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Motivations
A number of stochastic studies have been developed to understand precisely the
phenotypic evolution of a population. This poster focus on the spatial aspect
which is an important issue in Darwinian evolution. Ecological researches ([1])
conclude that a heterogeneous environment can induce some diversif cations wi-
thin species, as observed in the example of the Darwinian f nches.
Our objective is to understand the framework of a large population evolving in a bounded space domain
when the mutations are rare.

I. Stochastic Model

The stochastic model, proposed in [2], is an individual based model with spatially dependent coeff -
cients, which represents an asexual population.
Each individual i is characterized at time t by

◦ its trait : U i
t in a compact subset U of R

q,
◦ its position : Xi

t in an open bounded subset X of R
d.

Thus the population is modeled by a process with values in the space of f nite measures, MF (X ×U),

νK
t =

1

K

Nt
∑

i=1

δ(X i
t ,U

i
t )
,

where Nt is the number of individuals alive at time t, and K > 0 is a scaling parameter.

Spatial evolution : the migration of an individual is described by a diffusion process normally ref ec-
ted at the boundary of X :

dXt =
√

2mUt
Id · dBt − dkt

with k a continuous, increasing process that represents the normal ref exion at the boundaries of X
and B a d-dimensional Brownian motion.

Phenotypic evolution: an individual of trait u and position x has
– a birth rate : bu(x). For each event of birth, with probability

∗ rK · pu(x), the child is a mutant, its new trait v is chosen thanks to a law θ(x, u, v)dv,
∗ 1 − rK · pu(x), the child is a clone of its parent,

– a natural death rate : du(x),
– a death rate, coming from the competition exerted by the individual (xj, uj) : 1

KIu,uj(x − xj).

II. Stochastic simulations

In that simulation, U = [0, 1] and X = (0, 1). Initially, all individuals
have the same trait and position, u0 = 0.5 and x0 = 0.5.

This simulation illustrate an example of niche differentiation : natural
selection drives the population into sub-populations that have different
patterns of trait and that live in different spatial niches. As time
increases, we observe more and more niches, then the pattern is
stabilizing.

Parameters :
• mu ≡ 0.003,
• bu(x) = max{2−20(x−u)2, 0}
• du(x) = 1,
• Iu,v(x) = C1|x|<0.1

• θ(x, u, v)dv is a gaussian law
N (u, 0.01) conditioned on
staying in U ,

• K = 500, rK = 0.01.
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III. Large population and rare mutations

Here, we study a limit of large population to understand some mean behaviour of the population ; in
the same time, we suppose that mutation is a really rare event : we suppose

K−→ + ∞ and rK −→
K→∞

0.

Under some assumptions of regularity of the parameters and supK E
[ ∫

X×U νK
0 (dx, du)

]

< +∞.

Theorem 1(see [2]) For all T > 0, if (νK
0 )K>0 converges in law to some deterministic f nite mea-

sure with a density gu(0, x)dxdu then the process (νK)K>0 in D([0, T ],MF (X̄ × U)) converges
in law to a deterministic continuous function ξ ∈ C([0, T ],MF (X × U)) such that for each t, ξt
admits a density gu(t, x)dxdu.
The density function g is a weak solution to the partial differential equation on [0, T ] × X × U
with Neumann’s boundary condition and initial condition gu(0, x) :






∂tgu(t, x) = mu∆x(gu(t, x)) +
(

bu(x) − du(x) −

∫

X×U
Iu,v(x − y)gv(t, y)dydv

)

gu(t, x),

∂ngu(t, x) = 0 on [0, T ] × (∂X ) × U ,

Thanks to the assumption of rare mutations, there is no mutation in the limit. Thus, if a f nite number
of traits {u1, u2, .., uk} are represented in the population initially, then this is true for all time t.
Question : What is the long time behaviourof such a deterministic population with a finite num-
ber of traits ?
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IV. Monomorphic population

In the case of one trait, the spatial density g(t, .) of the population at time t satisf es this equation with
a easier competition kernel

{

∂tg(t, x) = m∆xg(t, x) +
[

(b − d)(x) −
∫

X I(y)g(t, y)dy
]

g(t, x),

∂ng(t, x) = 0.
(1)

Let H be the principal eigenvalue (i.e. the largest eigenvalue) of the linear elliptic operator L, def ned
for all functions h by Lh = m∆xh + (b − d)h.

