Bats Monitoring: A Classification Procedure of Bats Behaviors based on Hawkes Processes Rencontres de la Chaire MMB 2024

Romain Lacoste, PhD student

Supervised by C. Denis, C. Dion-Blanc, L. Sansonnet and Y. Bas

Veolia

October 09, 2024

Romain Lacoste

Ecological and mathematical setting

2 Statistical methodology

3 Numerical experiments

Application on real data

Ecological problematic and motivation

Two behaviors:

- commuting mode;
- foraging mode.

Goal: predicting the majority behavior of bats at sites throughout France.

discriminate the foraging behavior from the commuting behavior.

Motivations:

- contribute to address spatial ecology issues;
- automate decision-making with few input variables.

Data: time of echolocation calls of **differents species** recorded as part of **Vigie-Chiro** participatory project.

• we focus on the **Common Pipistrelle**.

Echolocation: used by bats for foraging and commuting.

Behavioral characterization: via the way bats emit calls (see Griffin *et al.* (1960)).

Figure: Sonogram containing a feeding buzz.

- consider the temporal distribution of the calls.
- ▶ sequence of calls $(T_{\ell})_{\ell \ge 1}$ as a realization of a point process *N*.

n	
L'omoun.	
NOHIAH	Latusie

Modeling the sequence of calls

Point processes: model the occurrence of random events over time.

Figure: Left: the start times of echolocation calls sequences, right: autocorrelation as a function of the lag for four nights.

presence of strong temporal dependence in data.

The linear exponential Hawkes process : a point process *N* with conditional intensity function (see Daley and Vere-Jones (2003)):

$$\lambda_{\theta}(t) := \mu + \int_0^t \alpha \beta e^{-\beta(t-s)} dN_s = \mu + \sum_{T_{\ell} < t} \alpha \beta e^{-\beta(t-T_{\ell})},$$

where : • $(T_{\ell})_{\ell \ge 1}$ the **time jumps** of the process;

•
$$\theta \in \Theta = \{\mu > 0, 0 \le \alpha < 1, \beta \ge 0\}$$

- $\mu \longrightarrow$ exogenous intensity;
- $\alpha \longrightarrow arrival intensity;$
- $\beta \longrightarrow$ rate of the decay.

Modelisation: the start time of a call correspond to a **jump** of the Hawkes process.

Let $\mathcal{D}_n^L = \{(\mathcal{T}_T^1, Y^1), \dots, (\mathcal{T}_T^n, Y^n)\}$ be a sample of i.i.d. observations such that:

- **Label:** $Y \sim \mathcal{B}(p^*), Y \in \{0, 1\};$
- **Feature:** $\mathcal{T}_T = (T_1, \ldots, T_{N_T})$ of intensity $\lambda_{\theta_Y^*}(t)$ on [0, T] with $\theta_Y^* \in \Theta$.

Goal: learn a decision rule g from \mathcal{D}_n^L such that $g(\mathcal{T}_T)$ is a prediction of the label Y.

• given a new unlabeled feature \mathcal{T}_T^{n+1} , our guess for Y^{n+1} is $g(\mathcal{T}_T^{n+1})$.

Quality of label prediction: measured by its missclassification risk

$$\mathcal{R}(g) := \mathbb{P}\left(g\left(\mathcal{T}_T^{n+1}\right) \neq Y^{n+1}\right).$$

Bayes rule: characterized by

$$g_{p^*,\boldsymbol{\theta}^*}\left(\mathcal{T}_T\right) = \mathbb{1}_{\left\{\eta_{p^*,\boldsymbol{\theta}^*}\left(\mathcal{T}_T\right) > \frac{1}{2}\right\}}$$

where
$$\eta_{p^*, \theta^*}(\mathcal{T}_T) := \mathbb{P}(Y = 1 | \mathcal{T}_T) = \frac{p^* \exp\left(F_{\theta_1^*}(\mathcal{T}_T)\right)}{p^* \exp\left(F_{\theta_1^*}(\mathcal{T}_T)\right) + (1-p^*) \exp\left(F_{\theta_0^*}(\mathcal{T}_T)\right)}$$

Empirical risk: based on \mathcal{D}_n estimates $\hat{p} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{Y^i=1\}}$ and solve :

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta^2} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{g_{\hat{p},\boldsymbol{\theta}}}(\mathcal{T}_{T}^{i}) \neq Y^{i}\}}$$

> minimize this require to solve a non convex optimization problem.

Convexification: replace the 0 - 1 loss by a **convex surrogate** (see Zhang (2004)) and based on \mathcal{D}_n solve instead :

$$\hat{\theta} \in \underset{\theta \in \Theta^2}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \left(Z^i - f_{\hat{p},\theta}(\mathcal{T}_T^i) \right)^2$$

where $Z^i = 2Y_i - 1$ and $f_{\hat{p},\theta}(\mathcal{T}_T) = 2\eta_{\hat{p},\theta}(\mathcal{T}_T) - 1$ with

$$\eta_{\hat{p},\theta}\left(\mathcal{T}_{T}\right) = \frac{\hat{p}\exp\left(F_{\theta_{1}}(\mathcal{T}_{T})\right)}{\hat{p}\exp\left(F_{\theta_{1}}(\mathcal{T}_{T})\right) + (1-\hat{p})\exp\left(F_{\theta_{0}}(\mathcal{T}_{T})\right)}$$

Classifier: $\hat{g}(\mathcal{T}_T) = \mathbb{1}_{\{\hat{f}(\mathcal{T}_T) \ge 0\}}$.

ERM procedure: provides estimates of (θ_0^*, θ_1^*) .

gives a model for the behavior within each class.

