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Motivation

The motivation of the work is modeling an epidemic in a population, which
is structured as a network.

There are populations where the membership involves stigmatized or illegal
behaviors, such as a group of drug users, MSM,...

−→ It is difficult to access this kind of ”hidden population”.

In a research program of AIDS prevention intervention in 1997, Heckathorn
[4] introduced the Respondent-Driven Sampling (RDS) method, an efficient
way to study hidden population.

RDS is a peer-to-peer chain, each respondent is asked to name their social
contacts and researchers keep track on who refers whom as in network-based
samples.
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Respondent-Driven Sampling (RDS) method

who has coupon but has not been interviewed

who has been interviewed

who has been named but did not receive coupons
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The Respondent-Driven Sampling (RDS) method

RDS with number of maximum coupons to be delivered is c = 2

Step 0 Step 1 Step 2 Step 3

who has been interviewed

who has coupon but has not been interviewed

who has been named but did not receive coupons

The network is progressively discovered when the RDS explores it.

Question: The number of individuals explored by the RDS?
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Random networks

A random graph is a graph in which properties such as the number of graph
vertices, graph edges, and connections between them are determined in some
random way.

Examples:

• Erdös-Rényi graphs G(n, p), 0 < p < 1 [1]: each edge is included in
the graph with probability p independently from every other edge.

• Stochastic block model (SBM) [5]: the set of n vertices is partitioned
intom blocks {B1, ..., Bm}; for every couple of vertices u ∈ Bl and
v ∈ Bk, the probability of connecting these two points is plk
(0 < plk < 1).
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The RDS method on random graph

Suppose that the population is of sizeN and is structured by a random graph.

We can associate to the RDS a stochastic process in discrete time.

At the step n:

• An = # individuals who have received the coupons but have not been
interviewed yet;

• Bn = # individuals who are already explored but have not received any
coupon;

• Un = # individuals who are interviewed up to step n;

Let us consider the process Xn := (An, Bn, Un) in discrete time n. Then
how process Xn evolves in time when we let N tends to infinity? The
normalized process

XN
t :=

X⌊Nt⌋

N
, t ∈ [0, 1] (1)
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The RDS on sparse Erdös-Rényi graph

Assume that the random network we consider is an Erdös-Rényi graph
G(N,λ/N).

A famous result (in [1]) of Erdös-Rényi graph says that: The Erdös-Rényi
graph G(N, pN ) is asymptotically almost surely connected if
p ≥ (logN + λ)/N . Then it is significant to consider pN = λ/N with
λ > 1.

Theorem 1
When N tends to infinity, the process (XN )N = (AN , BN )N converges in
distribution to a deterministic function in C([0, 1],R2

+), which is the unique
solution of the differential equations

dat =

{
c−

c−1∑
k=0

(c− k)
[λ(1− t− at)]

k

k!
e−λ(1−t−at) − 1at>0

}
dt (2)

dbt =

{
(1− t− at − bt) +

c−1∑
k=0

(c− k)
[λ(1− t− bt)]

k

k!
e−λ(1−t−at)

}
dt

(3) 6



Respondent-Driven Sampling on the Stochastic block model (SBM)

Stochastic block model (SBM) is a more realistic model. It has many
applications in community detection in Statistic, network sciences (e.g. [3],
[2], [6],...).

Suppose that the network is structured as an SBM with the size is N , the
partition of vertices intom blocks is with proportions π = (π1, ..., πm) and
the probability of connecting vertices between pairs of blocks is defined by
the block-matrix P = (λlk/N)l,k∈1,...,m, (λlk > 0).

Process (XN )N is written in a 3×m-dimensional form as

XN
t =

AN
t

BN
t

UN
t

 =

(AN,1
t , ..., AN,m

t )

(BN,1
t , ..., BN,m

t )

(UN,1
t , ..., UN,m

t )

 , t ∈ [0, 1]. (4)
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Respondent-Driven Sampling on the Stochastic block model (SBM)

