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Introduction



Introduction

• In 2000, the United Nations launches the Millenium Ecosystem
Assessment

• Initial goal: “identify the impacts of ecosystem changes on human
well-being, and actions needed to enhance the conservation and
sustainable use of those systems”

• It popularized the term ecosystem services
• the benefits humans obtain from ecosystems
• e.g. : crop pollination, oxygen production by plants, carbon
sequestration, ...

• One of the final recommendation was to assess these ecosystem
services and include them in public policy decision making
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Introduction

• One possible answer: develop models for ecosystem services, and
use these models to evaluate the impact of changes (climate
change, agricultural practices, management interventions, ...) on the
ecosystems

• These models are often complex, and rarely calibrated on
experimental data (rely on expert judgment, literature data, ...)

Objectives
• Build a mechanistic model for pollination at the landscape level
• Propose a methodology to calibrate the model on experimental data
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Pollination model
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Central-place foragersmodel (Olsson et Bolin, 2014, Olsson et al. 2015)

Based on a fitness isocline curve

τf = τ0

(
1− f0

f

)
,

with:

• f0 minimum floral value that will be visited by bees
• τ0 the maximum distance travelled by a bee

(Olsson et al. 2015)
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CPF model - suitability of a nest

• For a bee nesting in patch i and floral patch j at distance dij :

∆ij = τ0

(
1− f0

fj

)
− dij,

→ distance spare flying for patch j compared to what they were
willing to fly for a patch of that quality.

• Suitability or fitness of a nest in patch i:

si =
∑

j
∆ij1∆ij>0,

→ distance a bee will spare flying when its nest is surrounded by
patches of good quality.
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CPF model - optimization of foraging

• A bee in a nest with high suitability exploit less patches further away
compared to a bee in a nest with low suitability

• We define a new maximum distance the bee is prepared to travel
from patch i:

τi =
τ0

1+ exp((
√si − a)/b) . (1)

→ patch-specific maximum distance.
• We define:

∆∗
ij = τi

(
1− f0

fj

)
− dij, (2)

→ contribution from patch j to fitness of the bees in patch i.
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CPF model - visitation rate

• The number of foraging bees from nest in patch i to floral resources
in patch j is

ri→j = qi
∆∗

ij∑J
j=1 ∆

∗
ij
.

where qi is habitat quality (usually, the number of bees nesting
there).

• The (instantaneous) total number of bees visiting patch i is:

νi =

J∑
j=1

rj→i,
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Data



Data

• Two studies on pollinator abundances in southern Sweden
• Data collected in four different years, several times a year (covering
3 different periods of bumblebees life cycle)

• Number of bees flying or foraging in a given transect for a given
period of time was recorded
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Model inputs

For each sampling site i, each year j and each period k:

A landscape map

⇓
denoted by Mijk
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Statistical model



Statistical model - Bayesian formulation

• yijk: observed nb of bees on site i, year j and period k.

• Likelihood 
yijk | λijk, θ ∼ P(ci · λijk)

log λijk = log νi(θ,Mjk) + βk + εijk

εijk ∼ N (0, σ2).

• ci a known scaling parameter,
• λijk the real intensity of the visitation rates,
• βk a period-specific parameter

• Complete vector of parameters ψ = (τ0, f0, a,b, β1, . . . , βK, σ
2)

• Priors
τ0 ∼ LN [0,1000](log(1000),1) f0 ∼ LN (log(0.1),1)
a ∼ U([100,1000]) b ∼ U([100,1000])
βk ∼ N (µk, σ

2
k ), k = 1, . . . , K

σ2 ∼ IG(ξ, η)
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Statistical model - Bayesian formulation

invsigma2 sigma2 tau0

betaPer2 betaPer3 f0
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Approximate Bayesian Computation



Bayesian estimation

• In a Bayesian context, we are now interested in the posterior
distribution of the parameters, i.e. in π(ψ | y)

• We have :

π(ψ | y) ∝ f(y | ψ)︸ ︷︷ ︸
likelihood

p(ψ)︸ ︷︷ ︸
prior

• But here the likelihood is intractable:

f(y | ψ) =
∫

f(y, λ | ψ)dλ =

∫
f(y | λ, ψ)f(λ | ψ)dλ

=
∏
ijk

1√
2πσyijk!

