Bayesian Networks, Mendelian Genetics,

LABORATOIRE DE PROBABILITÉS STATISTIQUE \& MODÉLISATION

G. Nuel

May 5, 2020
Chaire MMB SU, Paris, France

Blood Feud

In "Blood Feud" (S02E22):

- The rich Mr Burns badly needs O- blood for a transfusion
- Desesperate Mr Smithers asks nuclear power plant's employees to give blood for the great man

Homer Simpson sees a golden opportunity:

- Mr Burns being immensely rich, he will probably reward the one who saves him
- Homer asks Marge about his own blood group, but he's A+ (Homer: "D'oh !")

What are the chances to find a 0 blood donor in the Simpson family?

The Blood Group/Rhesus system

Lisa asks Pr Frink about blood group genetics:

- ABO gene with three alleles: two codominant A, B, and one recessive O

$$
\Rightarrow p_{\mathrm{O}}=0.60, p_{\mathrm{A}}=0.30, p_{\mathrm{B}}=0.10
$$

- RHD gene with two alleles: dominant D (positive Rh) and recessive d (negative Rh)

$$
\Rightarrow q_{\mathrm{D}}=0.60, q_{\mathrm{d}}=0.40
$$

- This leads to a total of 8 blood phenotypes:

$$
A+, B+, A B+, O_{+}, A-, B-, A B-, O-
$$

With ABO/RHD independence we get:

	ABO	OO	OA	OB	AA	AB	BB
RHD		0.36	0.36	0.12	0.09	0.06	0.01
DD	0.36	O_{+}	A_{+}	B_{+}	A_{+}	$\mathrm{AB}+$	B_{+}
Dd	0.48	O_{+}	$\mathrm{A}+$	B_{+}	$\mathrm{A}+$	$\mathrm{AB}+$	B_{+}
dd	0.16	O	A-	$\mathrm{B}-$	$\mathrm{A}-$	$\mathrm{AB}-$	$\mathrm{B}-$

The Blood Group/Rhesus system

Lisa asks Pr Frink about blood group genetics:

- ABO gene with three alleles: two codominant A, B, and one recessive O

$$
\Rightarrow p_{\mathrm{O}}=0.60, p_{\mathrm{A}}=0.30, p_{\mathrm{B}}=0.10
$$

- RHD gene with two alleles: dominant D (positive Rh) and recessive d (negative Rh)

$$
\Rightarrow q_{\mathrm{D}}=0.60, q_{\mathrm{d}}=0.40
$$

- This leads to a total of 8 blood phenotypes: $A+, B+, A B+, O_{+}, A-B-, A B-, O^{-}$

With ABO/RHD independence we get:

Rh ${ }^{\text {group }}$		0	A	B	AB
		0.36	0.45	0.13	0.06
+	0.84	0.3024	0.378	0.1092	0.0504
-	0.16	0.0576	0.072	0.0208	0.0096

Nuclear Family

The problem to solve:

- 1: Homer, 2: Marge, 3: Bart, 4: Lisa, 5: Maggie
- X_{i} (resp. Y_{i}) genotype (resp. phenotype) or ind. i
- we need to compute

$$
\pi=\mathbb{P}\left(\exists i, Y_{i}=\mathrm{O}-\mid Y_{1}=\mathrm{A}+\right)
$$

Model 1: independent genotypes:

$$
\mathbb{P}(X, Y)=\prod_{i=1}^{5} \mathbb{P}\left(X_{i}\right) \mathbb{P}\left(Y_{i} \mid X_{i}\right)
$$

- $\mathbb{P}\left(Y_{1}=\mathrm{O}-\mid Y_{1}=\mathrm{A}+\right)=0$, for $i \neq 1, \mathbb{P}\left(Y_{i}=\mathrm{O}\right)=0.0576$
- $\pi=1-(1-0.0576)^{4} \simeq 0.2112$, easy, right !?

Lisa: "But genotypes are not independent !"
Homer: "D'oh!"

