Ageing: what the Smurf?

INSERM – Université de Paris

© Aurore Colibert

ATIP/Avenir group leader – CRI Core Fellow

Ecole de Printemps Chaire MMB - 2022

A general presentation of ageing

Intuitive definition of ageing

Intuitive definition of ageing

"..the time-dependent functional decline that affects most living organisms [..], leading to impaired function and increased vulnerability to death."

López-Otín et al, 2013

" ..the time-dependent functional decline that affects most living organisms [..], leading to impaired function and increased vulnerability to death."

López-Otín et al, 2013

figure adapted from Guimarães et al, 2021

" ..the time-dependent functional decline that affects most living organisms [..], leading to impaired function and increased vulnerability to death."

López-Otín et al, 2013

figure adapted from Guimarães et al, 2021

" ..the time-dependent functional decline that affects most living organisms [..], leading to impaired function and increased vulnerability to death."

López-Otín et al, 2013

figure adapted from Guimarães et al, 2021

" ..the time-dependent functional decline that affects most living organisms [..], leading to impaired function and increased vulnerability to death."

López-Otín et al, 2013

figure adapted from Guimarães et al, 2021

Legend		
Mortality	Humans	Trees
E - Alla	Other mammals	Other plants
Fertility	Other vertebrates	Algae
Survivorship	Invertebrates	
	Legend Mortality Fertility Survivorship	Legend Mortality Humans Other mammals Other vertebrates Survivorship Invertebrates

	Legend		
<u>x dN</u> dt	Mortality	Humans	Trees
ut	E- dillo	Other mammals	Other plants
	Fertility	Other vertebrates	Algae
	Survivorship	Invertebrates	

 $\frac{-1 \text{ x}}{N} \frac{dN}{dt}$

Legend

Mortality

Humans

Trees

Legend

Mortality

Humans

Trees

 $\frac{-1 \text{ x} dN}{N dt}$

Ageing: a matter of reliability?

Mathematical modeling of ageing: Gompertz-Makeham

How is ageing affected by environmental conditions?

Lifespan, healthspan and life expectancy

The survival curve for England & Wales – the share of individuals surviving up to a certain age Our World Data from 1851 to 2011

Studying ageing experimentally: a continuous process

Classical approach for studying ageing

Hallmarks of ageing in a continuous ageing process

Continuous changes

Hallmarks of ageing in a continuous ageing process

Hallmarks of ageing in a continuous ageing process

Theories of ageing: why and how

Theories of ageing and its evolution: based on age changes

Structural stabilization and cross-linkage theories

Accumulation of heterogeneous cross-links	Bjorksten (1958, 1974); Sinex (1964)	Age changes at genetic and cellular level	
Accumulation of cross-links in collagen Stabilization and inactivation (insolubilization) of	Verzar (1956, 1957) Nagorny (1940)	Accumulation of somatic mutations and chromosomal aberrations	Szilard (1959); Failla, (1960); Curtis (1966)
intercellular structural proteins Accumulation of -S-S, inter- and intra- molecular bonds	Oeriu (1964)	Selective loss of ribosomal RNA genes Accumulation of transposable elements in somatic cells	Johnson <i>et al.</i> (1972) Murray & Kirkwood (1984)
Accumulation of protein-DNA cross-links and	Nikitin (1954); von Hahn (1966, 1970)	Loss of adaptive cellular mechanisms Accumulation of viral genomes	Adelman (1975) Gaidusek (1972)
progressive stabilization of chromatin complexes Cross-links between DNA molecules	Cutler (1976)	Accumulation of insoluble waste products (lipofuscin and others) in differentiated cells The mitochondrial theory	Sheldrake (1974); Sohal (1981); Yiengst <i>et al.</i> (1959); Strehler (1964) Miguel <i>et al.</i> (1980); Harman (1983); Rochter
Structural post-translational changes	and modifications in proteins		(1988)
Progressive demethylation of proteins Progressive deamination of glutaminyl and asparaginyl	Parhon & Oeriu (1962) Robinson (1974); McKerrow, (1979)	The cell membrane theory	Carpenter & Loynd (1968); ZsNagy (1978, 1987)
residues in proteins		Loss and irreplaceable cells and stem cells	Kohn (1965); Hayflick (1975); Rohme (1981)
The age-altered enzymes theory (age-related accumulation of conformational changes in protein leading to the inactivation of enzymes)	Gershon (1979); Rothstein (1979, 1984)		
Decrease of phosphorylation and acetylation of chromatin proteins as the cause of defects and decline	Kanungo (1980)		
in transcription			
Theories based on quantitativ	ve changes of proteins		
Loss of irreplaceable molecules or enzymes	Butschli (1882): Sinex (1957)	Age changes at orga	n and functional levels
Relative increase of inactivated non-renewable	Nagorny (1940)	Immunobiological theories	Walford (1969); Burnet (1970)

