statistic Integrated Brownian Motion Belief Propagation

Efficient Computation

BM:

$$\mathbf{X}_{j} \mid \mathbf{X}_{\mathsf{pa}(j)} \sim \mathcal{N}\left(\mathbf{X}_{\mathsf{pa}(j)}, t_{j}\mathbf{R}\right)$$

IBM:

$$\begin{pmatrix} \mathbf{V}_{j} \\ \mathbf{X}_{j} \end{pmatrix} \mid \begin{pmatrix} \mathbf{V}_{pa(j)} \\ \mathbf{X}_{pa(j)} \end{pmatrix} \sim \\ \mathcal{N}\left(\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ t_{i} & 1 \end{pmatrix} \otimes \mathbf{I}_{p} \end{bmatrix} \begin{pmatrix} \mathbf{V}_{pa(j)} \\ \mathbf{X}_{pa(j)} \end{pmatrix}, \ \begin{pmatrix} t_{i} & t_{i}^{2}/2 \\ t_{i}^{2}/2 & t_{i}^{3}/3 \end{pmatrix} \otimes \mathbf{\Sigma} \right)$$

 \rightarrow joint velocity / position vector is linear Gaussian

Velocity Statistic Integrated Brownian Motion Belief Propagation

Integrated Brownian Motion

Velocity Statistic Integrated Brownian Motion Belief Propagation

Integrated Brownian Motion - Predictions ?

Perspectives

Three processes:

- Strict Brownian Motion
- Relaxed Random Walk Cauchy Process
- Integrated BM

Efficient Likelihood Computation:

- Linear Gaussian process
- Sequence / Trait independence
- No geography / temporal variables

Perspectives:

- Multivariate Cauchy
- Include spacial co-variables
- Prediction ?

References

P. Bastide, L.S.T. Ho, G. Baele, P. Lemey, M.A. Suchard (2021), Efficient Bayesian Inference of General Gaussian Models on Large Phylogenetic Trees. *Annals of Applied Statistics*, 15(2): 971-997. Implemented in BEAST.

P. Bastide, G. Didier (2023), The Cauchy Process on Phylogenies: a Tractable Model for Pulsed Evolution. *Systematic Biology*, 72(6), 1296–1315. R package cauphy on GitHub.

S. Dellicour, P. Bastide, P. Rocu, D. Fargette, O.J. Hardy, M.A. Suchard, S. Guindon, P. Lemey (2024), How fast are viruses spreading in the wild? *PLOS Biology* (to appear).

P. Bastide, P. Rocu, J. Wirtz, G.W. Hassler, F. Chevenet, D. Fargette, M.A. Suchard, S. Dellicour, P. Lemey, S. Guindon (2024), Modeling the velocity of evolving lineages and predicting dispersal patterns. *P.N.A.S.*, 121 (47) e2411582121. Implemented in BEAST.

Bibliography I

Chevenet, Fargette, Bastide, et al. 2024. Virus Evolution. 10.
Dellicour, Bastide, Rocu, et al. 2024. PLOS Biology. 22:e3002914.
Dellicour, Lequime, Vrancken, et al. 2020. Nature Communications. 11.
Duchen, Leuenberger, Szilágyi, et al. 2017. Systematic Biology. 66:950–963.
Elliot, Mooers. 2014. BMC Evolutionary Biology. 14:226.
Felsenstein. 1985. The American Naturalist. 125:1–15.
Ferguson. 1962. The Annals of Mathematical Statistics. 33:1256–1266.
Fisher, Ji, Lemey, et al. 2021. Systematic Biology. 70:258–267.

Jaffe, Slater, Alfaro. 2011. Biology Letters. 7:558-561.

Kidmose. 2001. In: IEEE-EURASIP 2001 Workshop on Nonlinear Signal and Image Processing.

- Landis, Schraiber. 2017. Proceedings of the National Academy of Sciences. 114:13224–13229.
- Landis, Schraiber, Liang. 2013. Systematic Biology. 62:193-204.
- Lemey, Rambaut, Welch, et al. 2010. *Molecular Biology and Evolution*. 27:1877–1885.
- Leventhal, Bonhoeffer. 2016. Trends in Microbiology. 24:687-698.

Mahler, Ingram, Revell, et al. 2013. Science. 341:292-295.

Nolan. 2005. In: Deutsche Bundesbank's 2005 annual fall conference.

Pagel. 1999. Nature. 401:877-884.

Pybus, Suchard, Lemey, et al. 2012. Proceedings of the National Academy of Sciences. 109:15066–15071.

Photo Credits

- Anolis isolepis: Yasel U. Alfonso, CC BY 2.0,

https://guatemala.inaturalist.org/photos/54129165

- Anolis equestris: Ianaré Sévi, CC BY-SA 3.0

https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

- Anolis sagrei: Nosferattus, CC0, via Wikimedia Commons

Thank you for listening

Gilles Didier IMAG, Université de Montpellier, CNRS

Stéphane Guindon, Pauline Rocu, Johannes Wirtz LIRMM, Université de Montpellier, CNRS

Denis Fargette PHIM, Université de Montpellier, IRD

François Chevenet, Thomas Vitré MIVEGEC, Université de Montpellier, IRD

Philippe Lemey Evolutionary and Computational Virology, KU Leuven

Simon Dellicour Spatial Epidemiology Lab, ULB

Gabriel Hassler, Marc Suchard Biomathematics, Biostatistics and Human Genetics University of California, Los Angeles