Nuclear Family

The problem to solve:

- 1: Homer, 2: Marge, 3: Bart, 4: Lisa, 5: Maggie
- X_{i} (resp. Y_{i}) genotype (resp. phenotype) or ind. i
- we need to compute

$$
\pi=\mathbb{P}\left(\exists i, Y_{i}=\mathrm{O}-\mid Y_{1}=\mathrm{A}+\right)
$$

Model 2: Mendelian transmission of alleles:

$$
\mathbb{P}(X, Y)=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2}\right) \prod_{i=3}^{5} \mathbb{P}\left(X_{i} \mid X_{1}, X_{2}\right) \times \prod_{i=1}^{5} \mathbb{P}\left(Y_{i} \mid X_{i}\right)
$$

- $\mathbb{P}\left(X_{1}=\right.$ OADd $\left.\mid Y_{1}=\mathrm{A}+\right)=\frac{0.36}{0.36+0.09} \times \frac{0.48}{0.36+0.48} \simeq 0.4571$
- $\mathbb{P}\left(X_{2}=O_{B}^{A} D d\right)=0.48 \times 0.48=0.2304$
- $\mathbb{P}\left(X_{2}=O_{B}^{A} d d\right)=0.48 \times 0.16=0.0768$
- $\mathbb{P}\left(X_{2}=O O D d\right)=0.36 \times 0.48=0.1728$
- $\mathbb{P}\left(X_{2}=O O d d\right)=0.36 \times 0.16=0.0576$

Nuclear Family

The problem to solve:

- 1: Homer, 2: Marge, 3: Bart, 4: Lisa, 5: Maggie
- X_{i} (resp. Y_{i}) genotype (resp. phenotype) or ind. i
- we need to compute

$$
\pi=\mathbb{P}\left(\exists i, Y_{i}=\mathrm{O}-\mid Y_{1}=\mathrm{A}+\right)
$$

Model 2: Mendelian transmission of alleles:

$$
\mathbb{P}(X, Y)=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2}\right) \prod_{i=3}^{5} \mathbb{P}\left(X_{i} \mid X_{1}, X_{2}\right) \times \prod_{i=1}^{5} \mathbb{P}\left(Y_{i} \mid X_{i}\right)
$$

ev $=\left\{Y_{1}=\mathrm{A}+\right\}$ and N is the number of O_{-}in the nuclear familly

- $\mathbb{P}\left(X_{1}=\right.$ OADD, AADd, AADD \mid ev $)=0.5429 \Rightarrow N \sim \mathcal{B}(1,0.0567)$
- $\mathbb{P}\left(X_{1}=\right.$ OADd, X_{2} not carrier \mid ev $) \simeq 0.2114 \Rightarrow N=0$
- $\mathbb{P}\left(X_{1}=\mathrm{OADd}, X_{2}=\mathrm{O}_{\mathrm{B}}^{\mathrm{A}} \mathrm{Dd} \mid \mathrm{ev}\right) \simeq 0.1053 \Rightarrow N \sim \mathcal{B}\left(3, \frac{1}{16}\right)$
- $\mathbb{P}\left(X_{1}=\right.$ OADd,$X_{2}=\mathrm{O}_{\mathrm{B}}^{\mathrm{A}} \mathrm{dd}$, OODd $\left.\mid \mathrm{ev}\right) \simeq 0.1141 \Rightarrow N \sim \mathcal{B}\left(3, \frac{1}{8}\right)$
- $\mathbb{P}\left(X_{1}=\right.$ OADd, $X_{2}=$ OOdd \mid ev $) \simeq 0.0263 \Rightarrow N \sim 1+\mathcal{B}\left(3, \frac{1}{4}\right)$

Nuclear Family

The problem to solve:

- 1: Homer, 2: Marge, 3: Bart, 4: Lisa, 5: Maggie
- X_{i} (resp. Y_{i}) genotype (resp. phenotype) or ind. i
- we need to compute

$$
\pi=\mathbb{P}\left(\exists i, Y_{i}=\mathrm{O}-\mid Y_{1}=\mathrm{A}+\right)
$$

Model 2: Mendelian transmission of alleles:

$$
\mathbb{P}(X, Y)=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2}\right) \prod_{i=3}^{5} \mathbb{P}\left(X_{i} \mid X_{1}, X_{2}\right) \times \prod_{i=1}^{5} \mathbb{P}\left(Y_{i} \mid X_{i}\right)
$$

