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A toy model with global warming

Genealogies and ancestral paths
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Model

⋆ Continuous time birth-death processes, stochastic evolution based on
individual dynamics with spatial position (x ∈ R), competition and
environmental dependence.

⋆ Large population: the initial population size is proportional to K , with
K → +∞,

⋆ Asexual reproduction: birth rate of 1. The individual at position x ∈ R
gives birth to a new offspring at the same location.

⋆ Motion/mutations: during its life, the individual moves according to a
Brownian motion with diffusion coefficient σ > 0 or according to a pure jump
process with jump measure γm(x , y)dy (nonlocal mutation operator).

⋆ Natural death: an individual at position x at time t dies with the natural
death rate

1

2

(
x − σct

)2
.

The optimal location is σct, which moves linearly with time.

⋆ Competition: each individual dies with the extra competition rate Nt/K .
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Stochastic differential equation with jumps

⋆ The population is represented by:

ZK
t (dx) =

1

K

NK
t∑

i=1

δxi (t) ∈ MF (R)

Notation: ⟨ZK
t , f ⟩ =

∫
R f (x)Z

K
t (dx) = 1

K

∑NK
t

i=1 f
(
xi (t)

)
.

⋆ If supK E(⟨ZK
0 , 1⟩2) < +∞, the evolution of (ZK

t , t ≥ 0) can be described by
a SDE and for all f ∈ C2

b(R,R):

⟨ZK
t , f ⟩ = ⟨ZK

0 , f ⟩

+

∫ t

0

∫
R

[(
1− 1

2
(x − σcs)2 − ⟨ZK

s , 1⟩
)
f (x) +

σ2

2
f ′′(x)

]
ZK
s (dx) ds +MK ,f

t

where MK
t is a square integrable martingale with:

⟨MK ,f ⟩t =
1

K

∫ t

0

∫
R

[(
1+

1

2
(x−σcs)2+⟨ZK

s , 1⟩
)
f 2(x)+σ2(f ′(x))2

]
ZK
s (dx) ds.
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Simulation (1)
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Large population limit
⋆ Prop: If supK E(⟨ZK

0 , 1⟩2+ε) < +∞ and limK→+∞ ZK
0 (dx) = u0(x)dx , then

when K → +∞, (ZK
t , t ≥ 0) converges in D(R+,MF (R)) to

(ξt , t ≥ 0) = (u(t, x)dx , t ≥ 0) where:

∂tu(t, x) =
(
1 +

1

2
(x − σct)2 +

∫
R
u(t, x ′)dx ′)u(t, x) + σ2

2
∂2
xxu(t, x).

There exists a unique non negative solution for this PDE.

⋆ Change of variable: f (t, y) = u(t, y + σct). Then:

∂t f (t, y) =
(
1 +

1

2
y 2 +

∫
R
f (t, y)dy

)
f (t, y) + σc∂y f (t, y) +

σ2

2
∂2
yy f (t, y).

⋆ For the nonlocal mutation operator:

∂t f (t, y) =
(
1 +

1

2
y 2 +

∫
R
f (t, y)dy

)
f (t, y) + σc∂y f (t, y)

+ γ

∫
R

(
ft(y)− ft(x)

)
m(y , x)dy .

1. Fournier Méléard, Annals of Applied Probability, (2004)
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Stationary solution

∂t f (t, y) =
(
1 +

1

2
y 2 +

∫
R
f (t, y)dy

)
f (t, y) + σc∂y f (t, y) +

σ2

2
∂2
yy f (t, y).
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F

⋆ When (c2 + σ)/2 < 1, there exists a unique non trivial stationary solution:

F (y) =
λ√
2πσ

exp
(
− (y + c)2

2σ

)
,

with ∥F∥1 = λ = 1− c2

2
− σ

2
.

⋆ For the non-local mutation operator: existence and uniqueness as well.

1. Cloez and Gabriel, CRAS, (2020)
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A simulation: who are the ancestors?
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Historical process
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A toy model with global warming

Genealogies and ancestral paths
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Historical process (2)

⋆ We consider the ancestral path or lineage:

yt = trait of the ancestor living at time t

y ∈ DR = D(R+,R) embedded with the Skohorod topology.

Notation: yt , y t = y.∧t , (y |s|w)

⋆ Population:

HK
t (dy) =

1

K

NK
t∑

i=1

δy i
.∧t

(dy)

in M(DR) embedded with the weak convergence topology. Thus
HK ∈ D(R+,MF (DR)), embedded with the Skorohod topology.

1. Dawson Perkins, Memoirs of the AMS, (1991)

2. Méléard Tran, EJP, (2012)
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2. Méléard Tran, EJP, (2012)



13

Test functions for historical processes
⋆ Usual class of test functions:

φ(y) =
m∏
j=1

gj(ytj )

for m ∈ N∗, 0 ≤ t1 < · · · < tm and ∀j ∈ [[1,m]] , gj ∈ C2
b(R, (0,+∞)).

However these functions are not continuous for discontinuous y ’s.

