Feasibility and stability in foodwebs: a Large Random Matrix approach

Jamal Najim
najim@univ-mlv.fr
CNRS \& Université Paris Est
joint work with Pierre Bizeul

Chaire Modélisation Mathématique de la Biodiversité - 03/2020

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility

Elements of proof

Hand waving

The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{i}(t)}{d t}=x_{i}\left(r_{i}-\theta x_{i}+\sum_{j=1}^{N} \frac{A_{i j}}{N^{\delta}} x_{j}\right)
$$

The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{i}(t)}{d t}=x_{i}\left(r_{i}-\theta x_{i}+\sum_{j=1}^{N} \frac{A_{i j}}{N^{\delta}} x_{j}\right)
$$

where

- r_{i} is the intrinsic growth rate of species i

The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{i}(t)}{d t}=x_{i}\left(r_{i}-\theta x_{i}+\sum_{j=1}^{N} \frac{A_{i j}}{N^{\delta}} x_{j}\right)
$$

where

- r_{i} is the intrinsic growth rate of species i
- $\theta>0$ is a friction coefficient (intraspecific competition)

The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{i}(t)}{d t}=x_{i}\left(r_{i}-\theta x_{i}+\sum_{j=1}^{N} \frac{A_{i j}}{N^{\delta}} x_{j}\right)
$$

where

- r_{i} is the intrinsic growth rate of species i
- $\theta>0$ is a friction coefficient (intraspecific competition)
- $A_{i j}$ stands for the interactions $j \rightarrow i$.

The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{i}(t)}{d t}=x_{i}\left(r_{i}-\theta x_{i}+\sum_{j=1}^{N} \frac{A_{i j}}{N^{\delta}} x_{j}\right)
$$

where

- r_{i} is the intrinsic growth rate of species i
- $\theta>0$ is a friction coefficient (intraspecific competition)
- $A_{i j}$ stands for the interactions $j \rightarrow i$.

For complex multispecies systems, interaction are rarely available and a random model for matrix A may be relevant (cf. May).

The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{i}(t)}{d t}=x_{i}\left(r_{i}-\theta x_{i}+\sum_{j=1}^{N} \frac{A_{i j}}{N^{\delta}} x_{j}\right)
$$

where

- r_{i} is the intrinsic growth rate of species i
- $\theta>0$ is a friction coefficient (intraspecific competition)
- $A_{i j}$ stands for the interactions $j \rightarrow i$.

For complex multispecies systems, interaction are rarely available and a random model for matrix A may be relevant (cf. May).

- δ is a parameter controlling the interaction $j \rightarrow i$ strength.

Interaction	Value of δ	Comment
strong	$\delta \in(0,1 / 2)$	-
moderate	$\delta=1 / 2$	RMT regime
weak	$\delta \in(1 / 2,1)$	Perturbation theory

The Lotka-Volterra model II: equilibrium

The Lotka-Volterra model II: equilibrium

- The equilibrium \boldsymbol{x}^{*} (if it exists) is given by

$$
\frac{d x_{i}(t)}{d t}=0 \quad x_{i}\left(r_{i}-\theta x_{i}+\sum_{\ell \in[N]} \frac{A_{i \ell}}{N^{\delta}} x_{\ell}\right)=0 \quad \forall i \in[N]
$$

The Lotka-Volterra model II: equilibrium

- The equilibrium \boldsymbol{x}^{*} (if it exists) is given by

$$
\frac{d x_{i}(t)}{d t}=0 \quad x_{i}\left(r_{i}-\theta x_{i}+\sum_{\ell \in[N]} \frac{A_{i \ell}}{N^{\delta}} x_{\ell}\right)=0 \quad \forall i \in[N]
$$

Feasibility

- The equilibrium is feasible if $x_{i}^{*}>0$ for all i.
- If the equilibrium is feasible, then

$$
\frac{d x_{i}(t)}{d t}=0 \quad \Longrightarrow \quad \theta \boldsymbol{x}^{*}=\boldsymbol{r}+\frac{A}{N^{\delta}} \boldsymbol{x}^{*}
$$