∫ +∞

0
e−λλyijk−1 exp

(
−
(log λ− log νi(θ,Mijk)− βk)

2

2σ2

)
dλ

• how to handle this situation?

• change the likelihood so that it becomes tractable? → can
introduce biais, do not reflect the “true” process as we think it is
generated

• use an estimation method which can deal with untractable
likelihood → approximate Bayesian computation (ABC)
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Approximation Bayesian computation (ABC)

• Introduced at the end of the 1990 in the area of population genetics

• Initial ABC algorithm: “rejection sampling” (Tavaré et al. 1997)

ABC rejection sampling
Input: a threshold ε and a distance d on the set of observations

For m = 1, . . . ,M:

1. draw a sample ψ(m) from the prior distribution
2. generate a set of observations y(m) using p(y | ψ)

3. if d(yobs, y(m)) ≤ ε, keep ψ(m)

4. Output: a sample of size Mε with all the accepted sets of parameters
ψ(m)

• The accepted values follow the ABC posterior distribution πε(ψ | y):

πABC(ψ | yobs) ∝
∫

f(y|ψ)p(ψ)1Aε(y)dy,

where Aε = {y;d(yobs, y) < ε}.
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Approximate Bayesian computation (ABC)

• When ε→ 0, the ABC posterior converges to the true posterior
distribution

• On the contrary, when ε→ ∞, the ABC posterior converges to the
prior distribution

• In the meantime, when the dimension increases, d(yobs, y(m)) tends
to be very large → curse of dimensionality

• Several extensions to the original algorithm have been proposed:

• introduction of summary statistics s(·) of dimension q < n →
samples from π(ψ | sobs) instead of the posterior π(ψ | yobs)

• replace crude rejection by kernel smoothing → each sample is
used, with a weight wm = K(d(yobs, y(m)))
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ABC - choice of summary statistics

• Choice of the summary statistics is crucial: a poor specification leads
to a poor approximation of the posterior, but choosing sufficient
statistics has no impact, i.e. π(ψ | sobs) = π(ψ | yobs).

• A statistic is said to be sufficient w.r.t. a parameter θ if it carries all
the necessary knowledge to perform inference for θ. More precisely,
s is sufficient iff:

P(y ∈ A | s(y) ∈ B, θ) = P(y ∈ A | s(y) ∈ B)

ex. : for a Gaussian i.i.d. sample N (µ, σ2), the sample mean is
sufficient for µ.

Objective
find low-dimensional summary and highly informative summary
statistics
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Methods based on regression adjustment

• First idea: build a relationship between the parameter values and
the summary statistics values, e.g. via regression techniques.

ψ
(m)
i = mi(s(y(m))− sobs) + σ(s(y(m)))εim, i = 1, . . . ,p

Then, samples from πABC(ψ | sobs) are obtained via:

ψ
∗(m)
i = m̂i(sobs) +

(
ψ

(m)
i − m̂(s(y(m)))

) σ̂(sobs)
σ̂(s(y(m)))

• Estimation via weighted least squares, where weights are given by a
chosen smoothing kernel K

• Local regression around sobs → lowers the effect of the distance
between s(y(m)) and sobs.

