

Segmentation sur arbre: quelques applications

C. Ambroise¹, P. Bastide^{2,3,4}, A. Bichat^{1,5}, *M. Mariadassou*⁴, S. Robin²

¹LaMME, UEVE, Université Paris-Saclay, Evry, France
 ²MIA 518, INRAE, AgroParisTech, Paris, France
 ³MAIAGE, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
 ⁴IMAG, CNRS, Université de Montpellier, Montpellier, France
 ⁵Enterome, Paris, France

Journées MMB 12 Mars 2020

Dermochelys Coriacea

Homopus Areolatus

Turtles phylogenetic tree with habitats. (Jaffe et al., 2011).

- How can we explain the diversity, while accounting for the phylogenetic correlations ?
- Modelling: a shifted stochastic process on the phylogeny.

- 1 Stochastic Processes on Trees
- 2 Statistical Inference
- 3 Application in Ecology
- Application in metagenomics

- Principle of the Modeling
- Shifts
- Two Mathematical Formulations
- Statistical Inference
- 3 Application in Ecology
- Application in metagenomics

Stochastic Process on a Tree

The tree is known. Only *tip* values are observed

Brownian Motion:

 $\mathbb{V}\mathrm{ar}\left[A \mid R\right] = \sigma^{2} t$ $\mathbb{C}\mathrm{ov}\left[A; B \mid R\right] = \sigma^{2} t_{AB}$

$$dW(t) = \alpha[\beta(t) - W(t)]dt + \sigma dB(t)$$

Deterministic part:

- $\beta(t)$: primary optimum, mechanistically defined.
- $\ln(2)/\alpha$: phylogenetic half live.

Stochastic part:

- W(t): actual optimum (trait value).
- $\sigma dB(t)$ Brownian fluctuations.

BM vs OU

$$dW(t) = \sigma dB(t) \qquad \begin{cases} \mu = \beta_0 & \sigma_{ij} = \gamma^2 e^{-\alpha(t_i + t_j)} \\ \gamma^2 = \frac{\sigma^2}{2\alpha} & \times (e^{2\alpha t_{ij}} - 1) \end{cases}$$

BM Shifts in the mean:

$$m_{
m child} = m_{
m parent} + \delta$$

$$\beta_{\mathsf{child}} = \beta_{\mathsf{parent}} + \delta$$

BM Shifts in the mean:

$$m_{\rm child} = m_{\rm parent} + \delta$$

$$\beta_{\mathsf{child}} = \beta_{\mathsf{parent}} + \delta$$

BM Shifts in the mean:

$$m_{\rm child} = m_{\rm parent} + \delta$$

$$\beta_{\mathsf{child}} = \beta_{\mathsf{parent}} + \delta$$

BM Shifts in the mean:

$$m_{\rm child} = m_{\rm parent} + \delta$$

$$\beta_{\mathsf{child}} = \beta_{\mathsf{parent}} + \delta$$

Incomplete Data Model

$$BM Z_4 | Z_1 \sim \mathcal{N} \begin{pmatrix} Z_1 & , \sigma^2 \ell_4 \end{pmatrix}$$
$$Y_3 | Z_2 \sim \mathcal{N} \begin{pmatrix} Z_2 + \delta, \sigma^2 \ell_7 \end{pmatrix}$$

$$OU Y_3 | Z_2 \sim \mathcal{N} \left(Z_2 e^{-\alpha \ell_7} + (1 - e^{-\alpha \ell_7}) (\beta_{Z_2} + \delta), \frac{\sigma^2}{2\alpha} (1 - e^{-2\alpha \ell_7}) \right)$$

Linear Regression Model

 $BM: Y = T\Delta^{BM} + E^{BM}$

Linear Regression Model

$$W(\alpha) = \text{Diag}(1 - e^{-\alpha(h - t_{\text{pa}(f)})}, 1 \le i \le m + n) \qquad BM: \quad Y = T\Delta^{BM} + E^{BM}$$
$$\lambda = \mu e^{-\alpha h} + \beta_0(1 - e^{-\alpha h}) \qquad OU: \quad Y = TW(\alpha)\Delta^{OU} + E^{OU}$$