The Lotka-Volterra model II: equilibrium

- The equilibrium \boldsymbol{x}^{*} (if it exists) is given by

$$
\frac{d x_{i}(t)}{d t}=0 \quad x_{i}\left(r_{i}-\theta x_{i}+\sum_{\ell \in[N]} \frac{A_{i \ell}}{N^{\delta}} x_{\ell}\right)=0 \quad \forall i \in[N]
$$

Feasibility

- The equilibrium is feasible if $x_{i}^{*}>0$ for all i.
- If the equilibrium is feasible, then

$$
\frac{d x_{i}(t)}{d t}=0 \quad \Longrightarrow \quad \theta \boldsymbol{x}^{*}=\boldsymbol{r}+\frac{A}{N^{\delta}} \boldsymbol{x}^{*}
$$

Stability

- Given the jacobian $\mathcal{J}\left(\boldsymbol{x}^{*}\right)$, which is explicit for Lotka-Voltera systems

$$
\mathcal{J}\left(\boldsymbol{x}^{*}\right)=\operatorname{diag}\left(\boldsymbol{x}^{*}\right)\left(-\theta I_{N}+\frac{A}{N^{\delta}}\right)
$$

The model is stable if $\quad \operatorname{Re}\left(\right.$ eigenvalues of $\left.\mathcal{J}\left(\boldsymbol{x}^{*}\right)\right)<0$

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility

Elements of proof

Hand waving

No feasible equilibrium for moderate interactions

Consider a LV system with moderate interactions:

$$
\frac{d x_{i}(t)}{d t}=0 \quad \Longrightarrow \quad \theta \boldsymbol{x}^{*}=\boldsymbol{r}+\frac{A}{\sqrt{N}} \boldsymbol{x}^{*} \quad \Longrightarrow \quad \boldsymbol{x}^{*}=\left(\theta I_{N}-\frac{A}{\sqrt{N}}\right)^{-1} \boldsymbol{r}
$$

No feasible equilibrium for moderate interactions

Consider a LV system with moderate interactions:

$$
\frac{d x_{i}(t)}{d t}=0 \quad \Longrightarrow \quad \theta \boldsymbol{x}^{*}=\boldsymbol{r}+\frac{A}{\sqrt{N}} \boldsymbol{x}^{*} \quad \Longrightarrow \quad \boldsymbol{x}^{*}=\left(\theta I_{N}-\frac{A}{\sqrt{N}}\right)^{-1} \boldsymbol{r}
$$

An puzzling result from Mazza et al.

Building upon Geman and Hwang, Dougoud et al. establish that there is no feasible equilibrium with proba 1

$$
\mathbb{P}\left\{x_{i}^{*}<0 \text { for some } i \in[n]\right\} \xrightarrow[N \rightarrow \infty]{ } 1
$$

No feasible equilibrium for moderate interactions

Consider a LV system with moderate interactions:

$$
\frac{d x_{i}(t)}{d t}=0 \quad \Longrightarrow \quad \theta \boldsymbol{x}^{*}=\boldsymbol{r}+\frac{A}{\sqrt{N}} \boldsymbol{x}^{*} \quad \Longrightarrow \quad \boldsymbol{x}^{*}=\left(\theta I_{N}-\frac{A}{\sqrt{N}}\right)^{-1} \boldsymbol{r}
$$

An puzzling result from Mazza et al.

Building upon Geman and Hwang, Dougoud et al. establish that there is no feasible equilibrium with proba 1

$$
\mathbb{P}\left\{x_{i}^{*}<0 \text { for some } i \in[n]\right\} \underset{N \rightarrow \infty}{ } 1
$$

Reference

- "The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate",
Dougoud, Vikenbosch, Rohr, Bersier, Mazza, PLoS Comput. Biology, 2018

Elements of proof

Consider the equation of feasible equilibrium for (simplified) LV $(\theta=1, \boldsymbol{r}=\mathbf{1})$

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

Elements of proof

Consider the equation of feasible equilibrium for (simplified) LV $(\theta=1, \boldsymbol{r}=\mathbf{1})$

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

- \boldsymbol{x} is a $N \times 1$ unknown vector,
- 1 is a $N \times 1$ vector of ones,
- A is a $N \times N$ matrix with i.i.d. entries $\mathcal{N}(0,1)$,
- $\boldsymbol{\alpha}$ is a positive scalar parameter to be tuned.