UCLA

Appendices

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Multivariate Cauchy

Definition:

 $\mathbf{X} \sim \mathcal{MC}_{p} \iff \mathbf{a}^{T} \mathbf{X} \sim \mathcal{C} \quad , \ \forall \mathbf{a} \in \mathbb{R}^{p}.$

(Ferguson, 1962)

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Multivariate Cauchy

Definition:

$$\mathbf{X} \sim \mathcal{MC}_p \iff \mathbf{a}^T \mathbf{X} \sim \mathcal{C} \quad , \ \forall \mathbf{a} \in \mathbb{R}^p.$$

Characterization:

$$\mathbf{X} \sim \mathcal{MC}_{p} \iff \phi_{\mathbf{X}}(\mathbf{u}) = \mathbb{E}\left[e^{\mathbf{u}^{T}\mathbf{X}}\right] = e^{i\mu(\mathbf{u})-\gamma(\mathbf{u})}$$

with:

$$egin{cases} \mu(\mathsf{a}\mathsf{u}) = \mathsf{a}\mu(\mathsf{u}) \ \gamma(\mathsf{a}\mathsf{u}) = |\mathsf{a}|\,\gamma(\mathsf{u}) \ \forall \mathsf{a}\in\mathbb{R},\mathsf{u}\in\mathbb{R}^p. \end{split}$$

(Ferguson, 1962)

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Multivariate Cauchy

Definition:

$$\mathbf{X} \sim \mathcal{MC}_p \iff \mathbf{a}^T \mathbf{X} \sim \mathcal{C} \quad , \ \forall \mathbf{a} \in \mathbb{R}^p.$$

Characterization:

$$\mathbf{X} \sim \mathcal{MC}_{p} \iff \phi_{\mathbf{X}}(\mathbf{u}) = \mathbb{E}\left[e^{\mathbf{u}^{T}\mathbf{X}}\right] = e^{i\mu(\mathbf{u})-\gamma(\mathbf{u})}$$

with:

$$egin{cases} \mu(\mathsf{a}\mathsf{u})=\mathsf{a}\mu(\mathsf{u})\ \gamma(\mathsf{a}\mathsf{u})=|\mathsf{a}|\,\gamma(\mathsf{u}) \ \forall \mathsf{a}\in\mathbb{R},\mathsf{u}\in\mathbb{R}^p. \end{cases}$$

Student with $\nu = 1$:

$$\mathbf{X} \sim \mathcal{MT}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \nu = 1) \iff \phi_{\mathbf{X}}(\mathbf{u}) = e^{\mathbf{u}^{T} \boldsymbol{\mu} - \sqrt{\mathbf{u}^{T} \boldsymbol{\Sigma} \mathbf{u}}}$$

(Ferguson, 1962)

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Two tips tree

$$\phi_{Y_A|R} (u_A; \sigma) = \exp(i\mu u_A - \sigma t_A |u_A|)$$

$$\phi_{Y_B|R} (u_B; \sigma) = \exp(i\mu u_B - \sigma t_B |u_B|)$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Two tips tree

$$\phi_{Y_A|R} (u_A; \sigma) = \exp(i\mu u_A - \sigma t_A |u_A|)$$

$$\phi_{Y_B|R} (u_B; \sigma) = \exp(i\mu u_B - \sigma t_B |u_B|)$$

Joint distribution:

$$\phi_{Y_A,Y_B|R} (\mathbf{u}; \sigma) = \phi_{Y_A|R} (u_A; \sigma) \times \phi_{Y_B|R} (u_B; \sigma)$$
$$= \exp(i\mu(u_A + u_B) - \sigma(t_A |u_A| + t_B |u_B|))$$

back

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Two tips tree

$$\phi_{Y_A|R} (u_A; \sigma) = \exp(i\mu u_A - \sigma t_A |u_A|)$$

$$\phi_{Y_B|R} (u_B; \sigma) = \exp(i\mu u_B - \sigma t_B |u_B|)$$

Joint distribution:

$$\phi_{Y_A,Y_B|R} (\mathbf{u}; \sigma) = \phi_{Y_A|R} (u_A; \sigma) \times \phi_{Y_B|R} (u_B; \sigma)$$
$$= \exp(i\mu(u_A + u_B) - \sigma(t_A |u_A| + t_B |u_B|))$$

 \rightarrow multivariate Cauchy...

...but not Student:

$$\gamma(\mathbf{u}) = \sigma(t_A |u_A| + t_B |u_B|) \neq \sqrt{\mathbf{u}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{u}}$$

back

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Characteristic Function

Branch Characteristic Function:

$$\phi_{X_j \mid X_{\mathsf{pa}(j)}}\left(u; \sigma\right) = \exp\left(i X_{\mathsf{pa}(j)} u - \sigma t_j \mid u \mid\right)$$

Tree Characteristic Function: Conditionally on $X_{root} = \mu$:

$$\phi_{\mathbf{Y}|X_{\text{root}}}\left(\mathbf{u};\sigma\right) = \exp\left(i\mu\sum_{k=1}^{n}u_{k} - \sigma\sum_{j\neq\text{root}}t_{j}\left|\sum_{k\in\text{desTips}(j)}u_{k}\right|\right)$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Characteristic Function

Branch Characteristic Function:

$$\phi_{X_j \mid X_{\mathsf{pa}(j)}}\left(u; \sigma\right) = \exp\left(i X_{\mathsf{pa}(j)} u - \sigma t_j \mid u \mid\right)$$