$OU \iff BM$

Expectations

$$\mathbb{E}\left[Y \mid X_{1} = \mu\right] = T \underbrace{W(\alpha)\Delta^{OU}}_{\Delta^{BM}}$$

Remark:
$$\mu^{BM} = \lambda^{OU} = \mu e^{-\alpha h} + \beta_0 (1 - e^{-\alpha h})$$

Variance

$$\mathbb{C}\operatorname{ov}\left[Y_{i}; Y_{j} \mid X_{1} = \mu\right] = \sigma^{2} \times \underbrace{\frac{1}{2\alpha} e^{-2\alpha h}(e^{2\alpha t_{ij}-1})}_{t'_{ij}}$$

OU \iff BM on a re-scaled tree with $t' = \frac{1}{2\alpha}e^{-2\alpha h}(e^{2\alpha t}-1)$

OU \iff BM on a re-scaled tree with $t' = \frac{1}{2\alpha}e^{-2\alpha h}(e^{2\alpha t}-1)$

Remarks:

- This only works for an *ultrametric* tree.
- The laws of the internal nodes is changed.
- This is *not* the following standard time transformation:

Lemma (Brownian Solution for the OU)

The stochastic process defined by:

$$X_t = X_0 e^{-\alpha t} + \beta (1 - e^{-\alpha t}) + \frac{\sigma}{\sqrt{2\alpha}} e^{-\alpha t} B_{e^{2\alpha t} - 1}$$

is an OU, solution of the EDS $dX_t = \alpha(\beta - X_t) + \sigma dB_t$.

OU \iff BM on a re-scaled tree with $t' = \frac{1}{2\alpha}e^{-2\alpha h}(e^{2\alpha t}-1)$

OU: $\lambda = \beta_0 = \mu = 1$ and $t_{1/2} = 0.5$

Equivalent BM on a re-scaled tree

Stochastic Processes on Trees

2 Statistical Inference

- EM Algorithm
- Model Selection

3 Application in Ecology

Application in metagenomics

EM Algorithm: number of shifts K fixed

$$p_{\theta}(Z, Y) = p_{\theta}(Z_1) \prod_{1 < j \le m} p_{\theta}(Z_j | Z_{\mathsf{parent}(j)}) \prod_{1 \le i \le n} p_{\theta}(Y_i | Z_{\mathsf{parent}(i)})$$

EM Algorithm $\log p_{\theta}(Y) = \mathbb{E}_{\theta}[\log p_{\theta}(Z, Y) | Y] - \mathbb{E}_{\theta}[\log p_{\theta}(Z) | Y]$ E step Given θ^{h} , compute $p_{\theta^{h}}(Z | Y)$ M step $\theta^{h+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{\theta^{h}}[\log p_{\theta}(Z, Y) | Y]$

Compute the following quantities:

$$\mathbb{E}^{(h)}[Z_{j} \mid Y], \ \mathbb{V}ar^{(h)}[Z_{j} \mid Y], \ \mathbb{C}ov^{(h)}[Z_{j}, Z_{\mathsf{parent}(j)} \mid Y]$$

- Using Gaussian properties. Need to invert matrices: complexity in $O(n^3)$.
- Using Gaussian properties **and** the tree structure: "Upward-Downward" algorithm. Complexity in *O*(*n*).

Maximize:

$$\mathbb{E}\left[\log p_{\theta}(X) \mid Y\right] = -\sum_{j=2}^{m+n} C_{j}(\alpha, \mathsf{shifts}) + \mathcal{F}^{(h)}\left(\mu, \gamma^{2}, \sigma^{2}, \alpha\right)$$

- μ, γ^2, σ^2 : simple maximization
- Discrete location of K shifts
 - \mapsto Exact and fast for the BM
 - $\mapsto~$ Hill-climbing heuristics for the OU
- α : numerical maximization and/or on a grid
 - \mapsto Generalized EM

Starting point and choice of K

Starting point

Shifts: Fast estimate based on Lasso regression (see next section). Selection strength α : Initialization using couples of tips and robust estimate of α .