Elements of proof

Consider the equation of feasible equilibrium for (simplified) LV $(\theta=1, \boldsymbol{r}=\mathbf{1})$

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

- \boldsymbol{x} is a $N \times 1$ unknown vector,
- $\mathbf{1}$ is a $N \times 1$ vector of ones,
- A is a $N \times N$ matrix with i.i.d. entries $\mathcal{N}(0,1)$,
- $\boldsymbol{\alpha}$ is a positive scalar parameter to be tuned.

Questions

- Does this system admit a solution $\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}$?

Elements of proof

Consider the equation of feasible equilibrium for (simplified) LV $(\theta=1, \boldsymbol{r}=\mathbf{1})$

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

- \boldsymbol{x} is a $N \times 1$ unknown vector,
- $\mathbf{1}$ is a $N \times 1$ vector of ones,
- A is a $N \times N$ matrix with i.i.d. entries $\mathcal{N}(0,1)$,
- $\boldsymbol{\alpha}$ is a positive scalar parameter to be tuned.

Questions

- Does this system admit a solution $\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}$?
- Is this solution feasible?

Non-Hermitian random matrices I

Matrix model
Let A_{N} be a $N \times N$ matrix

$$
A_{N}=\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \\
\vdots & & \vdots \\
A_{N 1} & \cdots & A_{N N}
\end{array}\right)
$$

Non-Hermitian random matrices I

Matrix model
Let A_{N} be a $N \times N$ matrix

$$
A_{N}=\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \\
\vdots & & \vdots \\
A_{N 1} & \cdots & A_{N N}
\end{array}\right)
$$

- Consider matrix $\frac{A_{N}}{\sqrt{N}}$

Non-Hermitian random matrices I

Matrix model
Let A_{N} be a $N \times N$ matrix

$$
A_{N}=\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \\
\vdots & & \vdots \\
A_{N 1} & \cdots & A_{N N}
\end{array}\right)
$$

- Consider matrix $\frac{A_{N}}{\sqrt{N}}$
- Beware that the eigenvalues are complex!

Non-Hermitian random matrices I

Non-hermitian matrix eigenvalues, $\mathrm{N}=1000$

Matrix model

Let A_{N} be a $N \times N$ matrix

$$
A_{N}=\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \\
\vdots & & \vdots \\
A_{N 1} & \cdots & A_{N N}
\end{array}\right)
$$

- Consider matrix $\frac{A_{N}}{\sqrt{N}}$
- Beware that the eigenvalues are complex!

Figure: Distribution of A_{N} / \sqrt{N} 's eigenvalues and the circular law (in red)

Theorem: The Circular Law (Ginibre, Metha, Girko, Götze et al., Tao \& Vu, etc.)

Non-Hermitian random matrices II

Spectral radius and spectral norm

- Theorem (Geman)

$$
\rho\left(\frac{A}{\sqrt{N}}\right) \xrightarrow[N \rightarrow \infty]{\text { a.s. }} 1 .
$$

- Theorem (Bai, Yin)

$$
\left\|\frac{A}{\sqrt{N}}\right\| \frac{a . s .}{N \rightarrow \infty} 2
$$

Non-Hermitian random matrices II

Spectral radius and spectral norm

- Theorem (Geman)

$$
\rho\left(\frac{A}{\sqrt{N}}\right) \xrightarrow[N \rightarrow \infty]{\text { a.s. }} 1
$$

- Theorem (Bai, Yin)

$$
\left\|\frac{A}{\sqrt{N}}\right\| \xrightarrow[N \rightarrow \infty]{\text { a.s. }} 2 .
$$

Corollary

As a consequence, if $\boldsymbol{\alpha}>1$ then $\left(I-\frac{A}{\alpha \sqrt{N}}\right)$ is eventually invertible and

$$
\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}
$$

is well-defined.