Tree Characteristic Function: Conditionally on $X_{root} = \mu$:

$$\phi_{\mathbf{Y}|X_{\text{root}}}\left(\mathbf{u};\sigma\right) = \exp\left(i\mu\sum_{k=1}^{n}u_{k} - \sigma\sum_{j\neq\text{root}}t_{j}\left|\sum_{k\in\text{desTips}(j)}u_{k}\right|\right)$$

Multivariate Cauchy but **not** a Student with $\nu = 1$.

back

Characteristic Function : Pre-order Tree Traversal

Characteristic Function:

$$\phi_{\mathbf{Y}^{\mathbf{i}}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \exp\left(iX_{j}\sum_{k\in\text{desTips}(j)}u_{k} - \sigma\sum_{k\in\text{des}\,j}t_{k}\left|\sum_{l\in\text{desTips}(k)}u_{l}\right|\right) \qquad \bigwedge_{\mathbf{Y}^{\mathbf{i}}_{h}}\sum_{\mathbf{Y}^{\mathbf{i}}_{h}}\left(\sum_{l\in\text{desTips}(k)}u_{l}\right)$$

Characteristic Function : Pre-order Tree Traversal

Characteristic Function:

$$\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \exp\left(iX_{j}\sum_{k\in\text{desTips}(j)}u_{k} - \sigma\sum_{k\in\text{des}\,j}t_{k}\left|\sum_{l\in\text{desTips}(k)}u_{l}\right|\right)$$

Propagation:

 $\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right)=\phi_{\mathbf{Y}^{j_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right)\times\phi_{\mathbf{Y}^{j_{2}}|X_{j}}\left(\mathbf{u}^{j_{2}};\sigma\right)\quad\text{conditional independence}$

V^j2

Characteristic Function : Pre-order Tree Traversal

Characteristic Function:

$$\phi_{\mathbf{Y}^{\mathbf{j}}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \exp\left(iX_{j}\sum_{k\in\mathsf{desTips}(j)}u_{k} - \sigma\sum_{k\in\mathsf{des}\,j}t_{k}\left|\sum_{l\in\mathsf{desTips}(k)}u_{l}\right|\right)$$

Propagation:

 $\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right)=\phi_{\mathbf{Y}^{j_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right)\times\phi_{\mathbf{Y}^{j_{2}}|X_{j}}\left(\mathbf{u}^{j_{2}};\sigma\right)\quad\text{conditional independence}$

$$\phi_{\mathbf{Y}^{\mathbf{i}_1}|X_j}\left(\mathbf{u}^{j_1};\sigma\right) = \int_{\mathbb{R}^{n_{j_1}}} \left[\int_{\mathbb{R}} \rho_{\mathbf{Y}^{\mathbf{i}_1}|X_{j_1}}(\mathbf{y};x) \rho_{X_{j_1}|X_j}(x;X_j) \,\mathrm{d}\,x \right] e^{i\mathbf{y}^{\mathsf{T}}\mathbf{u}^{j_1}} \,\mathrm{d}\,\mathbf{y}$$

v

Characteristic Function : Pre-order Tree Traversal

Characteristic Function:

$$\phi_{\mathbf{Y}^{\mathbf{j}}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \exp\left(iX_{j}\sum_{k\in\operatorname{desTips}(j)}u_{k} - \sigma\sum_{k\in\operatorname{des}j}t_{k}\left|\sum_{l\in\operatorname{desTips}(k)}u_{l}\right|\right)$$

Propagation:

 $\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \phi_{\mathbf{Y}^{j_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right) \times \phi_{\mathbf{Y}^{j_{2}}|X_{j}}\left(\mathbf{u}^{j_{2}};\sigma\right) \quad \text{conditional independence}$

$$\begin{split} \phi_{\mathbf{Y}^{j_1}|X_j} \left(\mathbf{u}^{j_1}; \sigma \right) &= \int_{\mathbb{R}^{n_{j_1}}} \left[\int_{\mathbb{R}} p_{\mathbf{Y}^{j_1}|X_{j_1}} \left(\mathbf{y}; x \right) p_{X_{j_1}|X_j} \left(x; X_j \right) \mathrm{d} x \right] e^{i\mathbf{y}^{\mathsf{T}}\mathbf{u}^{j_1}} \, \mathrm{d} \, \mathbf{y} \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}^{n_{j_1}}} p_{\mathbf{Y}^{j_1}|X_{j_1}} \left(\mathbf{y}; x \right) e^{i\mathbf{y}^{\mathsf{T}}\mathbf{u}^{j_1}} \, \mathrm{d} \, \mathbf{y} \right] p_{X_{j_1}|X_j} \left(x; X_j \right) \mathrm{d} \, x \end{split}$$

v

V^j2

Characteristic Function : Pre-order Tree Traversal

Characteristic Function:

$$\phi_{\mathbf{Y}^{\mathbf{j}}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \exp\left(iX_{j}\sum_{k\in\operatorname{desTips}(j)}u_{k} - \sigma\sum_{k\in\operatorname{des}j}t_{k}\left|\sum_{l\in\operatorname{desTips}(k)}u_{l}\right|\right)$$