$\mathrm{ev}=\left\{Y_{1}=\mathrm{A}+\right\}$ and N is the number of O^{-}in the nuclear familly

$$
N \mid \mathrm{ev} \sim 0.5429 \times \mathcal{B}(1,0.0567)+0.2114 \times \mathbf{1}_{N=0}+0.1053 \times \mathcal{B}(3,1 / 16)
$$

$$
+0.1141 \times \mathcal{B}(3,1 / 8)+0.0263 \times(1+\mathcal{B}(3,1 / 4))
$$

$\sum_{n \geqslant 0} \mathbb{P}(N=n \mid \mathrm{ev}) z^{n} \simeq 0.8867+0.0920 z+0.0169 z^{2}+0.0039 z^{3}+0.0004 z^{4}$

$$
\pi=0.0920+0.0169+0.0039+0.0004=0.1132
$$

What does it mean ?

Homer: "So $\pi=0.1132$ or whatever, is that good?"

- \mathbb{P} (at least one O -|Homer is $\left.\mathrm{A}_{+}\right)=11.32 \%$
- $\mathbb{P}($ not any $\mathrm{O}-\mid$ Homer is $\mathrm{A}+)=88.68 \%$

Homer: "Huh ..."

9 to 10 chances of not being able to help Mr Burns

Homer: "D'oh !"

Frink: "But I found a blood test in the criminal record of Bart . . ." Homer: ". . and ?

Frink: "Bart is O- !!"
Homer: "Woohoo!"

Weak-D Bart

- Frink: "Alas, Bart has the weak-D phenotype. His blood might kill Mr Burns !"
- RHD gene, 3 alleles: D, d, and w (weak-D, pseudo neg Rh)

$$
\Rightarrow q_{D}=0.60, q_{d}=0.39, q_{w}=0.01
$$

- Only OOdd is compatible with Mr Burns !

	ABO	OO	OA	OB	AA	AB	BB
RHD		0.36	0.36	0.12	0.09	0.06	0.01
DD	0.3600	$\mathrm{O}+$	$\mathrm{A}+$	$\mathrm{B}+$	$\mathrm{A}+$	$\mathrm{AB}+$	$\mathrm{B}+$
Dd	0.4680	$\mathrm{O}+$	$\mathrm{A}+$	$\mathrm{B}+$	A_{+}	$\mathrm{AB}+$	$\mathrm{B}+$
Dw	0.0120	$\mathrm{O}+$	$\mathrm{A}+$	$\mathrm{B}+$	$\mathrm{A}+$	$\mathrm{AB}+$	$\mathrm{B}+$
dd	0.1521	O	$\mathrm{A}-$	$\mathrm{B}-$	$\mathrm{A}-$	$\mathrm{AB}-$	$\mathrm{B}-$
dw	0.0078	Ow	Aw	Bw	Aw	ABw	Bw
ww	0.0001	Ow	Aw	Bw	Aw	ABw	Bw

Lisa: "We need to consider the extended Simpson family !"

Simpsons' Pedigree and Bayesian Network

1: Herb's mother, 2: Abraham, 3: Penelope, 4: Ingrid, 5: Clancy, 6: Herb, 7: Homer, 8: Marge, 9: Patty, 10: Selma,

11: Bart, 12: Lisa, 13: Maggie

Simpsons' Pedigree and Bayesian Network

1: Herb's mother, 2: Abraham, 3: Penelope, 4: Ingrid, 5: Clancy, 6: Herb, 7: Homer, 8: Marge, 9: Patty, 10: Selma,