Changes in protein biosynthesis (translation)

Accumulation (gradual) of random errors of protein syn-	Medvedev (1961, 1962)
thesis	
The error catastrophe theory	Orgel (1963)

metaplasmic proteins

Age changes of RNA and DNA

Vilenchik (1970), Price & Makinodan (1973), Accumulation of single and double breaks and other changes of DNA Chetsanga et al. (1975) Decrease of DNA methylation Holliday (1985) Accumulation of metal ions and adducts in DNA Goldstein et al. (1968); Cutler (1976) Age changes of RNA processing Medvedev (1986)

Endocrine theories Hormone/neurotransmitter, receptor changes theories The connective tissue changes theory Impairment in physiological control mechanisms Failure of the adaptive physiological mechanisms

Korencheysky (1961) Finch (1976); Roth (1979); Frolkis (1982) Bogomolets (1947) Shock (1974, 1977) Frolkis (1968)

Theories of ageing and its evolution: primary damages

Wear-and-tear theories Damage factors of metabolic origin and toxic theories Ageing is a result of autointoxication General toxic theory of ageing

Waste products theory of ageing Calciphylaxis (calcium petrification) Absence of perfect coordination between different metabolic pathways Errors of protein synthesis Side-reactions of intermediate metabolites Side reactions and leaks of lysosomal proteases and DNAases Sacher (1966)

Metchnikoff (1904, 1907) Muhlmann (1924); Metalnikov (1937); Korenchevsky (1956) Sheldrake (1974) Selye (1962) Komarov (1966)

Medvedev (1962); Orgel (1963) Milch (1963) Allison & Paton (1965); Hansford (1983)

Damage factors intrinsic for chemical and biological reactions in general

The general free radical theory of ageing	Harman (1956, 1981)
Oxygen radical-mitochondrial injury and other variants of the free-radical theory	Miguel-Fleming (1986)
Micro-thermal releases during chemical reactions as age-damage factor	Strehler (1959)
Ageing as entropy	Sacher (1967); Bortz II (1986)
The 'hit' theory and somatic mutation theories	Szilard (1959); Curtis (1966)
External and environmental damage factors	
Damaging effects of heavy water (D_2O) on metabolic	Hakh & Westling (1934); Griffith (1973)

reactions	International Control Control of Sector Control Contro
Damaging effects of D-isomers of normal metabolites	Alpatov (1948); Kuhn (1955); McKerrow (1979)
Cosmic and environmental radiation	Alexander (1957)
Damages from ions of heavy metals	Eichorn (1979)
The stress damage theory	Selve (1970)

Theories of ageing and its evolution: genetic programs

Active morphogenetic programme switched on by reproduction processes

Suggested for monocarpic plants, some invertebrates (octopus), some fish species (Pacific salmon, freshwater eels, etc.), Australian marsupial mouse

Orton (1929); Woolhouse (1967); Berdyshev & Protsenko (1972); Kirkwood & Cremer (1982); Diamond (1982)