Propagation:

$$\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \phi_{\mathbf{Y}^{j_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right) \times \phi_{\mathbf{Y}^{j_{2}}|X_{j}}\left(\mathbf{u}^{j_{2}};\sigma\right) \quad \text{conditional independence}$$

$$\begin{split} \phi_{\mathbf{Y}^{\mathbf{i}_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right) &= \int_{\mathbb{R}^{n_{j_{1}}}} \left[\int_{\mathbb{R}} p_{\mathbf{Y}^{\mathbf{i}_{1}}|X_{j_{1}}}\left(\mathbf{y};x\right) p_{X_{j_{1}}|X_{j}}\left(x;X_{j}\right) \mathrm{d}x \right] e^{i\mathbf{y}^{\mathsf{T}}\mathbf{u}^{j_{1}}} \, \mathrm{d}\,\mathbf{y} \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}^{n_{j_{1}}}} p_{\mathbf{Y}^{\mathbf{i}_{1}}|X_{j_{1}}}\left(\mathbf{y};x\right) e^{i\mathbf{y}^{\mathsf{T}}\mathbf{u}^{j_{1}}} \, \mathrm{d}\,\mathbf{y} \right] p_{X_{j_{1}}|X_{j}}\left(x;X_{j}\right) \mathrm{d}\,x \\ &= \int_{\mathbb{R}} \left[\phi_{\mathbf{Y}^{\mathbf{i}_{1}}|X_{j_{1}}=x}\left(\mathbf{u}^{j_{1}};\sigma\right) \right] p_{X_{j_{1}}|X_{j}}\left(x;X_{j}\right) \mathrm{d}\,x \end{split}$$

V^j2

Characteristic Function : Pre-order Tree Traversal

Characteristic Function:

$$\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \exp\left(iX_{j}\sum_{k\in\mathsf{desTips}(j)}u_{k} - \sigma\sum_{k\in\mathsf{des}\,j}t_{k}\left|\sum_{l\in\mathsf{desTips}(k)}u_{l}\right|\right)$$

Propagation:

 $\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \phi_{\mathbf{Y}^{j_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right) \times \phi_{\mathbf{Y}^{j_{2}}|X_{j}}\left(\mathbf{u}^{j_{2}};\sigma\right) \quad \text{conditional independence}$

$$\begin{split} \phi_{\mathbf{Y}^{\mathbf{j}_1}|X_j} \left(\mathbf{u}^{j_1}; \sigma \right) &= \exp\left(-\sigma \sum_{k \in \operatorname{des} j_1} t_k \left| \sum_{l \in \operatorname{desTips}(k)} u_l \right| \right) \times \\ & \mathbb{E}\left[\exp\left(iZ \sum_{k \in \operatorname{desTips}(j_1)} u_k \right) \right] \text{ with } Z \sim \mathcal{C}(X_j, \sigma t_{j_1}) \end{split}$$

Characteristic Function : Pre-order Tree Traversal

Characteristic Function:

$$\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \exp\left(iX_{j}\sum_{k\in\mathsf{desTips}(j)}u_{k} - \sigma\sum_{k\in\mathsf{des}\,j}t_{k}\left|\sum_{l\in\mathsf{desTips}(k)}u_{l}\right|\right)$$

Propagation:

 $\phi_{\mathbf{Y}^{j}|X_{j}}\left(\mathbf{u}^{j};\sigma\right) = \phi_{\mathbf{Y}^{j_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right) \times \phi_{\mathbf{Y}^{j_{2}}|X_{j}}\left(\mathbf{u}^{j_{2}};\sigma\right) \quad \text{conditional independence}$

$$\begin{split} \phi_{\mathbf{Y}^{\mathbf{j}_{1}}|X_{j}}\left(\mathbf{u}^{j_{1}};\sigma\right) &= \exp\left(-\sigma\sum_{k\in\mathrm{des}\,j_{1}}t_{k}\left|\sum_{l\in\mathrm{desTips}(k)}u_{l}\right|\right) \times \\ &\qquad \exp\left(iX_{j}\sum_{k\in\mathrm{desTips}(j_{1})}u_{k}-\sigma t_{j_{1}}\left|\sum_{k\in\mathrm{desTips}(j_{1})}u_{k}\right|\right) \quad \text{back} \end{split}$$

v
CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood

$$p(\mathbf{Y} \mid \mu, \sigma) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\mathbf{u}^T \mathbf{Y}} \phi_{\mathbf{Y} \mid X_{\text{root}}} (\mathbf{u}; \sigma) \, \mathrm{d} \, \mathbf{u}$$
$$p(\mathbf{Y} \mid \mu, \sigma) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\mathbf{u}^T \mathbf{Y}} \exp\left(i\mu \sum_{k=1}^n u_k - \sigma \sum_{j \neq \text{root}} t_j \left| \sum_{k \in \text{desTips}(j)} u_k \right| \right) \, \mathrm{d} \, \mathbf{u}$$

Idea:

- take a node j with two descending tips k and l
- change of variable : $v_k = u_k + u_l$ and $v_l = u_l$
- integrate out v_l.