Non-Hermitian random matrices III: Fluctuations of \boldsymbol{x} 's components
Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $x_{k}=\left[\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}$

Non-Hermitian random matrices III: Fluctuations of \boldsymbol{x} 's components
Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $x_{k}=\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}$
- then

$$
\left(\begin{array}{c}
x_{1} \\
\cdot \\
x_{M}
\end{array}\right) \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{D}}{\longrightarrow}} \mathcal{N}_{M}\left(\mathbf{1}_{M}, \frac{1}{\alpha^{2}-1} I_{M}\right)
$$

Non-Hermitian random matrices III: Fluctuations of \boldsymbol{x} 's components

Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $x_{k}=\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}$
- then

$$
\left(\begin{array}{c}
x_{1} \\
\cdot \\
x_{M}
\end{array}\right) \underset{N \rightarrow \infty}{\mathcal{D}} \quad \mathcal{N}_{M}\left(\mathbf{1}_{M}, \frac{1}{\alpha^{2}-1} I_{M}\right)
$$

Corollary

- If $\boldsymbol{\alpha}>4$ fixed, the probability to obtain a positive solution goes to zero:

$$
\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \leq \mathbb{P}\left\{\inf _{k \in[M]} x_{k}>0\right\} \sim \Phi^{M} \underset{M \rightarrow \infty}{\longrightarrow} 0
$$

where $\Phi=\int_{-\sqrt{\alpha^{2}-1}}^{\infty} \mathcal{N}(d x)$.

Non-Hermitian random matrices III: Fluctuations of \boldsymbol{x} 's components

Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $x_{k}=\left[\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}$
- then

$$
\left(\begin{array}{c}
x_{1} \\
\cdot \\
x_{M}
\end{array}\right) \underset{N \rightarrow \infty}{\mathcal{D}} \quad \mathcal{N}_{M}\left(\mathbf{1}_{M}, \frac{1}{\alpha^{2}-1} I_{M}\right)
$$

Corollary

- If $\boldsymbol{\alpha}>4$ fixed, the probability to obtain a positive solution goes to zero:

$$
\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \leq \mathbb{P}\left\{\inf _{k \in[M]} x_{k}>0\right\} \sim \Phi^{M} \underset{M \rightarrow \infty}{ } 0
$$

where $\Phi=\int_{-\sqrt{\alpha^{2}-1}}^{\infty} \mathcal{N}(d x)$.

Conclusion

- Feasible solutions for $\boldsymbol{x = 1 + \frac { A } { \boldsymbol { \alpha } \sqrt { N } } \boldsymbol { x }}$ are eventually extremely rare.

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility
Feasibility
Simulations
Stability

Elements of proof

Hand waving

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{N} \xrightarrow[N \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{N}^{*}=\sqrt{2 \log (N)}$.

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{N} \xrightarrow[N \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{N}^{*}=\sqrt{2 \log (N)}$.
Theorem (phase transition, Bizeul-N. '19)

- If $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \leq 1-\delta$ for $N \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 0$.

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{N} \xrightarrow[N \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{N}^{*}=\sqrt{2 \log (N)}$.
Theorem (phase transition, Bizeul-N. '19)

- If $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \leq 1-\delta$ for $N \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 0$.
- If $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \geq 1+\delta$ for $N \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 1$.

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{N} \xrightarrow[N \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{N}^{*}=\sqrt{2 \log (N)}$.
Theorem (phase transition, Bizeul-N. '19)

- If $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \leq 1-\delta$ for $N \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 0$.
- If $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \geq 1+\delta$ for $N \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 1$.