11: Bart, 12: Lisa, 13: Maggie

$$
\begin{aligned}
& \mathbb{P}(X)=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2}\right) \mathbb{P}\left(X_{3}\right) \mathbb{P}\left(X_{4}\right) \mathbb{P}\left(X_{5}\right) \\
& \mathbb{P}\left(X_{6} \mid X_{1,2}\right) \mathbb{P}\left(X_{7} \mid X_{2,3}\right) \mathbb{P}\left(X_{8} \mid X_{4,5}\right) \mathbb{P}\left(X_{9} \mid X_{4,5}\right) \mathbb{P}\left(X_{10} \mid X_{4,5}\right) \\
& \mathbb{P}\left(X_{11} \mid X_{7,8}\right) \mathbb{P}\left(X_{12} \mid X_{7,8}\right) \mathbb{P}\left(X_{13} \mid X_{7,8}\right)
\end{aligned}
$$

Simpsons' Pedigree and Bayesian Network

$$
\begin{array}{r}
\mathbb{P}(X)=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2}\right) \mathbb{P}\left(X_{3}\right) \mathbb{P}\left(X_{4}\right) \mathbb{P}\left(X_{5}\right) \\
\mathbb{P}\left(X_{6} \mid X_{1,2}\right) \mathbb{P}\left(X_{7} \mid X_{2,3}\right) \mathbb{P}\left(X_{8} \mid X_{4,6}\right) \mathbb{P}\left(X_{9} \mid X_{4,6}\right) \mathbb{P}\left(X_{10} \mid X_{4,6}\right) \\
\mathbb{P}\left(X_{11} \mid X_{7,8}\right) \mathbb{P}\left(X_{12} \mid X_{7,8}\right) \mathbb{P}\left(X_{13} \mid X_{7,8}\right) \\
X_{i} \in \mathcal{G}=\{\mathrm{O}, \mathrm{~A}, \mathrm{~B}\}^{2} \times\{\mathrm{D}, \mathrm{~d}, \mathrm{w}\}^{2} \quad|\mathcal{G}|=3^{2} \times 3^{2}=81 \\
\mathrm{ev}=\{\text { Homer } \mathrm{A}+\text { and Bart Ow }\} \quad \mathbb{P}(X \mid \mathrm{ev})=\frac{\mathbb{P}(X, \mathrm{ev})}{\sum_{X^{\prime}} \mathbb{P}\left(X^{\prime}, \mathrm{ev}\right)}
\end{array}
$$

- $X=\left(X_{1}, X_{2}, \ldots, X_{13}\right)$ is the family genotype
- in order to compute $\mathbb{P}(\mathrm{ev})=\sum_{X^{\prime}} \mathbb{P}\left(X^{\prime}\right.$, ev $)$
- we just have to sum over 81^{13} configurations
$81^{13}=6461081889226672446898176$
\Rightarrow simply impossible !

Local computations in a simple pedigree

Idea: we consider a smaller (but similar) family, ev (evidence) still represents the available information.

- for founders $(1,2,3,4) i$:

$$
\varphi_{i}\left(X_{i}\right)=\mathbb{P}\left(X_{i} \cap \mathrm{ev}\right)
$$

- for offsprings (5, 6, 7)
k with parents i, j :

$$
\varphi_{j}\left(X_{i}, X_{j}, X_{k}\right)=\mathbb{P}\left(X_{k} \cap \mathrm{ev} \mid X_{i}, X_{j}\right)
$$

$$
\begin{aligned}
& \mathbb{P}(\mathrm{ev})= \sum_{X_{1}} \sum_{X_{2}} \sum_{X_{3}} \sum_{X_{4}} \sum_{X_{5}} \sum_{X_{6}} \sum_{X_{7}} \varphi_{1}\left(X_{1}\right) \varphi_{2}\left(X_{2}\right) \varphi_{3}\left(X_{3}\right) \varphi_{4}\left(X_{4}\right) \\
& \varphi_{5}\left(X_{1}, X_{2}, X_{5}\right) \varphi_{6}\left(X_{3}, X_{4}, X_{6}\right) \varphi_{7}\left(X_{5}, X_{6}, X_{7}\right) \\
& \Rightarrow 81^{7}=22876792454961 \text { still too large !! }
\end{aligned}
$$