• Can be combined with dimension reduction methods to further
reduce the summary statistics dimension
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Methods based on regression adjustment

Some methods based on regression adjustment (shortnames for methods
compared in this work are marked in blue):

Regression adjustment methods

• local linear heteroscedastic model (Beaumont et al. 2002) [LocLH]

• local nonlinear heteroscedastic model (Blum and François 2010) [LocNLH]
• adaptive nonlinear heteroscedastic model (Blum and François 2010) [ANLH]

→ two-step procedure:

1. perform a LocNLH regression and estimate the distribution support D of
the adjusted values

2. perform a second LocNLH regression using parameters values samples
from pD, the conditional prior of the parameters given that they fall in D

• penalized regression (Wegmann et al. 2016)
• best subset selection (via criteria such as AIC or BIC for example) (Numes and

Balding 2010, Blum et al. 2013)
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Methods based on quantile regression

• As outputs of the previous approaches, we get a sample of the ABC
posterior

• However, we are sometimes only interested in some quantities from
this posterior distribution (e.g. quantiles, mean, ...)

→ what if we try to approximate these quantities using ABC instead of
the whole posterior ?

Some examples
• Raynal et al. 2016 suggested the use of random forests combined
with quantile regression [qRF]

• Other machine learning algorithms could be used, e.g. gradient
boosting methods, also combined with quantile regression [qGBM]
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Simulated data

• We simulated three datasets corresponding to different parameter values

β1 β2 β3 σ2

τ0 f0 a b

−50 −25 0 25 50 −50 −25 0 25 50 −50 −25 0 25 50 0 5 10 15 20

0 2505007501000 0.00.51.01.52.02.5 250 500 7501000 250 500 7501000
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• We generated M = 100 000 parameter samples from the prior and M
corresponding simulated datasets

• Summary statistics were defined as : min, max, mean, quantiles of order
25%, 50% (median), 75%, and number of 0 observed per landuse type, and
per combination of landuse type and flowering period
→ from 790 observations to 112 summary statistics
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Results (no local linear approaches)
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Results – best results

Posterior mean - posterior median for CPF model parameters

Param True LocNLH 5% LocNLH 2.5% ANLH 5% qRF

τ0

750 512 / 499 510 / 498 679 / 684 691 / 717
750 501 / 476 512 / 486 556 / 550 454 / 419
100 249 / 196 230 / 173 192 / 170 214 / 158

f0
0.05 0.167 / 0.101 0.174 / 0.103 0.095 / 0.076 0.102 / 0.069
0.05 0.166 / 0.102 0.164 / 0.100 0.111 / 0.090 0.111 / 0.082
0.05 0.172 / 0.109 0.167 / 0.101 0.124 / 0.097 0.212 / 0.114

a
500 532 / 534 539 / 548 545 / 547 592 / 635
250 537 / 544 538 / 543 549 / 551 588 / 599
500 526 / 522 534 / 537 545 / 540 559 / 575

b
200 538 / 537 548 / 559 541 / 534 526 / 518
250 542 / 545 538 / 538 542 / 539 498 / 477
200 519 / 517 526 / 529 533 / 539 510 / 480
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Real data
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Comparaison of the 95% CI of the ABC posterior distributions

Param MAP 95% CI
τ0 623 [425 ; 855]
f0 0.137 [0.021 ; 0.540]
a 640 [166 ; 948]
b 578 [144 ; 928]

Param MAP 95% CI
β1 -2.54 [-6.53 ; 0.624]
β2 11.8 [4.54 ; 16.8]
β3 -0.270 [-3.54 ; 2.56]
σ2 1.40 [0.253 ; 17.8]
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Conclusion and discussion



Conclusion

• Preliminary results suggest that some parameters are difficult to
infer

• Methods based on nonlinear local regression perform better
• Improvements are needed to enhance predictive quality
• Results are conditional on the floral and nesting maps
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Perspectives

• Evaluate the performances of the methods on more simulated data
(computation of RMSE)

• Another choice for the summary statistics?
• Influence of the origin of the data (STEP study vs COST study)?
• Use the estimated ABC posterior distribution to tune likelihood-free
MCMC algorithms (initialization of the chain, choice of the proposal
distribution) (e.g. Wegmann 2009)

• Evaluate the influence of the input maps
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