Active morphogenetic programme of ageing linked to changes of environment

Seasonal factors (shorter days, dry season, temperature) switch on ageing of tree leaves, many insects and other invertebrates)

Krenke (1940); Leopold (1961); Woolhouse (1967); Rockstein et al. (1977)

Evans & Womersley (1980);

Hedgecock et al. (1983)

The programmed suicide

Suggested as an explanation of nematode death by cell suicide, or formation of adult forms (from larva) with some functions (eating) missing

Passive, slow morphogenetic ageing

Theories of ageing as a continuation of differentiation, deterministic mechanism of ageing, ageing as over- differentiation, ageing as an increase of gene repres- sion	Minot (1908); Metalnikov (1937); Vilenchik (1971); Krooth (1974)
Theory of random (noisy) residual morphogenesis due to uncomplete repression of developmental	Medvedev (1964, 1966)
programme	
Theory of ageing as dysdifferentiation, or loss of gene repression, 'leaky' genes, dysregulation of sequential transcription, etc.	Kanungo (1980); Smith & Lumpkin (1980); Cutler (1982, 1985); Sarkander (1984)
Codon restriction theory of development and ageing	Strehler et al. (1971)
Theories of existence of specific	and non-specific genes of ageing
Late acting pleiotropic deleterious genes as a cause of ageing	Medawar (1957); Williams (1957)
Ageing rate as a balance between action of mutator and anti-mutator genes	Presber et al. (1976); Lints (1978); Deerberg et al. (1980).
Programmed synthesis of mitotic inhibitor and transcription and translation inhibitors which switch on function deterioration	Strehler (1980)
Identification of ageing accelerating mutations	Brown (1979)

Theories of genetic syndromes of premature ageing (Progeria, Down, Werner, and other syndromes)

Brown (1979) Martin (1978); Umansky (1982) Theories of the existence of specific genes of longevity (longevity determinant genes, anti-ageing genes)

Identification of genes prolonging life in low eukaryotes	Lints (1978); Munkres et al. (1984)
Theories which show that the substantial increase of human longevity in evolution of primates was linked with only a few new genes	Sacher (1975); Cutler (1975); Strehler (1979)
Theories which try to identify genes of longevity in mammals by hybridization selection and other methods	Clarke & Maynard Smith, (1955); Russell (1978); Cutler (1982)
Existence of genetic programme for extra-correction which is switched on in germ cells and in immortal cell lines	Orgel (1973); Kirkwood (1977)
Theories of existence of biological	clock (pace-maker) for ageing
Temporal genes theory. Ageing as the loss of temporal organization. Relations between biological rhythms and ageing	Samis (1968); Samis & Capobianco (19 Flodin (1984); Brock (1985)
The endotomy theory. Shortening of DNA during replication or marginotomy in post-mitotic cells as a	Olovnikov (1971, 1973); Smookler, Reis & Goldstein (1980)

hepothalamic timer of ageing

ace-maker) for ageing

Temporal genes theory. Ageing as the loss of temporal organization. Relations between biological rhythms and ageing	Samis (1968); Samis & Capobianco (1977); Flodin (1984); Brock (1985)
The endotomy theory. Shortening of DNA during replication or marginotomy in post-mitotic cells as a timer	Olovnikov (1971, 1973); Smookler, Reis & Goldstein (1980)
Sequential methylation of repeated DNA sequences as a molecular timer	Holliday & Pugh (1975)
Finite replication capacity of Protozoa. Limited potential of cell division <i>in vitro</i> and <i>in vivo</i> as a cell clock	Maupas (1888); Hayflick (1965, 1977, 1980)
The commitment theory of cellular ageing	Holliday et al. (1977)
Theories of neuroendocrine master clock or	Frolkis (1982); Everitt (1980)