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Partial Likelihood:

$$p(\mathbf{y}^r \mid z_r, \sigma, \mathcal{T}) = \frac{1}{(2\pi)^{|\mathrm{L}_{\mathcal{T}}|}} \int_{-\infty}^{+\infty} \sum_{b \in \mathrm{L}_{\mathcal{T}}} C_{r, b}^{\mathrm{sgn}(u)} \exp\left(-\sigma t_{r; b} |u| - iu(y_b - z_r)\right) du.$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Partial Likelihood:

$$p(\mathbf{y}^r \mid z_r, \sigma, \mathcal{T}) = \frac{1}{(2\pi)^{|\mathrm{L}_{\mathcal{T}}|}} \int_{-\infty}^{+\infty} \sum_{b \in \mathrm{L}_{\mathcal{T}}} C_{r,b}^{\mathrm{sgn}(u)} \exp\left(-\sigma t_{r;b} |u| - iu(y_b - z_r)\right) du.$$

Recursion formula:

$$C_{j,b} = C_{m,b} \sum_{c \in \text{desTips}(k)} \left(\frac{C_{k,c}}{\sigma(t_{j:c} - t_{j:b}) + i(y_c - y_b)} + \frac{\overline{C_{k,c}}}{\sigma(t_{j:b} + t_{j:c}) - i(y_c - y_b)} \right)$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Partial Likelihood:

$$p(\mathbf{y}^r \mid z_r, \sigma, \mathcal{T}) = \frac{1}{(2\pi)^{|\mathrm{L}_{\mathcal{T}}|}} \int_{-\infty}^{+\infty} \sum_{b \in \mathrm{L}_{\mathcal{T}}} C_{r, b}^{\mathrm{sgn}(u)} \exp\left(-\sigma t_{r; b} |u| - iu(y_b - z_r)\right) du.$$

Recursion formula:

$$C_{j,b} = C_{m,b} \sum_{c \in \text{desTips}(k)} \left(\frac{C_{k,c}}{\sigma(t_{j:c} - t_{j:b}) + i(y_c - y_b)} + \frac{\overline{C_{k,c}}}{\sigma(t_{j:b} + t_{j:c}) - i(y_c - y_b)} \right)$$

Initialization for any tip *i*: $C_{i,i}^+ = C_{i,i}^- = 1$.

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Conditional Independence:

$$\boldsymbol{\rho}\left(\mathbf{y}^{k} \mid z_{k}, \sigma, \mathcal{T}_{k}^{-}\right) = \boldsymbol{\rho}\left(\mathbf{y}^{i} \mid z_{k}, \sigma, \mathcal{T}_{i}\right) \boldsymbol{\rho}\left(\mathbf{y}^{j} \mid z_{k}, \sigma, \mathcal{T}_{j}\right)$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Conditional Independence:

$$\boldsymbol{\rho}\left(\mathbf{y}^{k} \mid \boldsymbol{z}_{k}, \sigma, \mathcal{T}_{k}^{-}\right) = \boldsymbol{\rho}\left(\mathbf{y}^{i} \mid \boldsymbol{z}_{k}, \sigma, \mathcal{T}_{i}\right) \boldsymbol{\rho}\left(\mathbf{y}^{i} \mid \boldsymbol{z}_{k}, \sigma, \mathcal{T}_{j}\right)$$

Integration on parent branch:

$$p\left(\mathbf{y}^{k} \mid z_{\mathsf{pa}(k)}, \sigma, \mathcal{T}_{k}^{-}\right) = \int_{-\infty}^{+\infty} p\left(\mathbf{y}^{k} \mid z_{k}, \sigma, \mathcal{T}_{k}^{-}\right) p\left(z_{k} \mid z_{\mathsf{pa}(k)}, \sigma\right) dz_{k}$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Conditional Independence:

$$\boldsymbol{\rho}\left(\mathbf{y}^{k} \mid z_{k}, \sigma, \mathcal{T}_{k}^{-}\right) = \boldsymbol{\rho}\left(\mathbf{y}^{i} \mid z_{k}, \sigma, \mathcal{T}_{i}\right) \boldsymbol{\rho}\left(\mathbf{y}^{i} \mid z_{k}, \sigma, \mathcal{T}_{j}\right)$$

Integration on parent branch:

$$p\left(\mathbf{y}^{k} \mid z_{\mathsf{pa}(k)}, \sigma, \mathcal{T}_{k}^{-}\right) = \int_{-\infty}^{+\infty} p\left(\mathbf{y}^{k} \mid z_{k}, \sigma, \mathcal{T}_{k}^{-}\right) p\left(z_{k} \mid z_{\mathsf{pa}(k)}, \sigma\right) dz_{k}$$

Recursion:

$$\begin{split} \rho\left(\mathbf{y}^{k} \mid z_{\mathsf{pa}(k)}, \sigma, \mathcal{T}_{k}^{-}\right) &= \frac{1}{(2\pi)^{|\mathbf{L}_{k}|}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(i(u+v)z_{\mathsf{pa}(k)} - \sigma t_{k}|u+v|\right) \\ &\times \left[\sum_{b \in \mathbf{L}_{j}} C_{k,b}^{\mathsf{sgn}(u)} \exp\left(-\sigma t_{k;b}|u| - iuy_{b}\right)\right] \left[\sum_{c \in \mathbf{L}_{j}} C_{k,c}^{\mathsf{sgn}(v)} \exp\left(-\sigma t_{k;c}|v| - iuy_{c}\right)\right] dudv \end{split}$$

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation

Root integration:

$$p(\mathbf{Y} \mid \mu = 0, \sigma) = \frac{2}{(2\pi)^n} \sum_{b \in \mathsf{desTips}(r)} \frac{R_{r,b} \sigma t_{r:b} + I_{r,b} y_b}{(\sigma t_{r:b})^2 + y_b^2}$$

back

From the Brownian Motion to the Cauchy Process Cauchy Process on a Tree Integrated Processes Likelihood Computation Ancestral State Reconstruction

Likelihood Computation Algorithm

Recursion Formula:

$$C_{j,b} = C_{m,b} \sum_{c \in \text{desTips}(k)} \left(\frac{C_{k,c}}{\sigma(t_{j:c} - t_{j:b}) + i(y_c - y_b)} + \frac{\overline{C_{k,c}}}{\sigma(t_{j:b} + t_{j:c}) - i(y_c - y_b)} \right)$$

Exact:

Can compute the integral explicitly, with one traversal of the tree.