⋆ For a real C2
b-function g on R+ × R and a real C2

b-function G on R, we
define the continuous function Gg as

Gg (y) = G
(∫ T

0

g(s, ys)ds
)
.

⋆ Lemma: Let φ be a test function of the form proposed by Dawson. Then,
there exists a sequence of test functions of the second form (φq)q∈N∗ such that
for every y ∈ DR and every t ∈ R+ at which y is continuous,

lim
q→+∞

φq(y) = φ(y).

(choose G(x) = ex and gq(s, ys) =
∑m

j=1 log gj(ys)k
q(tj − s))

1. Dawson Perkins, Memoirs of the AMS, (1991)

2. Méléard Tran, EJP, (2012)
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Evolution equation for HK

⋆ With the same initial conditions as before, we have:

⟨HK
t , φ⟩ =⟨HK

0 , φ⟩+
∫ t

0

∫
C(R+,R)

(σ2

2
∆̃φ(s, y)− σcD̃φ(s, y)

+
(
1− y 2

s

2
− ⟨HK

s , 1⟩
)
φ(y)

)
HK

s (dy) ds +MK ,φ
t ,

where MK ,φ
t is a square integrable martingale with predictable quadratic

variation process:

⟨MK ,φ⟩t =
1

K

∫ t

0

∫
C(R+,R)

((
1 +

y 2
s

2
+ ⟨HK

s , 1⟩
)
φ2(s, y)+σ2(D̃φ(s, y))2

)
HK

s (dy) ds.

⋆ Let UK
T be a uniform random variable on the set of living individuals at time

T . and let

Y K
t = X

UK
T

t , for t ∈ [0,T ].

Then,

Ex

[
Φ
(
Y K

t , t ∈ [0,T ]
)]

= Eδx

[
⟨HK

T ,Φ⟩
⟨HK

T , 1⟩

]
.
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Coupling with a branching process

⋆ We now assume that supK E(⟨ZK
0 , 1⟩3) < +∞ and that limK→+∞ ZK

0 = F .

⋆ Then,
lim

k→+∞
E
(
sup
t≤T

|⟨ZK
t , f ⟩ − ⟨F , f ⟩|

)
= 0.

⋆ Let us freeze the competition term ⟨ZK
t , 1⟩ to ∥F∥1 = λ. We obtain:

⟨Z̃K
t , f ⟩ = ⟨ZK

0 , f ⟩

+

∫ t

0

∫
R
Z̃K
s (dy)

[(
1− 1

2
y 2 − λ

)
f (y)− cσf ′(y) +

σ2

2
f ′′(y)

]
+ M̃K ,f

t ,

where

⟨M̃K ,f ⟩t =
1

K

∫ t

0

∫
R

[(
1 +

y 2

2
+ λ

)
f 2(y) + σ2(f ′)2(y)

]
Z̃K
s (dy)ds.

This process satisfies the branching property (independence between
individuals)!

Similar equation for H̃K .
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Approximation by the branching process

⋆ Prop: If ZK
0

w−−−−→
K→∞

F . Then for any continuous and bounded function φ on

D,
lim

K→+∞
E(sup

t≤T
|⟨HK

t , φ⟩ − ⟨H̃K
t , φ⟩|2) = 0

and lim
k→+∞

E
(
sup
t≤T

|⟨ZK
t , f ⟩ − ⟨Z̃K

t , f ⟩|2
)
= 0.

⋆ We have a toolbox for dealing with branching processes.

(Z̃t , t ≥ 0) is the branching process started with one particle.
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Many-to-one formula
⋆ Based on the branching property, we can replace expectation over the tree
by expectation along 1 branch!

Ex

[
⟨Z̃t , f ⟩

]
= Ex

[
exp

(∫ t

0

(
1− 1

2
Y 2

s − λ

)
ds

)
f (Yt)

]
=: P̂t f (x),

where Y is the drifted motion process, for instance:

dYt = σ(dBt − cdt).

⋆ This can be generalized in:

Ex

[
⟨H̃t ,Φ⟩

]
= Ex

[
exp

(∫ t

0

(
1− 1

2
Y 2

s − λ

)
ds

)
Φ(Ys , s ≤ t)

]
.

⋆ The expected population size mt(x) = Ex(⟨Z̃t , 1⟩) satisfies:

mt(x) = Ex

[
exp

(∫ t

0

(
1− 1

2
Y 2

s − λ

)
ds

)]
from which we deduce that m ∈ C 1,∞

b ([0,T ]× R).
⋆ We can thus define a probability measure on path space by renormalizing
the intensity measure of H̃t by mt(x).
1. Hardy Harris, Séminaires de probabilité, (2009)
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Many-to-one formula (2)
⋆ Th: We have

1

mT (x)
Ex

[
⟨H̃T ,Φ⟩

]
= Ex

[
Φ(Ỹt , t ≤ T )

]
for the inhomogeneous Markov process Ỹt (depending on T ) with infinitesimal
generator

Gt f (x) =
L(mT−t f )(x)− f (x)LmT−t(x)

mT−t(x)
,

L being the generator of Y , for example Lf (x) = σ2

2
f ′′(x)− σcf ′(x) in the

Brownian case.