Model evaluation: by performing a goodness-of-fit test.

using the Time-Rescaling Theorem (see Daley and Vere-Jones (2003)):

Theorem

Let $\Lambda(t) = \int_0^t \lambda(s) \, ds$ be the **compensator** of the process *N*. Then, a.s., the transformed sequence $\{\tau_j = \Lambda(T_j)\}$ is a realization of a unit-rate Poisson process if and only if the original sequence $\{T_j\}$ is a realization from the point process *N*.

Test H_0 : "the sequence of observations is a realization of the point process with intensity $\lambda_{\hat{\theta}_k}$ ".

► test if
$$\{\Lambda_{\hat{\theta}_k}(T_{j+1}) - \Lambda_{\hat{\theta}_k}(T_j)\} \stackrel{\text{iid}}{\sim} \mathcal{E}(1)$$

Simulation: by cluster representation using the branching properties of the self-exciting Hawkes process (see Hawkes and Oakes (1974)).

Panel of scenarios:

Table: Scenario panel used to study procedure performance.

Simulation scheme: 20 Monte-Carlo repetitions in each scenario.

-		
Pop	1212	Lacoste
1/////	ann	Lacoste

Numerical results

In both scenarios: $n_{\text{train}} = 300$, $n_{\text{test}} = 1000$, T = 20, $p^* = 0.5$. Empirical error rate: $\hat{\mathcal{R}}_n(g) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{g(\mathcal{T}_T^{(i)}) \neq Y_i\}}$.

	Error Rate		
	Bayes	ERM	RF
Scenario 1	0.07 (0.00)	0.07 (0.00)	0.09 (0.01)
Scenario 2	0.17 (0.00)	0.17 (0.01)	0.30 (0.03)

Table: Empirical error averaged over 20 repetitions.

Goodness-of-fit test: if $\hat{g}(\mathcal{T}^i) = k$ test if $\{\Lambda_{\hat{\theta}_k}(T_{j+1}^i) - \Lambda_{\hat{\theta}_k}(T_j^i)\} \stackrel{\text{iid}}{\sim} \mathcal{E}(1)$

		$\hat{g}(\mathcal{T})$	
		<i>p</i> -value	Acceptance Rate
Scenario 1	Class 0	0.51 (0.01)	0.96 (0.01)
	Class 1	0.51 (0.03)	0.95 (0.02)
Scenario 2	Class 0	0.41 (0.01)	0.89 (0.01)
	Class 1	0.41 (0.03)	0.90 (0.01)

Table: Mean p-values and acceptance rate for a 5% significance level test over 20 repetitions.

n	
Romain	L acoste
Nonnann	Lacoste

Real data

• Calls recorded over one night at 755 sites in France.

Figure: Each point on the map represents a site and its colour refers to the number of events in the temporal sequences.

- 332 labeled sites.
- 423 unlabeled sites.

Assess the performance: by comparing with labels given by the metric. Evaluation scheme: repeat 20 times:

• choose 75% for training and the remaining 25% for testing.

Figure: Confusion matrix of prediction on \mathcal{D}_{lrest}^{L} . Score: ERM: 68.13% (4.15), RF: 67.35% (2.21).

	$\hat{g}(\mathcal{T})$	
	<i>p</i> -value	Acceptance Rate
Class 0	0.26 (0.06)	0.66 (0.11)
Class 1	0.15 (0.03)	0.45 (0.07)

Table: Mean p-values and reject rate for a 5% significance level test on $\mathcal{D}_{n_{\text{test}}}^{L}$.

Romain Lacoste	Veolia 2024	October

09, 2024

Prediction on intermediate sites: tricky since bats have mixed behavior. **Training:** based on labeled data. \blacktriangleright ($\hat{\theta}_0, \hat{\theta}_1$), $\hat{\eta}, \hat{g}$.

Goodness-of-fit test: on unlabeled data

	$\hat{g}(\mathcal{T})$	
	<i>p</i> -value	Acceptance Rate
Class 0	0.15	0.43
Class 1	0.21	0.49

Table: Mean p-values and acceptance rate for a 5% significance level test.

Discussion:

Figure: Predictive probability given by \hat{g} on \mathcal{D}_n^U as a function of environmental covariates.

Romain Lacoste

Conclusion

Conclusion:

- validation of the procedure on synthetic data;
- Hawkes processes modeling: revelant for echolocation calls data;
- classification procedure: prediction and behavioral confidence index;
- provides a tool to ecologist for predicting bats behavior.

Bats Monitoring: A Classification Procedure of Bats Behaviors based on Hawkes Processes, C. Denis, C. Dion-Blanc, R.E. Lacoste, L. Sansonnet and Y. Bas (2023), The Journal of the Royal Statistical Society, Series C. Future exploration: consider species with more marked majority behavior.

► data processing for the Western Barbastelle, Daubenton's myotis.

Model enrichment: by considering multivariate Hawkes processes.

> model simultaneously the call sequence of multiple species.

► incorporates the effects of cooperation and competition between species.

ERM-Lasso classification rule for Multivariate Hawkes Processes paths, C. Denis, C. Dion-Blanc, R.E. Lacoste and L. Sansonnet, HAL/arXiv.

▶ include inhibition interaction in the model.

Package development: user-friendly tools for simulation, estimation and classification of exponential multivariate Hawkes processes.

Features :

- learning for short-time path repetition data.
- suitable for large-scale networks (Lasso procedure).
- code source implemented in C++ for rapid computation.

Sparkle: a statistical learning toolkit for Hawkes process modeling in Python, R.E. Lacoste, soon on HAL/arXiv.

Available soon on GitHub at https://github.com/romain-e-lacoste

Thank you for your attention!

Any questions?