Complexity:

Quadratic in the number of tips.

Stability:

Sums of large positive and negative numbers: numerical issues.

Theoretical problem:

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Likelihood Computation Algorithm

Recursion Formula:

$$C_{j,b} = C_{m,b} \sum_{c \in \text{desTips}(k)} \left(\frac{C_{k,c}}{\sigma(t_{j:c} - t_{j:b}) + i(y_c - y_b)} + \frac{\overline{C_{k,c}}}{\sigma(t_{j:b} + t_{j:c}) - i(y_c - y_b)} \right)$$

Exact:

Can compute the integral explicitly, with one traversal of the tree.

Complexity:

Quadratic in the number of tips.

Stability:

Sums of large positive and negative numbers: numerical issues.

Theoretical problem: Division by zero !

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Chelonia Dataset

Homopus Aerolatus

Jaffe et al. (2011)

summary(data)												
##	Min.	1st	Qu.	Median	Mean	3rd Qu.	Max.					
##	2.303	2.	996	3.296	3.482	3.892	5.497					

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Chelonia Dataset

summary(exp(data))

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	10.00	20.00	27.00	41.67	49.00	244.00

CP on a Tree Likelihood Computation Ancestral State Reconstruction

Chelonia Dataset

back

Velocity Statistic Integrated Brownian Motion Belief Propagation

Integrated OU

Integrated Ornstein-Uhlenbeck

$$\begin{pmatrix} V_i \\ X_i \end{pmatrix} \begin{vmatrix} \begin{pmatrix} V_{\mathsf{pa}(i)} \\ X_{\mathsf{pa}(i)} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} e^{-\alpha t_i} & 0 \\ (1 - e^{-\alpha t_i})/\alpha & 1 \end{pmatrix} \begin{pmatrix} V_{\mathsf{pa}(i)} \\ X_{\mathsf{pa}(i)} \end{pmatrix} + \begin{pmatrix} (1 - e^{-\alpha t_i})\beta \\ (t_i - (1 - e^{-\alpha t_i})/\alpha)\beta \end{pmatrix}; \\ \frac{\sigma^2}{2\alpha} \begin{pmatrix} (1 - e^{-2\alpha t_i}) & \frac{(1 - e^{-\alpha t_i})^2}{\alpha} \\ \frac{(1 - e^{-\alpha t_i})^2}{\alpha} & \frac{2t_i}{\alpha} - 4\frac{(1 - e^{-\alpha t_i})}{\alpha^2} + \frac{(1 - e^{-2\alpha t_i})}{\alpha^2} \end{pmatrix} \end{pmatrix}$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Existing Approaches

RRW: Lemey et al. (2010); Fisher et al. (2021)

 $p(\phi, \sigma \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \phi, \sigma) p(\phi) p(\sigma)$ with $\phi_i \sim \mathsf{Inv-Gam}(1/2, 1/2)$

General Stable Process: Elliot and Mooers (2014)

General Lévy Process: Landis et al. (2013); Duchen et al. (2017); Landis and Schraiber (2017)

 \rightarrow large latent space, numerical integration

New approach: Direct numerical likelihood maximization.

Velocity Statistic Integrated Brownian Motion Belief Propagation

Greater Antilles Anolis Lizards

(Mahler et al., 2013)

Anolis equestris

Anolis porcatus

Anolis sagrei

Paul Bastide

Velocity Statistic Integrated Brownian Motion Belief Propagation

Lizard Dataset

library(cauphy)

```
fitContinuous(phy, svl, model = "BM")$opt$lnL
```

[1] -4.700404

fitContinuous(phy, svl, model = "lambda")\$opt\$lnL

[1] -4.700404

fitCauchy(phy, svl, model = "cauchy", method = "fixed.root")\$logLik
[1] 4.441921

fitCauchy(phy, svl, model = "lambda", method = "fixed.root")\$logLik
[1] 4.926054

Lizard Dataset

West Nile Virus

WNV using Evolaps

(Pybus et al., 2012; Chevenet et al., 2024)

CP:

Cauchy RRW:

WNV using Evolaps

(Pybus et al., 2012; Chevenet et al., 2024)

CP:

Cauchy RRW:

Velocity Statistic Integrated Brownian Motion Belief Propagation

Simulation Study - Model Selection

Simulations:

Design similar to Landis and Schraiber (2017). Model selection with AIC criteria.

Velocity Statistic Integrated Brownian Motion Belief Propagation

Simulation Study - Dispersion Estimation

REML: Re-root at a tip.