⋆ Th: Returning to the original process: recall Y K
t = X

UK
T

t .

lim
K→+∞

EF

[
Φ
(
Y K

t , t ∈ [0,T ]
)]

= lim
K→+∞

EZK
0

[
⟨HK

T ,Φ⟩
⟨HK

T , 1⟩

]
= lim

K→+∞
EZK

0

[
⟨H̃K

T ,Φ⟩
⟨H̃K

T , 1⟩

]

=

∫
R
Ex

[
Φ(Ỹs , s ≤ T )

]mT (x)F (dx)

λ

1. Marguet, (2018)
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Spine of the process (Brownian case)

⋆ Using Feynman-Kac’s formula, m is the solution of

∂tm =
σ2

2
∂yym − σc∂ym + (1− y 2

2
− λ)m, m0(y) = 1.

Following Fitzsimmons-Pitman-Yor arguments using Girsanov’s, we obtain that:

mt(y) =
√

1 + tanh(σt) exp

(
−
(
y + e−σtc

)2
2σ

(1 + tanh(σt)) +
(y + c)2

2σ

)
.

⋆ Using the explicit value of mT (x), we obtain that:

Ỹt =
cosh(σ(T − t))

cosh(σT )
Ỹ0 + c cosh(σ(T − t))

(
tanh(σ(T − t))− tanh(σT )

)
+ σ cosh(σ(T − t))

∫ t

0

dBs

cosh(σ(T − s))
.

1. Wenocur, J. Appl. Probab., (1986)

2. Fitzsimmons Pitman Yor, Springer, (1993)



20

Backward spine (Brownian case)

⋆ For any t ≥ 0, Ỹt is a Gaussian r.v.

Computation gives that:

Ỹt ∼ N
(
−ce−σ(T−t),

σ

1 + tanh(σ(T − t))

)
and thus, the density p(t, y) of Ỹt is:

∂y log p(t, y) = −y + ce−σ(T−t)

σ
(1 + tanh(σ(T − t))) .

⋆ Using a formula by Haussmann-Pardoux, the time-reverse diffusion process
of Ỹ is the Ornstein-Uhlenbeck process:

dXt = −σ
(
cXtdt + dBt

)
.

1. Haussmann Pardoux, Annals of Probability, (1986)
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Spine for non-local diffusions (1)

⋆ Recall the generator of Ỹ :

Gt f (y) =
L(mT−t f )(y)− f (y)LmT−t(y)

mT−t(y)
,

⋆ We can compute the semi-group of the inhomogeneous Markov
process Ỹ :

P̃s,t+s f (x) =
P̂t

(
fmT−t−s

)
(x)

mT−s(x)
,

where for Y of generator Lf (x) = γ
∫
R(f (y)− f (x))m(x , y)dy − σcf ′(x),

P̂t f (x) = Ex

[
exp

(∫ t

0

(
1− 1

2
Y 2
s − λ

)
ds

)
f (Yt)

]
.

⋆ Define for L∗f (x)= γ
∫
R(f (y)− f (x))m(y , x)dy − σcf ′(x),

P̂∗
t f (x) = Ex

[
exp

(∫ t

0

(
1− 1

2
(Y ∗

s )
2 − λ

)
ds

)
f (Y ∗

t )

]
.
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Spine for non-local diffusions (2)

⋆ For f , g measurable and bounded, ⟨g , P̂t f ⟩ = ⟨P̂∗
t g , f ⟩.

⋆
∫
R mt(x)F (x)dx = ⟨P̂t1,F ⟩ = ⟨1, P̂∗

t F ⟩ = ⟨1,F ⟩ = λ.

⋆ As a consequence, if we start from mTF ,

EmTF

[
f (Ỹt)

]
=

∫
R
f (x)mT−t(x)F (x)dx

and Ỹt ; mT−t(x)F (x)dx .

Proof:

EmT F

[
f (Ỹt)

]
=
〈
mTF ,

P̂t(fmT−t)

mT

〉
= ⟨F , P̂t(fmT−t)⟩

=⟨P̂∗
t F , fmT−t⟩ = ⟨F , fmT−t⟩.
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Backward spine

P̃s,t+s f (x) =
P̂t

(
fmT−t−s

)
(x)

mT−s(x)
.

⋆ Returning the time for Ỹ can be done without computing explicitly
mt(x). The backward spin is a homogeneous Markov process with
semigroup:

PR
t f (x) =

P̂∗
t (fF )

F
,

where P̂∗ is the dual of P̂. For the nonlocal mutations, this yields the
generator:

LR f (x) =
L∗(fF )(x)

F (x)
+
(
1− x2

2
− λ

)
f (x)

=− σcf ′(x) + γ

∫
R

(
f (y)− f (x)

)F (y)
F (x)

m(y , x)dy .

1. Nagasawa, Nagoya Math. J., (1964)
2. Reinhard Roynette, AIHP, (1970)

3. Dellacherie Meyer, Hermann, (1987)
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Thank You
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