Theories of ageing and its evolution: species-specific difference

		The hypothesis which suggests hi syntheses of macromolecules in i	igher fidelity of longer-lived species	Kirkwood & Holliday (1979)	
		Immortal germ cells may have more repairs and may have higher acc	ore comprehensive uracy of synthesis	Kirkwood (1977, 1981); Medvedev (1981)	
The rate of living th	eories of longevity	than somatic cells The officiency of the DNA remain	annalatan manitizala	Hart & Satlow (1074); Hart at al (1070 a b)	
Theories of inverse correlation between lifespan and metabolic rate per unit of growth rate	Rubner (1908); Pearl (1928); Sacher (1959); Sahal (1976)	with species-specific longevity Correlations between ageing rate a		Hart & Sellow, (1974), Hart et al. (1979a,0)	
Inverse correlation between environmental	Strehler (1959, 1961);			and changes at the genetic level	
temperature and lifespan in poikilothermous animals. Life-extension effects of stupor and hibernation	perature and lifespan in poikilothermous animals. Maynard Smith (1962); -extension effects of stupor and hibernation Shaw & Bercaw (1962); Sucher (1967) Higher rate of ageing		correlates with	Curtis (1966)	
Theories originated from the increase of maximal lifespan in rodents by calorie restricted diets	McCay (1934, 1939)	 39) Longer-lived species may have higher levels of redundancy of vital genes. Correlation betwo genome size and longevity. 		Medvedev (1972, 1983); Cutler (1974)	
Theories which suggest correlation b	etween growth rate and ageing rate	Theory of the life assurance gene	s	Sacher (1968); Hart & Turturro (1981)	
Ageing of mammalians is more rapid after the growth cessation: longer growth period or growth delaying diet increases lifesnan	McCay <i>et al.</i> (1935); Sacher (1965, 1975); Comfort (1979)	The longer-lived species have a higher number of beneficial genes (the genetic instability theory)		Strehler (1986)	
diet increases mespan		Lifespan correlations at the cellular level			
Positive correlation between the dur	ration of development and lifespan	Polyploidization (hepatocytes and other cell types) increases the lifespan of differentiated cells	Gahan (1977); Uryvaeva ((1981)	
Longer-lived species develop at slower rates. (Species with a longer period of development and maturation need longer lives to provide parental care and protection.)	Sacher (1975); Cutler (1976); Economes (1982 <i>ab</i>); Dilman (1986)	Correlation between maximal longevity potential and the activity of anti-oxidant enzymes (superoxide dismutase, etc.) Correlation between the intracellular and extracellular concentration of natural antioxidants (urate, ascorbate, carotene, vitamin E, etc.) and longevity	Tolmasoff <i>et al.</i> (1980); Cutler (1982, 1984) Harman (1981, 1982); Cu	tler (1982, 1984)	
Size-lifespan correlation theories		Correlation between lifespan and species-specific Pashko & Schwartz (198 activity of detoxification enzymes (longer-lived)	
Body weight correlates positively with the longevity in mammals	Sacher (1959)	animals have higher efficiency of detoxification and are more resistant to environmental toxins)			
Brain size-lifespan correlations. Larger brains make	Sacher (1975)	Correlation between the lifespan variations and	d the tissue regeneration, cell	lular proliferation	
Positive correlation between size, height and longevity among tree species. Protective role of large sizes	Todd (1978)	invertebrates) show a complete loss of cell proliferation activity. Longer-lived species have cellular turnover in most of their tissues			
from disease, predators, etc.		Role of informational functional and organ redundancy. The overlap of functions between tissues and more than one organ with similar functions are typical for longer-lived species	Strehler & Freeman, (1980	o); Cutler (1984)	
		The disposable soma theory. Some repair-and-error correction systems are switched off in somatic cells for energy saving reasons	Kirkwood (1977); Kirkwood & Holliday (10	979, 1981)	
		Limited stem cell proliferation, capacity as an evolutionary clock that times senescence. Longer- lived species have higher cell doubling potential	Hayflick (1965, 1977, 1970 Hayflick <i>et al.</i> (1974); Cr Rohme 1981)	2); ristofolo (1972);	

Lifespan correlations with changes at the molecular level

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Allometry and ageing : size matters

Allometry and ageing : energy dissipation

Allometry and ageing : reduced oxidative stress?

