

Analyse exploratoire de graphes d'infection

Fabrice Rossi avec Stéphan Clémençon, Hector De Arazoza, et Viet-Chi Tran

ANR Viroscopy (ANR-08-SYSC-016-03)

Télécom ParisTech, Universidad de la Habana, and Université Lille 1

Sraphe d'infection

- suivi du VIH/SIDA à Cuba de 1986 à 2004
- suivi d'infection étendu : partenaires sexuels durant les deux années avant une détection

- nombreuses caractéristiques pour chaque patient : genre, orientation sexuelle, date de naissance, etc.
- objectifs d'étude :
 - effets des caractéristiques sur la propagation
 - efficacité du suivi d'infection
 - etc.

B B Données volumineuses

base de données volumineuse :

- 5 389 patients décrits par une quinzaine de variables
- 4 073 relations (graphe assez peu dense)
- 2 386 patients dans une même composante connexe du graphe (3 168 relations dans cette composante)
- bases « comparables » :
 - Rothenberg et al., 1995
 - étude Colorado Springs, suivi de contact
 - 2 200 personnes (quelques VIH+), 965 dans la plus grande composante connexe
 - Wylie et Jolly, 2001
 - étude Manitoba, suivi d'infection
 - 4 544 personnes (MST), 82 dans la plus grande CC
 - Bearman, Moody et Stovel, 2004
 - sexualité des adolescents américains (pas de MST), suivi de contact
 - 573 personnes, 288 dans la plus grande CC

orientation sexuelle

	population	GCC
femmes	0.21	0.20
hommes hétéros	0.11	0.05
hommes bisexuels	0.69	0.76

« recrutement »

orientation sexuelle

	population	GCC
femmes	0.21	0.20
hommes hétéros	0.11	0.05
hommes bisexuels	0.69	0.76

« recrutement »

orientation sexuelle

	population	GCC
femmes	0.21	0.20
hommes hétéros	0.11	0.05
hommes bisexuels	0.69	0.76

« recrutement »

諸選擇的Graphes aléatoires

- modélisation macroscopique du réseau
- modèle de configuration :
 - degrés des noeuds fixés
 - distribution uniforme sur les graphes (simples) avec ces degrés
 - principe d'appariement de pattes
- résultats (asymptotiques) connus sur :
 - composante connexe « géante »
 - percolation
 - etc.

ingrédients :

- p_k distribution des degrés, $z = \sum_k k p_k$, degré moyen
- q_k degré « en excès » $q_k = \frac{(k+1)p_{k+1}}{z}$
- fonctions génératrices associées

$$G_0(x) = \sum_k p_k x^k, \quad G_1(x) = \sum_k q_k x^k$$

transition de phase autour de

$$\sum_k k(k-2)p_k = 0$$

fraction du graphe dans la plus grande composante, $S = \lim_{n} |C_{max}|/n$, solution de

$$S = 1 - G_0(u), \quad u = G_1(u)$$

retour à Cuba : nombre de partenaires sexuels sur les deux années précédant la détection

sous le modèle de configuration, la composante géante occupe 90.8% du réseau

retour à Cuba : nombre de partenaires sexuels sur les deux années précédant la détection

sous le modèle de configuration, la composante géante occupe 90.8% du réseau

E 📽 🕅 Loi puissance

- cas particulier du modèle de configuration
- $\blacksquare p_k \sim k^{-\alpha}$
- transition de phase :
 - $\alpha > 3.4788$: pas de composante géante (S = 0)

$$\zeta(\alpha-2)=\alpha\zeta(\alpha-1),$$

avec $\zeta(\alpha) = \sum_k k^{-\alpha}$.

- $\alpha <=$ 2, S = 1 : une seule composante dans le graphe
- transition continue entre les deux
- exemples, réseaux de contacts sexuels :
 - Suède (Liljeros et al, 2001) : $\alpha \simeq$ 2.4
 - mais Cuba : $\alpha \simeq$ 3.5

響 の 『 と Percolation de lien

- modèle naïf de contamination :
 - probabilité T d'occupation d'un lien
 - graphe aléatoire support \Rightarrow graphe d'infection potentiel
- analyse asymptotique sur des modèles simples :
 - composante géante du graphe d'infection
 - transition de phase sur T
- **a** Cuba, $T_c \simeq 0.099$

Analyser plus finement

- modèles très éloignés de la réalité :
 - pas de prise en compte de l'orientation sexuelle
 - plus généralement : noeuds anonymes
 - résultats asymptotiques
- analyse exploratoire :
 - visualisation
 - vérification à posteriori
 - ré-échantillonnage

