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Ecological problematic and motivation

Two behaviors:
• commuting mode;
• foraging mode.

Goal: predicting the majority behavior of bats at sites throughout France.
▶ discriminate the foraging behavior from the commuting behavior.

Motivations:
• contribute to address spatial ecology issues;
• automate decision-making with few input variables.

Data: time of echolocation calls of differents species
recorded as part of Vigie-Chiro participatory project.
▶ we focus on the Common Pipistrelle.
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Echolocation and behavioral characterization

Echolocation: used by bats for foraging and commuting.

Behavioral characterization: via the way bats emit calls (see Griffin et al.
(1960)).

Figure: Sonogram containing a feeding buzz.

▶ consider the temporal distribution of the calls.
▶ sequence of calls (Tℓ )ℓ≥1 as a realization of a point process N .
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Modeling the sequence of calls

Point processes: model the occurrence of random events over time.
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Figure: Left: the start times of echolocation calls sequences, right: autocorrelation as a function of the
lag for four nights.

▶ presence of strong temporal dependence in data.
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Data modeling with Hawkes processes

The linear exponential Hawkes process : a point process N with
conditional intensity function (see Daley and Vere-Jones (2003)):

𝜆𝜃 (t) := 𝜇 +
∫ t

0
𝛼𝛽e−𝛽 (t−s)dNs = 𝜇 +

∑︁
Tℓ<t

𝛼𝛽e−𝛽 (t−Tℓ ) ,

where : • (Tℓ )ℓ≥1 the time jumps of the process;
• 𝜃 ∈ Θ = {𝜇 > 0, 0 ≤ 𝛼 < 1, 𝛽 ≥ 0}
• 𝜇 −→ exogenous intensity;
• 𝛼 −→ arrival intensity;
• 𝛽 −→ rate of the decay.

Modelisation: the start time of a call correspond to a jump of the
Hawkes process.
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Classification model

Let DL
n =

{
(T 1

T ,Y 1), . . . , (T n
T ,Y n)

}
be a sample of i.i.d. observations such

that:

• Label: Y ∼ B (p∗) , Y ∈ {0, 1};
• Feature: TT =

(
T1, . . . , TNT

)
of intensity 𝜆𝜃 ∗Y (t) on [0, T ] with 𝜃 ∗Y ∈ Θ.

Goal: learn a decision rule g fromDL
n

such that g(TT ) is a prediction of the
label Y .

▶ given a new unlabeled feature
T n+1
T , our guess for Yn+1 is g

(
T n+1
T

)
.
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Quality of label prediction: measured by its missclassification risk

R(g) := ℙ
(
g
(
T n+1
T

)
≠ Y n+1) .
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Bayes rule and empirical risk minimization

Bayes rule: characterized by

gp∗,𝜽 ∗ (TT ) = 𝟙{𝜂p∗,𝜽∗ (TT )> 1
2 }

where 𝜂p∗,𝜽 ∗ (TT ) := ℙ (Y = 1|TT ) =
p∗ exp

(
F𝜃∗1

(TT )
)

p∗ exp
(
F𝜃∗1

(TT )
)
+(1−p∗ ) exp

(
F𝜃∗0

(TT )
)

Empirical risk: based on Dn estimates p̂ = 1
n

∑n
i=1 𝟙{Y i=1} and solve :

𝜽 ∈ argmin
𝜽 ∈Θ2

1
n

n∑︁
i=1

𝟙{gp̂,𝜽 (T i
T )≠Y i }

▶ minimize this require to solve a non convex optimization problem.
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ERM procedure

Convexification: replace the 0 − 1 loss by a convex surrogate (see Zhang
(2004)) and based on Dn solve instead :

𝜽 ∈ argmin
𝜽 ∈Θ2

1
n

n∑︁
i=1

(
Z i − fp̂,𝜽 (T i

T )
)2

where Z i = 2Yi − 1 and fp̂,𝜽 (TT ) = 2𝜂p̂,𝜽 (TT ) − 1 with

𝜂p̂,𝜽 (TT ) =
p̂ exp

(
F𝜃1 (TT )

)
p̂ exp

(
F𝜃1 (TT )

)
+ (1 − p̂) exp

(
F𝜃0 (TT )

)
Classifier: ĝ(TT ) = 𝟙{

f̂ (TT )≥0
} .
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Goodness-of-fit test

ERM procedure: provides estimates of (𝜃 ∗0, 𝜃 ∗1).
▶ gives a model for the behavior within each class.

Model evaluation: by performing a goodness-of-fit test.
▶ using the Time-Rescaling Theorem (see Daley and Vere-Jones (2003)):

Theorem

LetΛ(t) =
∫ t
0 𝜆(s) ds be the compensator of the processN . Then, a.s.,

the transformed sequence {𝜏j = Λ(Tj)} is a realization of a unit-rate
Poisson process if and only if the original sequence {Tj} is a realization
from the point process N .