Allometry and ageing : reduced mutation rates?

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Cagan et al., 2022

Classical model: ageing is a by-product of evolution

Classical model: ageing is a by-product of evolution

Introduction on ageing: summarizing questions

- are all individuals affected equally?

Introduction on ageing: summarizing questions

100

Percent survival

20

Age (days)
Introduction on ageing: summarizing questions

- is ageing really a by-product of evolution?

- what is hiding behind allometric properties?

Studying ageing as a two-phase, discontinuous process

A Simple Assay To Identify Individuals About To Die Of Natural Causes

- in vivo
- measurement of intestinal permeability
- non-toxic food dye
- non-absorbed food dye
- 'Smurf' phenotype

Smurfness is an age-dependent phenotype

The proportion of Smurfs increases with time...

Smurfness is a « physiological age »-dependent phenotype

... the rate of increase is a function of physiological age

Every individuals turns Smurf prior to death

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Tricoire and Rera, 2015

The 2-Phase Model Of Ageing

Hallmarks of ageing in the 2-Phase Model

Hallmarks of ageing in the 2-Phase Model

Hallmarks of ageing in the 2-Phase Model

An age-related phenotype predicting CONSTANT risk of impending death

An age-related phenotype predicting CONSTANT risk of impending death

Our approach separates chronology and physiology

Our approach separates chronology and physiology

There is a Smurf-specific signature

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Zane et al., in preparation

Aged non-Smurfs are close to Smurf

Smurfness recapitulates transcriptional ageing signature

3108 Differentially Expressed Genes (DEGs) / 15364 identified genes

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Zane et al., in preparation

Smurfness recapitulates transcriptional ageing signature

3108 Differentially Expressed Genes (DEGs) / 15364 identified genes

Ageing non-Smurf transcriptome accumulates expression noise

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Zane et al., in preparation

Ageing non-Smurf transcriptome accumulates expression noise

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Zane et al., in preparation

Changing paradigm

Classic framework

2-phase ageing framework

Changing paradigm

Changing paradigm

Intro Continuous process Theories Conclusions I **2phases process** Evo conserv Conclus

Is the model evolutionarily relevant?

The 2-Phase Model of Ageing is evolutionarily conserved

Drosophila

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

The 2-Phase Model of Ageing is evolutionarily conserved

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

The 2-Phase Model of Ageing is evolutionarily conserved

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Validating the two-phase model in mice

Stable physiological parameters as a function of time

Show a biphasic behaviour as a function of physiological age

The 2-Phase Model of Ageing applies to mice

Lobortion of Smurfs

0

The 2-Phase Model of Ageing applies to mice

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Loportion of Smurfs 0.4

Relevance of the model to the human risk of impending death

Relevance of the model to the human risk of impending death

Relevance of the model to the human risk of impending death

Grip Strength Predicts Cause-Specific Mortality in Middle-Aged and Elderly Persons

Hideo Sasaki, MD, PhD,^{a,b} Fumiyoshi Kasagi, PhD,^c Michiko Yamada, MD, PhD,^a Shoichiro Fujita, PhD^d

Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality: An Observational Study of 17,345 Persons

Krista Fischer 🚳 🖾, Johannes Kettunen 🚳, Peter Würtz 🚳 🖾, Toomas Haller, Aki S. Havulinna, Antti J. Kangas, Pasi Soininen, Tõnu Esko, Mari-Liis Tammesoo, Reedik Mägi, Steven Smit, Aarno Palotie, Samuli Ripatti, [...],

Andres Metspalu *

[view all]