Theorem 3
When N tends to infinity, the process (XN

· )N converges in distribution to a
deterministic vectorial function x = (x

(l)
· )1≤l≤m = (a

(l)
· , b

(l)
· , u

(l)
· )1≤l≤m in

C([0, 1], [0, 1]3×m), which is the unique solution of the differential equations

xt =

∫ t

0

f(s, xs)ds (5)

where f(s, xs) := (fil(s, xs)) 1≤i≤3
1≤l≤m

has the explicit formula
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f1l(s, xs) =

m∑
k=1

a
(k)
s

|as|
λk,l
s

Λk
s

(
c−

c∑
h=0

(c− h)
(Λk

s)
h

h!
e−Λk

s

)
− a

(l)
s

|as|
(6)

f2l(s, xs) =

m∑
k=1

a
(k)
s

|as|
µk,l
s −

m∑
k=1

a
(k)
s

|as|
λk,l
s

Λk
s

(
c−

c∑
h=0

(c− h)
(Λk

s)
h

h!
e−Λk

s

)
(7)

f3l(s, xs) =
a
(l)
s

|as|
(8)

with

λk,l
s := λkl

(
πl − a(l)s − u(l)

s

)
; Λk

s :=

m∑
l=1

λk,l
s (9)

and µk,l
s := λkl(πl − a(l)s − b(l)s − u(l)

s ) (10)

Remark: Whenm = 1, this result coincides with the Erdös-Rényi case.

9



Ideas of the proof

• Write the Doob’s decomposition of XN
t ;

• Check the tightness of sequence (XN )N ;

• Determine the limiting values of (XN )N ;

• Prove that the ODEs has unique solution.
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Sketch of the proof

Define the canonical filtration associated to (XN )N
(FN

t )t∈[0,1] := (F⌊Nt⌋)t∈[0,1], where Fn := σ({Xi, i ≤ n}).

XN
t = XN

0 +∆N
t +MN

t ,

where

∆N
t =

∆N,1
t

∆N,2
t

∆N,3
t

 =
1

N

⌊Nt⌋∑
n=1

E[An −An−1|Fn−1]

E[Bn −Bn−1|Fn−1]

E[Un − Un−1|Fn−1]

 ; (11)

the square integrable centered martingale (MN
t )t has the quadratic variation

process ⟨MN ⟩t given as follow: for every (l, k) ∈ {1, ...,m}2,

⟨M (l),N ,M (k),N ⟩t =
1

N2

⌊Nt⌋∑
n=1

E[
(
X(l)

n − E[X(l)
n |Fn−1]

)
×
(
X(k)

n − E[X(k)
n |Fn−1]

)T
|Fn−1]

is a 3× 3-matrix, where X is a column vector and XT is its transpose. 11



Sketch of the proof

An = An−1 − In + Cn, (12)

where

In = (I(1)n , ..., I(m)
n )

(d)
= M

(
1;

A
(1)
n−1

|An−1|
, ...,

A
(m)
n−1

|An−1|

)
;

C(l)
n :=

{
Z

(l)
n if

∑m
l=1 Z

(l)
n ≤ c

C
′(l)
n otherwise

;

Zn is the number of candidates, who are able to be given coupons at step n;
C ′

n = (C
′(1)
n , ..., C

′(m)
n ) having the multivariate hypergeometric distribution

with parameters (m; c, (Z
(1)
n , ..., Z

(m)
n )).
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Let (XN )N = (AN , BN , UN )N converge to a limiting value x = (a, b, c),
we get

1

N

⌊Nt⌋∑
n=1

E[C(l)
n |Fn−1]

(d)→
∫ t

0

{
m∑

k=1

a
(k)
s

|as|
λk,l
s

Λk
s

(
c−

c∑
h=0

(c− h)
(Λk

s)
h

h!
e−Λk

s

)}
ds

and

1

N

⌊Nt⌋∑
n=1

E[I(l)n |Fn−1] =
1

N

⌊Nt⌋∑
n=1

(
A

(l)
n

N

)/(
|An|
N

)
(d)−→

t∫
0

a
(l)
s

|as|
ds.
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Simulation results

Simulation comparing process (XN )N = (AN , BN )N with the solution of
ODEs in the case N = 1000,m = 1, λ = 2, c = 3
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Simulation results

Simulation comparing process (XN )N = (AN , BN )N with the solution of
ODEs in the case N = 1000,m = 2, λ = (2, 3), π = (1/3, 2/3), c = 1
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Simulation results

Simulation comparing process (AN , BN )N with the solution of ODEs in the
case N = 1000,m = 2, c = 3, λ11 = 2, λ12 = 3, π = (1/3, 2/3).
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Simulation results

Simulation comparing process (AN , BN )N with the solution of ODEs in the
case N = 1000,m = 2, c = 4, λ11 = 0, λ12 = 3, π = (1/3, 2/3).
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