Local computations in a simple pedigree

Pedigree

$$
\begin{aligned}
& \mathbb{P}(\mathrm{ev})=\sum_{X_{5}} \sum_{X_{6}} \sum_{X_{7}}\{(\overbrace{\sum_{X_{1}} \sum_{X_{2}} \varphi_{1}\left(X_{1}\right) \varphi_{2}\left(X_{2}\right) \varphi_{5}\left(X_{1}, X_{2}, X_{5}\right)}^{F_{1}\left(X_{5}\right)}) \\
&(\overbrace{\sum_{X_{3}} \sum_{X_{4}} \varphi_{3}\left(X_{3}\right) \varphi_{4}\left(X_{4}\right) \varphi_{6}\left(X_{3}, X_{4}, X_{6}\right)}^{F_{2}\left(X_{6}\right)}) \varphi_{7}\left(X_{5}, X_{6}, X_{7}\right)\}
\end{aligned}
$$

Local computations in a simple pedigree

$$
F_{j}\left(S_{j}\right)=\sum_{C_{j} \backslash S_{j}}\left(\prod_{i \in \text { from }}^{j} \text { } F_{i}\left(S_{i}\right)\right) \times \prod_{X_{u} \in C_{j}^{*}} \varphi_{u}\left(X_{\mathrm{pa}_{u}}, X_{u}\right) \quad F_{3}(\emptyset)=\mathbb{P}(\mathrm{ev})
$$

Complexity:

- from
- to

$$
\begin{array}{r}
81^{7}=22876792454961 \\
3 \times 81^{3}=1594323
\end{array}
$$

Lisa: "Much better !"
Homer: "Woohoo!"

Clique decomposition for the Simpsons

Clique decomposition for the Simpsons

- from $81^{13}=6461081889226672446898176$
- to

Clique decomposition for the Simpsons

- from $81^{13}=6461081889226672446898176$
- to

Posterior Distribution

After the sum-product algorithm we can combine forward/backward quantities with the potentials φ_{i} in order to derive:

- the marginal distribution $\mathbb{P}\left(C_{j} \mid\right.$ ev $)$ of each clique;
- the marginal distribution $\mathbb{P}\left(S_{j} \mid\right.$ ev $)$ of each separator;
- the full posterior $\mathbb{P}(X \mid \mathrm{ev})$ as a heterogenous Markov chain. Introducing for all ind. i the donor compatibility random variable:

$$
C_{i}=\mathbf{1}_{X_{i}=\text { Oodd }}= \begin{cases}1 & \text { if } i \text { compatible donor i.e. } X_{i}=\text { OOdd } \\ 0 & \text { if } i \text { not compatible donor i.e. } X_{i} \neq \text { OOdd }\end{cases}
$$

$$
\mathbb{P}\left(C_{i}=1 \mid \mathrm{ev}\right)
$$

Herb's mum	Abraham	Penelope	Ingrid	Clancy
5.5%	2.4%	2.4%	16.2%	16.2%

Herb	Homer	Marge	Patty	Selma
3.8%	0.0%	13.5%	10.9%	10.9%
	Bart	Lisa	Maggie	
	0.0%	1.5%	1.5%	

Probability Generating Function

Idea: introduce a dummy variable z in the sum-product s.t.

$$
\sum_{n \geqslant 0} \mathbb{P}(N=n, \text { ev }) z^{n}=\sum_{X} \prod_{i} \varphi_{i}\left(X_{\mathrm{pa}_{i}}, X_{i}\right) z^{1_{X_{i}=\text { oodd }}}
$$

complexity is just d times the previous one (d max degree).

$$
\begin{gathered}
\sum_{n \geqslant 0} \mathbb{P}(N=n \mid \mathrm{ev}) z^{n}=0.528+0.282 z+0.0895 z^{2}+0.0404 z^{3} \\
+0.0329 z^{4}+0.0250 z^{5}+0.00189 z^{6}+0.000148 z^{7}+3.76 \times 10^{-7} z^{8} \\
\mathbb{P}\left(C_{i}=1 \mid \mathrm{ev}\right)
\end{gathered}
$$

Herb's mum Abraham Penelope Ingrid Clancy

5.5%	2.4%	2.4%	16.2%	16.2%

Herb	Homer	Marge	Patty	Selma
3.8%	0.0%	13.5%	10.9%	10.9%
	Bart	Lisa	Maggie	
	0.0%	1.5%	1.5%	