Published: February 25, 2014 • DOI: 10.1371/journal.pmed.1001606

Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states

David Furman^{1,2}, Junlei Chang³, Lydia Lartigue⁴, Christopher R Bolen^{5,11}, François Haddad⁶, Brice Gaudilliere⁵, Edward A Ganio⁵, Gabriela K Fragiadakis⁵, Matthew H Spitzer⁵, Isabelle Douchet⁷, Sophie Daburon⁷, Jean-François Moreau⁷, Garry P Nolan⁵, Patrick Blanco⁷, Julie Déchanet-Merville⁷, Cornelia L Dekker⁸, Vladimir Jojic⁹, Calvin J Kuo³, Mark M Davis^{1,10} & Benjamin Faustin⁷
Relevance of the model to the human risk of impending death

Clément Dubost Réa Bégin

- ICU patients, Smurfness and ICU scores

- Scientific council IHA Bégin
- Research division SSA

- IRB (CPP)

- is ageing really a by-product of evolution?

- what is hiding below allometric properties?

- are all individuals affected equally ?

- is ageing really a by-product of evolution?

- what is hiding below allometric properties?

- is ageing really a by-product of evolution?

- what is hiding below allometric properties?

- can we model survival differently?

A two-phase mathematical model of ageing

Rethinking the mathematical structure of ageing

Rethinking the mathematical structure of ageing

A new powerful mathematical model

daily failure rate

Effects of the parameter <u>A</u> *on*

failure tolerance

Effects of the parameter <u>k</u> *on curves*

H. Tricoire, M. Rera 2015

Improving the model

Improving the model

JM Di Meglio, unpublished

Is a two-phase ageing process selected for by evolution?

Classical model: ageing is a by-product of evolution

Classical model: ageing is a by-product of evolution but...

Classical model: ageing is a by-product of evolution but...

Can a two-phase ageing process appear and be selected for?

Can a two-phase ageing process appear and be selected for?

The Lansing effect

Lansing, 1954

Proposing a simple birth-death model

Reproduction rules

Reproduction rules : implementing the Lansing effect

Evolution of the system

Evolution of the system : with Lansing effect

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Roget et al., 2019; biorxiv Roget et al., 2022

Evolution of the system : without Lansing effect

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Roget et al., 2019; biorxiv Roget et al., 2022

Evolution of the system : implications for living organisms

Evolution of the system : implications for living organisms

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Roget et al., 2019; biorxiv Roget et al., 2022

Evolution of the system : implications for living organisms

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Roget et al., 2019; biorxiv Roget et al., 2022
Evolution of the system : implications for living organisms

Sire families

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

Roget et al., 2019; biorxiv Roget et al., 2022

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

biorxiv Roget et al., 2022

Intro Continuous process Theories Conclusions I 2phases process Evo conserv Conclusions II 2PAC evo2PAC SmurfsInTheWild Conclusion III

biorxiv Roget et al., 2022

	ā. 6		2			Mutation probability				
		0	0.1	0.5	1	0	0.1	0.5	1	
		La	Lansing/non-Lansing collapsed population				Lansing/total population size			
Competition	9.10-5	-	-	-	-	0.57	0.64	0.62	0.59	
	9.10-4	1.02	0.62	0.56	0.66	0.49	0.62	0.60	0.55	
	9.10-3	1.00	1.05	1.13	1.03	-	0.43	0.44	0.49	

Fitness landscape of non-Lansing populations

biorxiv Roget et al., 2022

SmurfsInTheWild Conclusion III

Fitness landscape of Lansing populations

Comparing fitness landscapes

How to explain this relative success? Ageing increases fitness gradient!

SmurfsInTheWild Conclusion III

What's next?

- make evo2PAC, diploid, sexual

- make 2PAC for real populations

- implement population health prediction based on field assessment of Smurf proportion

- what is the impact of ageing on populations dynamics and evolution?