About the logarithmic factor

N	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
$\frac{1}{\alpha^{*}} N$	0.33	0.27	0.23	0.21	0.19

- The quantity $\frac{1}{\alpha_{N}^{*}}=\frac{1}{\sqrt{2 \log N}}$ vanishes extremely slowly as N increases.

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility
Feasibility
Simulations
Stability

Elements of proof

Hand waving

Phase transition (gaussian case)

Homogeneous case, Gaussian entries

- We plot the frequency of positive solutions over 10000 trials for the system

$$
\boldsymbol{x}=\mathbf{1}+\frac{1}{\kappa \sqrt{\log (N)}} \frac{A}{\sqrt{N}} \boldsymbol{x}
$$

as a function of the parameter κ.

Phase transition (gaussian case)

Homogeneous case, Gaussian entries

- We plot the frequency of positive solutions over 10000 trials for the system

$$
\boldsymbol{x}=\mathbf{1}+\frac{1}{\kappa \sqrt{\log (N)}} \frac{A}{\sqrt{N}} \boldsymbol{x}
$$

as a function of the parameter κ.

- A phase transition occurs at the critical value $\kappa=\sqrt{2}$.

Phase transition (non-gaussian case)

Homogeneous case, Bernoulli entries

- Same simulations for (centered and normalized) Bernouilli entries.

Phase transition (non-gaussian case)

Homogeneous case, Bernoulli entries

- Same simulations for (centered and normalized) Bernouilli entries.
- The phase transition does not seem to depend on the distribution of the entries.

A heuristics at critical scaling $\boldsymbol{\alpha}_{N}^{*}=\sqrt{2 \log (N)}$

- At the critical scaling, we have the heuristics

$$
\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \approx 1-\sqrt{\frac{e}{4 \pi \log (N)}}+\frac{e}{8 \pi \log (N)}
$$

based on Gumbel approximation of the minimum of independent $\mathcal{N}(0,1)$.

- Solid line corresponds to the frequency of positive solutions over 10000 simulations at critical scaling - dotted line corresponds to the heuristics formula

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility
Feasibility
Simulations
Stability

Elements of proof

Hand waving

Stability

Theorem (Bizeul, N.)

- Recall $\alpha_{N}^{*}=\sqrt{2 \log (N)}$. Let

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\alpha \sqrt{N}} \boldsymbol{x} \quad \text { and } \quad \boldsymbol{\ell}^{+}=\liminf _{N \rightarrow \infty} \frac{\alpha_{N}}{\alpha_{N}^{*}}
$$

Stability

Theorem (Bizeul, N.)

- Recall $\alpha_{N}^{*}=\sqrt{2 \log (N)}$. Let

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\alpha \sqrt{N}} \boldsymbol{x} \quad \text { and } \quad \ell^{+}=\liminf _{N \rightarrow \infty} \frac{\alpha_{N}}{\alpha_{N}^{*}}
$$

- Assume that $\ell^{+}>1$ (feasibility).

Stability

Theorem (Bizeul, N.)

- Recall $\alpha_{N}^{*}=\sqrt{2 \log (N)}$. Let

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\alpha \sqrt{N}} \boldsymbol{x} \quad \text { and } \quad \boldsymbol{\ell}^{+}=\liminf _{N \rightarrow \infty} \frac{\alpha_{N}}{\alpha_{N}^{*}}
$$

- Assume that $\ell^{+}>1$ (feasibility). Recall the formula for the jacobian

$$
\mathcal{J}=\operatorname{diag}(\boldsymbol{x})\left(-I_{N}+\frac{A}{\alpha \sqrt{N}}\right)
$$

Stability

Theorem (Bizeul, N.)

- Recall $\alpha_{N}^{*}=\sqrt{2 \log (N)}$. Let

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\alpha \sqrt{N}} \boldsymbol{x} \quad \text { and } \quad \boldsymbol{\ell}^{+}=\liminf _{N \rightarrow \infty} \frac{\alpha_{N}}{\alpha_{N}^{*}}
$$

- Assume that $\ell^{+}>1$ (feasibility). Recall the formula for the jacobian

$$
\mathcal{J}=\operatorname{diag}(\boldsymbol{x})\left(-I_{N}+\frac{A}{\alpha \sqrt{N}}\right)
$$

Then

$$
\max _{\lambda \in \operatorname{spec}(\mathcal{J})} \operatorname{Re}(\lambda) \leq-\left(1-\frac{1}{\ell^{+}}\right)+o_{P}(1)
$$

Stability

Theorem (Bizeul, N.)