Probability Generating Function

Idea: introduce a dummy variable z in the sum-product s.t.

$$
\sum_{n \geqslant 0} \mathbb{P}(N=n, \text { ev }) z^{n}=\sum_{X} \prod_{i} \varphi_{i}\left(X_{\mathrm{pa}_{i}}, X_{i}\right) z^{1_{X_{i}=\text { oodd }}}
$$

complexity is just d times the previous one (d max degree).

$$
\begin{aligned}
& \sum_{n \geqslant 0} \mathbb{P}(N=n \mid \mathrm{ev}) z^{n}=0.528+0.282 z+0.0895 z^{2}+0.0404 z^{3} \\
+ & 0.0329 z^{4}+0.0250 z^{5}+0.00189 z^{6}+0.000148 z^{7}+3.76 \times 10^{-7} z^{8}
\end{aligned}
$$

$$
\mathbb{P}\left(C_{i}=1 \mid N=0, \mathrm{ev}\right)
$$

Herb's mum Abraham Penelope Ingrid Clancy

0.0%	0.0%	0.0%	0.0%	0.0%

Herb	Homer	Marge	Patty	Selma
0.0%	0.0%	0.0%	0.0%	0.0%
	Bart	Lisa	Maggie	
	0.0%	0.0%	0.0%	

Probability Generating Function

Idea: introduce a dummy variable z in the sum-product s.t.

$$
\sum_{n \geqslant 0} \mathbb{P}(N=n, \text { ev }) z^{n}=\sum_{X} \prod_{i} \varphi_{i}\left(X_{\mathrm{pa}_{i}}, X_{i}\right) z^{1_{X_{i}=\text { oodd }}}
$$

complexity is just d times the previous one (d max degree).

$$
\begin{aligned}
& \sum_{n \geqslant 0} \mathbb{P}(N=n \mid \mathrm{ev}) z^{n}=0.528+0.282 z+0.0895 z^{2}+0.0404 z^{3} \\
+ & 0.0329 z^{4}+0.0250 z^{5}+0.00189 z^{6}+0.000148 z^{7}+3.76 \times 10^{-7} z^{8}
\end{aligned}
$$

$$
\mathbb{P}\left(C_{i}=1 \mid N=1, \mathrm{ev}\right)
$$

| Herb's mum | Abraham | Penelope | Ingrid | C |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9.4% | 5.4% | 6.5% | 28.3% | 28 |
| Herb | Homer | Marge | Patty | Selma |
| 5.8% | 0.0% | 11.8% | 0.0% | 0.0% |
| | Bart | Lisa | Maggie | |
| | 0.0% | 2.3% | 2.3% | |
| | | | | |

Probability Generating Function

Idea: introduce a dummy variable z in the sum-product s.t.

$$
\sum_{n \geqslant 0} \mathbb{P}(N=n, \text { ev }) z^{n}=\sum_{X} \prod_{i} \varphi_{i}\left(X_{\mathrm{pa}_{i}}, X_{i}\right) z^{1_{X_{i}=\text { oodd }}}
$$

complexity is just d times the previous one (d max degree).

$$
\begin{aligned}
& \sum_{n \geqslant 0} \mathbb{P}(N=n \mid \mathrm{ev}) z^{n}=0.528+0.282 z+0.0895 z^{2}+0.0404 z^{3} \\
+ & 0.0329 z^{4}+0.0250 z^{5}+0.00189 z^{6}+0.000148 z^{7}+3.76 \times 10^{-7} z^{8}
\end{aligned}
$$

$$
\mathbb{P}\left(C_{i}=1 \mid N=2, \mathrm{ev}\right)
$$

Herb's mum	Abraham	Penelope	Ingrid	Cla	
18.6%	6.5%	4.5%		31.3%	31
Herb	Homer	Marge	Patty	Selma	
15.5%	0.0%	40.0%	19.8%	19.8%	
	Bart	Lisa	Maggie		
	0.0%	6.3%	6.3%		

Probability Generating Function

Idea: introduce a dummy variable z in the sum-product s.t.