Test H0: “the sequence of observations is a realization of the point process
with intensity 𝜆

𝜃k
”.

▶ test if {Λ
𝜃k
(Tj+1) − Λ

𝜃k
(Tj)} iid∼ E(1)
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Validation on synthetic data

Simulation: by cluster representation using the branching properties of the
self-exciting Hawkes process (see Hawkes and Oakes (1974)).

Panel of scenarios:

Scenario 1 Scenario 2

𝜇0 1.0 1.0

𝜇1 1.0 0.5

𝛼0 0.2 0.0

𝛼1 0.7 0.5

𝛽0 3.0 0.0

𝛽1 1.5 1.5
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Table: Scenario panel used to study procedure performance.

Simulation scheme: 20 Monte-Carlo repetitions in each scenario.
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Numerical results

In both scenarios: ntrain = 300, ntest = 1000, T = 20, p∗ = 0.5.

Empirical error rate: R̂n(g) := 1
n

∑n
i=1 𝟙

{
g (T (i)

T )≠Yi
} .

Error Rate
Bayes ERM RF

Scenario 1 0.07 (0.00) 0.07 (0.00) 0.09 (0.01)
Scenario 2 0.17 (0.00) 0.17 (0.01) 0.30 (0.03)

Table: Empirical error averaged over 20 repetitions.

Goodness-of-fit test: if ĝ
(
T i ) = k test if {Λ

𝜃k
(T i

j+1) − Λ
𝜃k
(T i

j )}
iid∼ E(1)

ĝ(T )
p-value Acceptance Rate

Scenario 1
Class 0 0.51 (0.01) 0.96 (0.01)
Class 1 0.51 (0.03) 0.95 (0.02)

Scenario 2
Class 0 0.41 (0.01) 0.89 (0.01)
Class 1 0.41 (0.03) 0.90 (0.01)

Table: Mean p-values and acceptance rate for a 5% significance level test over 20 repetitions.
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Real data

• Calls recorded over one night at 755 sites in France.
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Figure: Each point on the map represents a site and its colour refers to the number of events in the
temporal sequences.

• 332 labeled sites.
• 423 unlabeled sites.
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Classification on labeled data

Assess the performance: by comparing with labels given by the metric.

Evaluation scheme: repeat 20 times:
• choose 75% for training and the remaining 25% for testing.
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Figure: Confusion matrix of prediction on DL
ntest . Score: ERM: 68.13% (4.15), RF: 67.35% (2.21).

ĝ(T )
p-value Acceptance Rate

Class 0 0.26 (0.06) 0.66 (0.11)
Class 1 0.15 (0.03) 0.45 (0.07)

Table: Mean p-values and reject rate for a 5% significance level test on DL
ntest .
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Prediction on unlabeled sites

Prediction on intermediate sites: tricky since bats have mixed behavior.
Training: based on labeled data. ▶ (𝜃0, 𝜃1), 𝜂, ĝ.
Goodness-of-fit test: on unlabeled data

ĝ(T )
p-value Acceptance Rate

Class 0 0.15 0.43
Class 1 0.21 0.49

Table: Mean p-values and acceptance rate for a 5% significance level test.

Discussion:
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Figure: Predictive probability given by ĝ on DU
n as a function of environmental covariates.
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Conclusion

Conclusion:
• validation of the procedure on synthetic data;
• Hawkes processes modeling: revelant for echolocation calls data;
• classification procedure: prediction and behavioral confidence index;
• provides a tool to ecologist for predicting bats behavior.

Bats Monitoring: A Classification Procedure of Bats Behaviors based on
Hawkes Processes, C. Denis, C. Dion-Blanc, R.E. Lacoste, L. Sansonnet and Y.
Bas (2023), The Journal of the Royal Statistical Society, Series C.
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Ongoing work (1/2)

Future exploration: consider species with more marked majority behavior.

▶ data processing for theWestern Barbastelle, Daubenton’s myotis.

Model enrichment: by considering multivariate Hawkes processes.

▶ model simultaneously the call sequence of multiple species.

▶ incorporates the effects of cooperation and competition between
species.

ERM-Lasso classification rule for Multivariate Hawkes Processes paths, C.
Denis, C. Dion-Blanc, R.E. Lacoste and L. Sansonnet, HAL/arXiv.

▶ include inhibition interaction in the model.
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Ongoing work (2/2)

Package development: user-friendly tools for simulation, estimation and
classification of exponential multivariate Hawkes processes.

Features :
• learning for short-time path repetition data.
• suitable for large-scale networks (Lasso procedure).
• code source implemented in C++ for rapid computation.

Sparkle: a statistical learning toolkit for Hawkes process modeling in Python,
R.E. Lacoste, soon on HAL/arXiv.

▶ Available soon on GitHub at https://github.com/romain-e-lacoste
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Thank you for your attention!

Any questions?
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