+

Velocity Statistic Integrated Brownian Motion Belief Propagation

Measurement Error

- Heredity: $X_8|X_7 \sim \mathcal{N}(X_7, \sigma^2 t_8)$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Measurement Error

time (Mya)

- Heredity: $X_8|X_7 \sim \mathcal{N}(X_7, \sigma^2 t_8)$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Measurement Error

- Observation: $Y_1|Z_1 \sim \mathcal{N}(Z_1, s^2)$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij} + \sigma_e^2 \delta_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V} + s^2 \mathbf{I}_n)$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Pagel's Lambda

(Pagel, 1999)

Relax the BM variance structure:

 $\begin{aligned} \mathbf{V}(\lambda)_{ii} &= \mathbf{V}_{ii} \\ \mathbf{V}(\lambda)_{ij} &= \lambda \mathbf{V}_{ij} \end{aligned}$

Pagel's Lambda

Velocity Statistic Integrated Brownian Motion Belief Propagation

(Pagel, 1999)

Relax the BM variance structure:

$$\begin{aligned} \mathbf{V}(\lambda)_{ii} &= \mathbf{V}_{ii} \\ \mathbf{V}(\lambda)_{ij} &= \lambda \mathbf{V}_{ij} \end{aligned}$$

Equivalent to running a BM on a modified tree with:

$$t(\lambda)_i = \begin{cases} \lambda t_i & \text{if } i \text{ internal node} \\ \lambda t_i + (1 - \lambda)T_i & \text{if } i \text{ leaf} \end{cases}$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Measurement Error and Pagel's λ

(Leventhal and Bonhoeffer, 2016)

Pagel's Lambda: (ultrametric tree with height T)

 $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma_\lambda^2 \mathbf{V}(\lambda))$ $\mathbf{V}(\lambda) = \lambda \mathbf{V} + (1 - \lambda) T \mathbf{I}$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Measurement Error and Pagel's λ

(Leventhal and Bonhoeffer, 2016)

Pagel's Lambda: (ultrametric tree with height T)

$$\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma_\lambda^2 \mathbf{V}(\lambda)) \qquad \mathbf{V}(\lambda) = \lambda \mathbf{V} + (1 - \lambda) T \mathbf{I}$$

BM with measurement error:

$$\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V} + s^2 \mathbf{I})$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Measurement Error and Pagel's λ

(Leventhal and Bonhoeffer, 2016)

Pagel's Lambda: (ultrametric tree with height T)

$$\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma_\lambda^2 \mathbf{V}(\lambda)) \qquad \mathbf{V}(\lambda) = \lambda \mathbf{V} + (1 - \lambda) T \mathbf{I}$$

BM with measurement error:

$$\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V} + s^2 \mathbf{I})$$

Equivalent if:

$$\lambda = \frac{\sigma^2 T}{\sigma^2 T + s^2} \qquad \sigma_{\lambda}^2 = \sigma^2 + s^2 / T$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Measurement Error and Pagel's λ

(Leventhal and Bonhoeffer, 2016)

Pagel's Lambda: (ultrametric tree with height T)

$$\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma_\lambda^2 \mathbf{V}(\lambda)) \qquad \mathbf{V}(\lambda) = \lambda \mathbf{V} + (1 - \lambda) T \mathbf{I}$$

BM with measurement error:

$$\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V} + s^2 \mathbf{I})$$

Equivalent if:

$$\lambda = \frac{\sigma^2 T}{\sigma^2 T + s^2} \qquad \sigma_{\lambda}^2 = \sigma^2 + s^2 / T$$

 λ is the phylogenetic heritability

Velocity Statistic Integrated Brownian Motion Belief Propagation

node

Cauchy Pagel's λ

$$t(\lambda)_i = egin{cases} \lambda t_i & ext{if } i ext{ internal} \\ \lambda t_i + (1 - \lambda) T & ext{if } i ext{ leaf} \end{cases}$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Cauchy Pagel's λ

$$t(\lambda)_i = egin{cases} \lambda t_i & ext{if } i ext{ internal node} \ \lambda t_i + (1-\lambda) \mathcal{T} & ext{if } i ext{ leaf} \end{cases}$$

Cauchy on the transformed tree:

$$\log \phi_{\mathbf{Y}|X_{\text{root}}} \left(\mathbf{u}; \sigma, \lambda \right) = i\mu \sum_{k=1}^{n} u_k - \sigma \sum_{j \neq \text{root}} t(\lambda)_j \left| \sum_{k \in \text{desTips}(j)} u_k \right|$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Cauchy Pagel's λ

$$t(\lambda)_i = egin{cases} \lambda t_i & ext{if } i ext{ internal node} \ \lambda t_i + (1-\lambda) \mathcal{T} & ext{if } i ext{ leaf} \end{cases}$$

Cauchy on the transformed tree:

$$\log \phi_{\mathbf{Y}|X_{\text{root}}} \left(\mathbf{u}; \sigma, \lambda \right) = i\mu \sum_{k=1}^{n} u_k - \sigma_\lambda \lambda \sum_{j \neq \text{root}} t_j \left| \sum_{\substack{k \in \text{desTips}(j) \\ -\sigma_\lambda (1-\lambda) T \sum_{i \ tip} |u_i|} \right|$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Cauchy Pagel's λ

$$t(\lambda)_i = egin{cases} \lambda t_i & ext{if } i ext{ internal node} \ \lambda t_i + (1-\lambda) \mathcal{T} & ext{if } i ext{ leaf} \end{cases}$$

Cauchy on the transformed tree:

$$\log \phi_{\mathbf{Y}|X_{\text{root}}} \left(\mathbf{u}; \sigma, \lambda \right) = i\mu \sum_{k=1}^{n} u_k - \sigma_\lambda \lambda \sum_{j \neq \text{root}} t_j \left| \sum_{\substack{k \in \text{desTips}(j) \\ -\sigma_\lambda (1-\lambda) T \sum_{i \ tip} |u_i|} \right|$$