- Recall $\alpha_{N}^{*}=\sqrt{2 \log (N)}$. Let

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\alpha \sqrt{N}} \boldsymbol{x} \quad \text { and } \quad \ell^{+}=\liminf _{N \rightarrow \infty} \frac{\alpha_{N}}{\alpha_{N}^{*}}
$$

- Assume that $\ell^{+}>1$ (feasibility). Recall the formula for the jacobian

$$
\mathcal{J}=\operatorname{diag}(\boldsymbol{x})\left(-I_{N}+\frac{A}{\alpha \sqrt{N}}\right)
$$

Then

$$
\max _{\lambda \in \operatorname{spec}(\mathcal{J})} \operatorname{Re}(\lambda) \leq-\left(1-\frac{1}{\ell^{+}}\right)+o_{P}(1)
$$

- In particular, feasibility implies stability.

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility

Elements of proof
A heuristics for the proof of feasibility Elements of proof for the feasibility

Hand waving

Reminder on Gaussian extreme values

- Let $\left(Z_{k}\right)_{k \in[N]}$ i.i.d. $\mathcal{N}(0,1)$ random variables, Denote by

$$
\begin{gathered}
M_{N}=\max _{k \in[N]} Z_{k} \quad \text { and } \quad \check{M}_{N}=\min _{k \in[N]} Z_{k}, \\
\alpha_{N}^{*}=\sqrt{2 \log (N)} \quad \text { and } \quad \beta_{N}^{*}=\alpha_{N}^{*}-\frac{1}{2 \alpha_{N}^{*}} \log (4 \pi \log (N))
\end{gathered}
$$

- Then

$$
\begin{array}{lll}
\mathbb{P}\left\{\alpha_{N}^{*}\left(M_{N}-\beta_{N}^{*}\right) \leq x\right\} & \longrightarrow & \operatorname{Gumbel}(x)=e^{-e^{-x}} \\
\mathbb{P}\left\{\alpha_{N}^{*}\left(\check{M}_{N}+\beta_{N}^{*}\right) \geq x\right\} & \xrightarrow[N \rightarrow \infty]{ } & \operatorname{Gumbel}(-x)
\end{array}
$$

Reminder on Gaussian extreme values

- Let $\left(Z_{k}\right)_{k \in[N]}$ i.i.d. $\mathcal{N}(0,1)$ random variables, Denote by

$$
\begin{gathered}
M_{N}=\max _{k \in[N]} Z_{k} \quad \text { and } \quad \check{M}_{N}=\min _{k \in[N]} Z_{k}, \\
\alpha_{N}^{*}=\sqrt{2 \log (N)} \quad \text { and } \quad \beta_{N}^{*}=\alpha_{N}^{*}-\frac{1}{2 \alpha_{N}^{*}} \log (4 \pi \log (N))
\end{gathered}
$$

- Then

$$
\begin{array}{lll}
\mathbb{P}\left\{\alpha_{N}^{*}\left(M_{N}-\beta_{N}^{*}\right) \leq x\right\} & \xrightarrow[N \rightarrow \infty]{ } & \operatorname{Gumbel}(x)=e^{-e^{-x}} \\
\mathbb{P}\left\{\alpha_{N}^{*}\left(\check{M}_{N}+\beta_{N}^{*}\right) \geq x\right\} & \xrightarrow[N \rightarrow \infty]{ } & \operatorname{Gumbel}(-x)
\end{array}
$$