Starting point and choice of K

Starting point

Shifts: Fast estimate based on Lasso regression (see next section). Selection strength α : Initialization using couples of tips and robust estimate of α .

Choosing K

Assumption α fixed

$$\mathbf{Y} = \mathbf{T} \mathbf{W}(\alpha) \Delta + \gamma \mathbf{E}$$
 , $\mathbf{E} \sim \mathcal{N}(\mathbf{0}, \mathbf{V}(\alpha))$

Models

 $\eta \in \bigcup_{K=0}^{p-1} \mathcal{S}_{K}^{PI}$: Identifiable parcimonious allocations of shifts

EM Estimators

$$\hat{Y}_{\mathcal{K}} = \operatorname*{argmin}_{\eta \in \mathcal{S}_{\mathcal{K}}^{\mathcal{P}l}} \left\| \mathcal{Y} - \hat{\mathcal{Y}}_{\eta}
ight\|_{\mathcal{V}}^{2}$$

M. Mariadassou (INRAE MaIAGE)

Idea
$$\hat{K} = \underset{0 \le K \le p-1}{\operatorname{argmax}} \left\{ \frac{n}{2} \log \left(\frac{1}{n} \left\| Y - \hat{Y}_K \right\|_V^2 \right) - \frac{1}{2} \operatorname{pen}'(K) \right\}$$

Idea
$$\hat{K} = \underset{0 \le K \le p-1}{\operatorname{argmax}} \left\{ \frac{n}{2} \log \left(\frac{1}{n} \left\| Y - \hat{Y}_K \right\|_V^2 \right) - \frac{1}{2} \operatorname{pen}'(K) \right\}$$

Idea
$$\hat{K} = \underset{0 \le K \le p-1}{\operatorname{argmax}} \left\{ \frac{n}{2} \log \left(\frac{1}{n} \left\| Y - \hat{Y}_K \right\|_V^2 \right) - \frac{1}{2} \operatorname{pen}'(K) \right\}$$

Idea
$$\hat{K} = \underset{0 \le K \le p-1}{\operatorname{argmax}} \left\{ \frac{n}{2} \log \left(\frac{1}{n} \left\| Y - \hat{Y}_K \right\|_V^2 \right) - \frac{1}{2} \operatorname{pen}'(K) \right\}$$

- Stochastic Processes on Trees
- 2 Statistical Inference
- Application in Ecology
 Turtles Data Set
- Application in metagenomics

Colors: habitats. Boxes: selected EM regimes.

M. Mariadassou (INRAE MaIAGE)

Chelonia mydas

Colors: habitats. Boxes: selected EM regimes.

M. Mariadassou (INRAE MaIAGE)

Segmentation sur arbre

Geochelone nigra abingdo

Colors: habitats. Boxes: selected EM regimes.

M. Mariadassou (INRAE MaIAGE)

Segmentation sur arbre

Chitra indica

Colors: habitats. Boxes: selected EM regimes.

M. Mariadassou (INRAE MaIAGE)

Univariate framework

P. Bastide, M. Mariadassou, S. Robin (2016), Detection of adaptive shifts on phylogenies by using shifted stochastic processes on a tree. *JRSS-B*. doi:10.1111/rssb.12206

Extension to multivariate framework

P. Bastide, C. Ané, S. Robin, M. Mariadassou (2018), Inference of Adaptive Shifts for Multivariate Correlated Traits. *Syst. Biol.*. doi:10.1093/sysbio/syy005

Package PhylogeneticEM: available on GitHub, on the CRAN.