Analyser plus finement

- modèles très éloignés de la réalité :
 - pas de prise en compte de l'orientation sexuelle
 - plus généralement : noeuds anonymes
 - résultats asymptotiques
- analyse exploratoire :
 - visualisation
 - vérification à posteriori
 - ré-échantillonnage

Karakan Series and Se

- réduction de complexité :
 - classification (hiérarchique) des sommets du graphe
 - visualisation du graphe des classes

- pertinence ?
 - qualité de la classification
 - lisibilité
 - inférence

classification des sommets d'un graphe :

- domaine très étudié (détection de communautés)
- dizaines de techniques
- objectif ici : résumer la structure du graphe
- mesure de qualité
 - Modularité (Girvan et Newman, 2004) :

$$Q = \frac{1}{2m} \sum_{l=1}^{L} \sum_{i,j \in C_l} \left(w_{ij} - \frac{k_i k_j}{2m} \right)$$

- + favorise les classes denses
- + gère correctement les sommets de haut degré
- + nombre de classes « optimal »
- + adapté à la visualisation (Noack, 2009)
- optimisation NP difficile
- résolution limitée
- sensible au « bruit »

algorithmes de maximisation

- méthodes gloutonnes
- fusion de classes et raffinement (échange de sommets)
- trouvent toujours une classification...
- valeur de la modularité peu informative

algorithmes de maximisation

- méthodes gloutonnes
- fusion de classes et raffinement (échange de sommets)
- trouvent toujours une classification...
- valeur de la modularité peu informative
- test sur la modularité :
 - graphe aléatoire (modèle de configuration)
 - classification ⇒ modularité
 - niveau « ambiant » de modularité : *p-value* de la modularité sur le graphe étudié

14 / 27 F. Rossi et al.

4 classes, modularité $\simeq 0.42$

15 / 27 F. Rossi et al.

Analyses plus fines

16 / 27 F. Rossi et al.

Modèle de configuration : mêmes degrés

Repositionné

16 / 27 F. Rossi et al.

6 classes, modularité $\simeq 0.35$

16 / 27 F. Rossi et al.

Nouveau tirage

5 classes, modularité $\simeq 0.34$

la classification sur le graphe d'origine a un sens

Composante connexe principale

17 / 27 F. Rossi et al.

Classification

 \Rightarrow 39 classes (89.5% des liens internes aux classes)

 \Rightarrow modularité \simeq 0.85

 \Rightarrow modularité « aléatoire » ≤ 0.74

Classification

 \Rightarrow 39 classes (89.5% des liens internes aux classes)

 \Rightarrow modularité \simeq 0.85

 $\begin{array}{l} \Rightarrow \mbox{modularit}\acute{e} \\ \mbox{"$``aléatoire" $$``s$} & \le 0.74 \\ \Rightarrow \mbox{visualisation} \\ \mbox{hi\'erarchique de} \\ \mbox{l'orientation sexuelle} \end{array}$

Statistique graphique

p-value d'un test du χ^2 sur orientation sexuelle atypique la distribution de l'orientation sexuelle

Statistique graphique

Pourcentages

distances géodésiques :

	Bisexual	Mixed	Typical
Bisexual	9.79	12.28	11.93
Mixed	12.28	7.56	9.24
Typical	11.93	9.24	12.04

connections directes :

- 333 connexions entre groupes (sur 3168)
- seulement 16 connexions entre les méta-groupes
- 1 % de chance d'obtenir si peu de connexions entre méta-groupes

Recrutement annuel

Pas de prise en compte explicite du temps, mais connexions « datées »

Recrutement annuel

Pas de prise en compte explicite du temps, mais connexions « datées »

exploration visuelle de graphes :

- ne montrer que ce qui existe
- statistique graphique
- rendu hiérarchique : simplification ou détails
- validation par simulation :
 - coûteux
 - reste très naïf : ne dispense que de l'asymptotique

perspectives :

- aspect temporel explicite
- graphes multipartis
- etc.

moins de détails :

- poursuite de l'algorithme glouton de classification
- fusion de classes (contrainte hiérarchique)
- visualisation barycentrique
- maintient de la modularité au dessus du seuil aléatoire
- plus de détails :
 - classification des classes
 - liens externes supprimés
 - pas de sous-classes non significatives
 - maintient de la modularité globale au dessus du seuil aléatoire

Simplification

p-value

25 / 27 F. Rossi et al.

Simplification

p-value

résidus de Pearson

Confirme la structure en deux parties

Sous-structures

⇒ 5 classes possèdent une sous structure ⇒ la modularité se maintient au dessus de 0.81

Sous-structures

 ⇒ 5 classes possèdent une sous structure
 ⇒ la modularité se maintient au dessus de 0.81
 ⇒ sous structures

atypiques

Analyse locale

Visualisation classique

Visualisation hiérarchique