- and

$$
\mathbb{E} M_{N} \sim \sqrt{2 \log (N)} \quad \text { and } \quad \mathbb{E} \check{M}_{N} \sim-\sqrt{2 \log (N)}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
x_{k}=\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k} & =\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{N}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}}
\end{aligned}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k} & =\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{N}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}}
\end{aligned}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k} & =\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{N}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}}
\end{aligned}
$$

2. Notice that $Z_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} A_{k \ell} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k} & =\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{N}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}}
\end{aligned}
$$

2. Notice that $Z_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} A_{k \ell} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\min _{k \in[N]} x_{k} \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\alpha}+\cdots
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k} & =\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{N}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}}
\end{aligned}
$$

2. Notice that $Z_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} A_{k \ell} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\min _{k \in[N]} x_{k} \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\alpha}+\cdots \quad \approx 1-\frac{\sqrt{2 \log (N)}}{\alpha}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k} & =\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{N}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}}
\end{aligned}
$$

2. Notice that $Z_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} A_{k \ell} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\begin{aligned}
\min _{k \in[N]} x_{k} & \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\alpha}+\cdots \approx 1-\frac{\sqrt{2 \log (N)}}{\alpha} \\
& >0 \quad \text { if } \quad \frac{\sqrt{2 \log (N)}}{\alpha}<1-\delta
\end{aligned}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k} & =\left[\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{N}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}}
\end{aligned}
$$

2. Notice that $Z_{k}=\frac{1}{\sqrt{N}} \sum_{\ell=1}^{N} A_{k \ell} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\begin{aligned}
\min _{k \in[N]} x_{k} & \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\alpha}+\cdots \quad \approx 1-\frac{\sqrt{2 \log (N)}}{\alpha} \\
& >0 \quad \text { if } \quad \frac{\sqrt{2 \log (N)}}{\alpha}<1-\delta \\
& <0 \quad \text { if } \quad \frac{\sqrt{2 \log (N)}}{\alpha}>1+\delta
\end{aligned}
$$

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility

Elements of proof
A heuristics for the proof of feasibility
Elements of proof for the feasibility

Hand waving

Elements of proof

Recall that the feasible solution $\boldsymbol{x}=\left(x_{k}\right)$ writes

$$
x_{k}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1}\right]_{k}
$$

Elements of proof

Recall that the feasible solution $\boldsymbol{x}=\left(x_{k}\right)$ writes

$$
x_{k}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1}\right]_{k}
$$

1. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[N]} R_{k}}{\alpha \alpha^{*}} \xrightarrow[N \rightarrow \infty]{\mathcal{P}} 0
$$

Elements of proof

Recall that the feasible solution $\boldsymbol{x}=\left(x_{k}\right)$ writes

$$
x_{k}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where }
$$

$$
R_{k}=\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1}\right]_{k}
$$

1. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[N]} R_{k}}{\alpha \alpha^{*}} \xrightarrow[N \rightarrow \infty]{\mathcal{P}} 0
$$

and

2. [Sub-Gaussiannity of R_{k}] if

$$
\mathbb{E} e^{\lambda R_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}} \quad \text { then } \quad \mathbb{E} \max _{k} R_{k} \leq K \sqrt{2 \log (N)}
$$

Elements of proof

Recall that the feasible solution $\boldsymbol{x}=\left(x_{k}\right)$ writes

$$
x_{k}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where }
$$

$$
R_{k}=\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1}\right]_{k}
$$

1. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[N]} R_{k}}{\alpha \alpha^{*}} \xrightarrow[N \rightarrow \infty]{\mathcal{P}} 0
$$

and

2. [Sub-Gaussiannity of R_{k}] if

$$
\mathbb{E} e^{\lambda R_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}} \quad \text { then } \quad \mathbb{E} \max _{k} R_{k} \leq K \sqrt{2 \log (N)}
$$

3. [Gaussian Concentration] if $A \mapsto R_{k}(A)$ is K-Lipschitz, then

$$
\mathbb{E} e^{\lambda R_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}}
$$

for GAUSSIAN entries (or entries $\in L S I$)