Cauchy Errors:

$$\sigma_{\lambda}\lambda = \sigma \qquad \sigma_{\lambda}(1-\lambda)T = s$$
Velocity Statistic Integrated Brownian Motion Belief Propagation

Cauchy Pagel's λ

$$t(\lambda)_i = egin{cases} \lambda t_i & ext{if } i ext{ internal node} \ \lambda t_i + (1-\lambda) \mathcal{T} & ext{if } i ext{ leaf} \end{cases}$$

Cauchy on the transformed tree:

$$\log \phi_{\mathbf{Y}|X_{\text{root}}} \left(\mathbf{u}; \sigma, \lambda \right) = i\mu \sum_{k=1}^{n} u_k - \sigma_\lambda \lambda \sum_{j \neq \text{root}} t_j \left| \sum_{\substack{k \in \text{desTips}(j) \\ -\sigma_\lambda (1-\lambda) T \sum_{i \ tip} |u_i|} \right|$$

Cauchy Errors:

$$\lambda = \frac{\sigma T}{\sigma T + s} \qquad \sigma_{\lambda} = \sigma + s/T$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Cauchy Errors

- Heredity: $X_8|X_7 \sim \mathcal{C}(X_7, \sigma t_8)$
- Observation: $Y_1|Z_1 \sim \mathcal{C}(Z_1,s)$
- Marginal: $Y_i \sim C(\mu, \sigma T + s)$

Equivalent to Pagel's λ .

Velocity Statistic Integrated Brownian Motion Belief Propagation

Pagel's λ tree transform

Easy to implement: Transform tree for each λ .

Phylogenetic Heritability:

- $\lambda = 0$: no heritability.
- $\lambda = 1$: no individual variation.

Individual variation:

Measurement error, intra-specific variation, multiple measurements, ...

Valid for any α -stable process.

Velocity Statistic Integrated Brownian Motion Belief Propagation

Multivariate α Stable Distribution

Definition:

$$\mathbf{X} \sim \mathcal{MC}_{p} \iff \mathbf{a}^{\mathsf{T}} \mathbf{X} \sim \mathcal{C} \quad , \ \forall \mathbf{a} \in \mathbb{R}^{p}.$$

Characterization:

$$\mathbf{X} \sim \mathcal{MC}_{p} \iff \phi_{\mathbf{X}}(\mathbf{u}) = \mathbb{E}\left[e^{\mathbf{u}^{T}\mathbf{X}}\right] = e^{i\mathbf{u}^{T}\mu - \gamma(\mathbf{u})}$$

with:

$$\gamma(\mathbf{u}) = \int_{\mathcal{S}_p} \left| \mathbf{u}^{\mathsf{T}} \mathbf{s} \right| \, \mathsf{d} \, \sigma(\mathbf{s})$$

and $\sigma(\mathbf{s})$ is a *spectral measure* on the sphere \mathcal{S}_p .

(Nolan, 2005)

Velocity Statistic Integrated Brownian Motion Belief Propagation

Special Case: Linear Combinations

(Kidmose, 2001)

Assumption:

X = AV with $A : p \times q$ and V vector of q iid Cauchy

Velocity Statistic Integrated Brownian Motion Belief Propagation

Special Case: Linear Combinations

(Kidmose, 2001)

Assumption:

X = AV with $A : p \times q$ and V vector of q iid Cauchy

Notes:

- If p = q, then getting the density is easy.
- q > p is allowed.
- Cauchy on a tree : special case with p = n and q = 2n 2.

Velocity Statistic Integrated Brownian Motion Belief Propagation

Special Case: Linear Combinations

(Kidmose, 2001)

Assumption:

X = AV with $A : p \times q$ and V vector of q iid Cauchy

Notes:

(

- If p = q, then getting the density is easy.
- q > p is allowed.

• Cauchy on a tree : special case with p = n and q = 2n - 2. Characteristic Function: Assuming $V_i \sim C(\mu_i, \sigma_i)$

$$\phi_{\mathbf{X}}(\mathbf{u}) = e^{i\mathbf{u}^{T}\boldsymbol{\mu} - \gamma(\mathbf{u})}$$
 with $\gamma(\mathbf{u}) = \int_{\mathcal{S}_{p}} \left| \mathbf{u}^{T} \mathbf{s} \right| d\sigma(\mathbf{s})$ and

$$\sigma(\mathbf{s}) = \sum_{i=1}^{q} \frac{1}{2} \sigma_i \sqrt{\mathbf{A}_i^T \mathbf{A}_i} (\delta(\mathbf{s} - \mathbf{s}_i) + \delta(\mathbf{s} + \mathbf{s}_i)).$$

Velocity Statistic Integrated Brownian Motion Belief Propagation

Case p = q = 2

Velocity Statistic Integrated Brownian Motion Belief Propagation

Special Case: Linear Combinations

(Kidmose, 2001)

Assumption:

X = AV with $A : p \times q$ and V vector of q iid Cauchy

Notes:

- If p = q, then getting the density is easy.
- q > p is allowed.

• Cauchy on a tree : special case with p = n and q = 2n - 2. Perspectives:

- For p = 2, and any q: we can get the density.
- It looks like a mixture of Cauchy-Like distributions.
- Can we do any p?