- - Application in metagenomics
 - Differential abundance testing
 - Mathematical model
 - Inference

A	spec	becies \times sample count table								
		Таха	A1	A2	A3	B1	B2	B3		
	1	Lactobacillus	2318	1388	1361	2256	88	1770		
	2	Prevotella	0	1	1	0	525	7		
	3	Megasphaera	0	1	0	0	402	0		
	4	Sneathia	0	0	0	0	302	0		
	5	Atopobium	0	1	0	0	84	0		
	6	Streptococcus	0	0	3	0	0	0		
	7	Dialister	0	1	0	0	152	4		
	8	Anaerococcus	0	1	3	2	0	9		
	9	Peptoniphilus	0	1	0	0	7	2		
	10	Eggerthella	0	0	0	0	2	0		

Taxonomic / phylogenetic tree

	Phylum	Class	Order	Family	Genus
1	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Actinobaculum
2	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Actinomyces
3	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Arcanobacterium
4	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Mobiluncus
5	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Varibaculum
6	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium
7	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Gardnerella

Differential abundance analysis

- For each taxa i (in $\{1, \ldots, n\}$), test
 - H_{0i}: Abundances are equal in groups A and B
 - H_{1i} : Abundances are not equal in groups A and B
- Hundred of univariate tests and p-values
- Need for a multiple testing correction procedure

Differential abundance analysis

- For each taxa i (in $\{1, \ldots, n\}$), test
 - H_{0i}: Abundances are equal in groups A and B
 - H_{1i}: Abundances are not equal in groups A and B
- Hundred of univariate tests and p-values
- Need for a multiple testing correction procedure

- Taxa / group associations may show a phylogenetic signal
- Similar taxa ⇒ similar levels of association
- Can we leverage the tree when correcting the tests?

Standard assumptions on p-values

- Under $H_{0i}, p_i \sim \mathcal{U}(0, 1)$
- Under $H_{1i}, p_i \preccurlyeq \mathcal{U}(0, 1)$

Standard assumptions on *p*-values

- Under $H_{0i}, p_i \sim \mathcal{U}(0, 1)$
- Under $H_{1i}, p_i \preccurlyeq \mathcal{U}(0, 1)$

Standard assumptions on z-scores

• Under
$$H_{0i}, z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(0, 1)$$

• Under
$$H_{1i}, z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(m_i, 1)$$
 with $m_i < 0$

Standard assumptions on *p*-values

- Under $H_{0i}, p_i \sim \mathcal{U}(0, 1)$
- Under $H_{1i}, p_i \preccurlyeq \mathcal{U}(0, 1)$

Standard assumptions on *z*-scores

• Under
$$H_{0i}, z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(0, 1)$$

• Under
$$H_{1i}$$
, $z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(m_i, 1)$ with $m_i < 0$

Tractable assumptions on *z*-scores vector

•
$$Z = (z_1, \ldots, z_n) \sim \mathcal{N}(M, V(\alpha))$$
 where

•
$$M = (m_1, \ldots, m_n) \in \mathbb{R}^n_-$$

• $V(\alpha)$ is the variance matrix of an OU on a tree.

Standard assumptions on *p*-values

- Under H_{0i} , $p_i \sim \mathcal{U}(0, 1)$
- Under $H_{1i}, p_i \preccurlyeq \mathcal{U}(0, 1)$

Standard assumptions on *z*-scores

• Under
$$H_{0i}, z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(0, 1)$$

• Under
$$H_{1i}$$
, $z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(m_i, 1)$ with $m_i < 0$

Tractable assumptions on *z*-scores vector

•
$$Z = (z_1, \ldots, z_n) \sim \mathcal{N}(M, V(lpha))$$
 where

•
$$M = (m_1, \ldots, m_n) \in \mathbb{R}^n_-$$

• $V(\alpha)$ is the variance matrix of an OU on a tree.

Assume that *z*-scores evolve as an OU on the tree with a sign constraint on the mean.

Linear regression model

Tree-structure enforced by decomposition $M = TW(\alpha)\Delta$.

Linear regression model

Tree-structure enforced by decomposition $M = TW(\alpha)\Delta$.

Linear regression model

Tree-structure enforced by decomposition $M = TW(\alpha)\Delta$.