Elements of proof

Recall that the feasible solution $\boldsymbol{x}=\left(x_{k}\right)$ writes

$$
x_{k}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{N}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1}\right]_{k}
$$

1. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[N]} R_{k}}{\alpha \alpha^{*}} \xrightarrow[N \rightarrow \infty]{\mathcal{P}} 0
$$

and

2. [Sub-Gaussiannity of R_{k}] if

$$
\mathbb{E} e^{\lambda R_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}} \quad \text { then } \quad \mathbb{E} \max _{k} R_{k} \leq K \sqrt{2 \log (N)}
$$

3. [Gaussian Concentration] if $A \mapsto R_{k}(A)$ is K-Lipschitz, then

$$
\mathbb{E} e^{\lambda R_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}}
$$

for GAUSSIAN entries (or entries $\in L S I$)
\Rightarrow The main effort is to prove that $A \mapsto R_{k}(A)$ is K-Lipschitz.

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility

Elements of proof

Hand waving
Non-Homogeneous case
Extensions and open questions

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Theorem

Assume that there exist $\kappa, K>0$ such that $\kappa \leq \boldsymbol{r}_{\text {min }}(n) \leq \boldsymbol{r}_{\max }(n) \leq K$ then

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Theorem

Assume that there exist $\kappa, K>0$ such that $\kappa \leq \boldsymbol{r}_{\text {min }}(n) \leq \boldsymbol{r}_{\max }(n) \leq K$ then

- if $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \leq(1-\delta) \frac{\sigma_{\boldsymbol{r}}(n)}{\boldsymbol{r}_{\max }(n)}$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 0$

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Theorem

Assume that there exist $\kappa, K>0$ such that $\kappa \leq \boldsymbol{r}_{\text {min }}(n) \leq \boldsymbol{r}_{\max }(n) \leq K$ then

- if $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \leq(1-\delta) \frac{\sigma_{\boldsymbol{r}}(n)}{\boldsymbol{r}_{\max }(n)}$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{\longrightarrow} 0$
- if $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \geq(1+\delta) \frac{\sigma_{\boldsymbol{r}}(n)}{\boldsymbol{r}_{\min }(n)}$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 1$.

Non-homogeneous case II

- In the non-homogeneous case, there is a transition buffer

$$
\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \in\left[\frac{\sigma_{\boldsymbol{r}}(n)}{\boldsymbol{r}_{\max }(n)}, \frac{\sigma_{\boldsymbol{r}}(n)}{\boldsymbol{r}_{\min }(n)}\right]
$$

and not a sharp transition at $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \sim 1$.

Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility

Elements of proof

Hand waving
Non-Homogeneous case
Extensions and open questions

Extensions and Open Questions

Extensions and Open Questions

Remark on a technical bottleneck

- Concentration is highly robust to estimate the extreme values of the R_{k} 's regardless of their dependence :-)

Extensions and Open Questions

Remark on a technical bottleneck

- Concentration is highly robust to estimate the extreme values of the R_{k} 's regardless of their dependence :--) .. but extremely Gaussian-dependent

Extensions and Open Questions

Remark on a technical bottleneck

- Concentration is highly robust to estimate the extreme values of the R_{k} 's regardless of their dependence :--) .. but extremely Gaussian-dependent $\boxed{:-}$

Open questions

- Study of sparse models.
- Equilibria with persistent and extinct species.
- Dynamical study of large Lotka-Volterra systems, etc.

Extensions and Open Questions

Remark on a technical bottleneck

- Concentration is highly robust to estimate the extreme values of the R_{k} 's regardless of their dependence :--) .. but extremely Gaussian-dependent $:-$ (

Open questions

- Study of sparse models.
- Equilibria with persistent and extinct species.
- Dynamical study of large Lotka-Volterra systems, etc.

References

- Positive solutions for Large Random Linear Systems, Bizeul and Najim, arXiv:1904.04559
- On-going project 80 PRIME - CNRS (KARATE) with François Massol and others
LotKA-VolterRA models - when random maTrix theory meets theoretical Ecology