$$
\sum_{n \geqslant 0} \mathbb{P}(N=n, \text { ev }) z^{n}=\sum_{X} \prod_{i} \varphi_{i}\left(X_{\mathrm{pa}_{i}}, X_{i}\right) z^{1_{X_{i}=\text { oodd }}}
$$

complexity is just d times the previous one (d max degree).

$$
\begin{aligned}
& \sum_{n \geqslant 0} \mathbb{P}(N=n \mid \mathrm{ev}) z^{n}=0.528+0.282 z+0.0895 z^{2}+0.0404 z^{3} \\
+ & 0.0329 z^{4}+0.0250 z^{5}+0.00189 z^{6}+0.000148 z^{7}+3.76 \times 10^{-7} z^{8}
\end{aligned}
$$

$$
\mathbb{P}\left(C_{i}=1 \mid N=3, \mathrm{ev}\right)
$$

Herb's mum	Abraham	Penelope	Ingrid	Cla	
14.6%	6.0%	3.0%		33.2%	33
Herb	Homer	Marge	Patty	Selma	
11.8%	0.0%	27.9%	80.2%	80.2%	
	Bart	Lisa	Maggie		
	0.0%	4.9%	4.9%		

Probability Generating Function

Idea: introduce a dummy variable z in the sum-product s.t.

$$
\sum_{n \geqslant 0} \mathbb{P}(N=n, \text { ev }) z^{n}=\sum_{X} \prod_{i} \varphi_{i}\left(X_{\mathrm{pa}_{i}}, X_{i}\right) z^{1_{X_{i}=\text { oodd }}}
$$

complexity is just d times the previous one (d max degree).

$$
\begin{aligned}
& \sum_{n \geqslant 0} \mathbb{P}(N=n \mid \mathrm{ev}) z^{n}=0.528+0.282 z+0.0895 z^{2}+0.0404 z^{3} \\
+ & 0.0329 z^{4}+0.0250 z^{5}+0.00189 z^{6}+0.000148 z^{7}+3.76 \times 10^{-7} z^{8}
\end{aligned}
$$

$$
\mathbb{P}\left(C_{i}=1 \mid N=4, \mathrm{ev}\right)
$$

Herb's mum	Abraham	Penelope	Ingrid	Clancy
6.9%	2.1%	1.5%	48.2%	48.2%

Herb	Homer	Marge	Patty	Selma
4.8%	0.0%	86.5%	97.8%	97.8%
	Bart	Lisa	Maggie	
	0.0%	3.2%	3.2%	

Extended Pedigree: Small Variables

For a founder i, instead of $X_{i} \in \mathcal{G}$ we have:

Extended Pedigree: Small Variables

For a offspring k (with father i and mother j), instead of $X_{k} \in \mathcal{G} \mid X_{i}, X_{j}$ we have:

Extended Pedigree: Small Variables

Recall on complexity:

- naive $81^{13}=6461081889226672446898176$
- genotypes
$8 \times 81^{3}=4251528$
Small variables with the three heuristics:
- min-neighbors: the smallest clique
$\Rightarrow \quad 611546164989051$
- min-fill: the clique with minimum fill-in
$\Rightarrow \quad 852059233392360$
- weighted min-fill: the clique with minimum weighted fill-in
$\Rightarrow \quad 57530 \quad 43841 \quad 43112$

Epidemiological/Medical Applications

Many human diseases:

- Cancers:
- Breast and Ovarian: Institut Curie
- MSI Cancer and Lynch Syndrome: Saint-Antoine
- Gliomas: La Pitié-Salpêtrière
- Rare Genetic Diseases:
- Neuropathy Amyloid Hereditary: Henri Mondor
- Pulmonary Arterial HT: Marie Lannelongue
- Huntington Disease: Hôpital Saint-Anne
- Common Disease with Genetic Factors:

- Alzheimer Disease: CHU Rouen
- Diabetes, autism, cardio-vascular, obesity, ...

And other applications: linkage analysis, genetic epidemiology, agronomy, recreative genetics, ...

Aknowledgments

Funding:

and Special Thanks:

- Homer, Marge, Bart, Lisa, and Maggie Simpson
- Matt Groening