 $W(\alpha) = \text{Diag}(1 - e^{-\alpha(h - t_{pa(i)})}, 1 \le i \le m + n)$

Goal: Find {*i* : *m_i* < 0}

M. Mariadassou (INRAE MaIAGE)

Estimating M

The MLE of Δ (and in turn *M*) is solution to

$$\underset{\Delta \text{ s.t. } \mathcal{TW}(\alpha)\Delta \leq 0}{\operatorname{argmax}} \| Z - \mathcal{TW}(\alpha)\Delta \|_{2,V(\alpha)^{-1}}^{2}$$

Equivalent to¹:

$$\underset{\Delta \text{ s.t. } C\Delta \leq 0}{\operatorname{argmax}} \|Y - X\Delta\|_2^2$$

¹with *C*, *Y* and *X* some simple transforms of *Z* and *TW*(α), *V*(α) ²Using a variant of the LASSO shooting algorithm

M. Mariadassou (INRAE MaIAGE)

Segmentation sur arbre

The MLE of Δ (and in turn *M*) is solution to

$$\underset{\Delta \text{ s.t. } \mathcal{TW}(\alpha)\Delta \leq 0}{\operatorname{argmax}} \|Z - \mathcal{TW}(\alpha)\Delta\|_{2, V(\alpha)^{-1}}^{2}$$

Equivalent to¹:

$$\operatorname{argmax}_{\Delta ext{ s.t. } C\Delta \leq 0} \|Y - X\Delta\|_2^2$$

Add a ℓ_1 -penalty to sparsify the solution and solve²

$$\hat{\Delta} = \underset{\Delta \text{ s.t. } C\Delta \leq 0}{\operatorname{argmax}} \|Y - X\Delta\|_2^2 + \lambda \|\Delta\|_1$$
(1)

using penalized likelihood for selection of α and λ

¹with *C*, *Y* and *X* some simple transforms of *Z* and *TW*(α), *V*(α) ²Using a variant of the LASSO shooting algorithm

M. Mariadassou (INRAE MaIAGE)

Segmentation sur arbre

Decision rule

- $\hat{m}_i \neq 0 \Rightarrow \text{reject } H_{0i}$
- $\hat{m}_i = 0 \Rightarrow$ do not reject H_{0i}

Comparison with non-hierarchical procedures

AUC on simulated data (higher is better)

• zazou R package: under active development on GitHub.

• zazou R package: under active development on GitHub.

Good performance when the number of shifts is not too smallSelection model adapted to *tests* rather than *prediction*

• zazou R package: under active development on GitHub.

Good performance when the number of shifts is not too small
Selection model adapted to *tests* rather than *prediction*

$\hat{M} = TW(\alpha)\hat{\Delta}$ is bias

- Unbias \hat{M} (using desparsified lasso)
- Build consistent confidence intervals for m_i

J. Felsenstein. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4):783–791, July 1985. doi: 10.2307/2408678. URL

http://links.jstor.org/sici?sici=0014-3820(198507)39:4%3C783:CLOPAA%3E2.0.CO;2-L.

- T. F. Hansen. Stabilizing selection and the comparative analysis of adaptation. *Evolution*, 51(5):1341–1351, Oct. 1997. URL http://www.jstor.org/stable/2411186.
- A. L. Jaffe, G. J. Slater, and M. E. Alfaro. The evolution of island gigantism and body size variation in tortoises and turtles. *Biol Lett*, 7(4):558–561, Aug 2011. doi: 10.1098/rsbl.2010.1084. URL http://dx.doi.org/10.1098/rsbl.2010.1084.
- J. Ravel, P. Gajer, Z. Abdo, G. M. Schneider, S. S. K. Koenig, S. L. McCulle, S. Karlebach, R. Gorle, J. Russell, C. O. Tacket, and et al. Vaginal microbiome of reproductive-age women. *Proceedings of the National Academy of Sciences*, 108(Suppl. 1): 4680–4687, March 2011. ISSN 1091-6490. doi: 10.1073/pnas.1002611107. URL http://dx.doi.org/10.1073/pnas.1002611107.