Under some assumptions of regularity and positivity,
Theorem 2For any positive C2-solution, g, to (1),

• if H > 0, g(t, ·)
L∞

−→ḡ, as t → ∞ with ḡ the unique positive steady state of (1),
• if H ≤ 0, g(t, ·)

L∞

−→0 as t → ∞.

Thus H > 0 is a necessary and sufficient condition for the survival of the population, that is, only
the diffusion parameter and the natural growth rate have an influence on the non-extinction.
The competition rate affects only the total size of the population in the limit.

V. Dimorphic population

The system of parabolic equations satisf ed by the density functions in the case of two types is










∂tg1(t, x) = m1∆xg1(t, x) +

(

(b1 − d1)(x) −

∫

X
I11(y)g1(t, y)dy −

∫

X
I12(y)g2(t, y)dy

)

g1(t, x),

∂ng1(t, x) = 0, on R
+ × ∂X ,











∂tg2(t, x) = m2∆xg2(t, x) +

(

(b2 − d2)(x) −

∫

X
I21(y)g1(t, y)dy −

∫

X
I22(y)g2(t, y)dy

)

g2(t, x),

∂ng2(t, x) = 0, on ∈ R
+ × ∂X ,

This system admits 4 nonnegative steady states depending on the ecological parameters :
∗ the trivial state (0, 0),
∗ two states with no coexistence (ḡ1, 0) and (0, ḡ2),
∗ one state with coexistence (ĝ1, ĝ2).

Problem : Initially we suppose that a population of type 1 is well
established, its density is closed to the steady state in the case of a
monomorphic population that survive. But there exists also a

mutant population of type 2 with a small density. Thus, the initial
condition is near the state (ḡ1, 0). What are the conditions to

observe invasion by the mutants ?

Parameters :
(bi − di)(x) = max{āi(1 − 20(x − ui)

2),−1},
m1 = m2 = 0.01, ā1 = 1, u1 = 0.3, u2 = 0.5,
different values of ā2 will be explored,
Iij(x) = 0.1 + 0.9 · 1|x−ui|<0.25,|x−uj |<0.25.

Theorem 3For any initial condition in L2(X ), the unique solution of the previous system of
parabolic equations tends in L∞(X ) to one of the nonnegative steady states.

To understand the long time behaviour and identify the limit, we have f rst studied the limit of the
population densities normalized by the masses. Then we have analyzed the dynamics of the masses
described by a perturbed Lotka-Volterra system. Finally, to clarify some uncertain cases, we have used
methods with spectral decompositions.
The steady state reached after a long time is characterized by the following parameters for i = 1, 2 :

∗Hi the principal eigenvalue of Li = mi∆x(.) + (bi − di).,
∗ hi the principal eigenvector of Li such that

∫

X hi(y)dy = 1, that is, for all x ∈ X ,
mi∆x(hi(x)) + (bi − di)(x)hi(x) = Hihi(x),

∗ µji =
∫

X Iji(y)hi(y)dy, for j = 1, 2, the competition kernels applied on the eigenvector.

Here, we only present three different behaviors for our problem :

If H1 > 0, H2µ11 − H1µ21 < 0,

the steady state (ḡ1, 0) is stable. Thus, the mutant population
goes extinct rapidly and we have f xation of type 1.
( Moreover, if H1µ22 − H2µ12 > 0, for any initial condition,
the solution tends to (ḡ1, 0), i.e. it is globally asymptotically
stable).

ā2 = 0.8, H2µ11−H1µ21 = −0.155, H1µ22−H2µ12 = 0.383

If H1 > 0, H2 > 0, H2µ11−H1µ21 > 0, H1µ22−H2µ12 > 0

the steady state (ĝ1, ĝ2) is globally asymptotically stable.
That is, as t approaches +∞, we observe a coexistence
between the two populations. The competition of the mutant
on the population of type 1 is revealed by the diminution of
the total number of type 1 compared with the previous case.

ā2 = 1, H2µ11 − H1µ21 = 0.164, H1µ22 − H2µ12 = 0.181

If H2 > 0, H2µ11 − H1µ21 > 0, H1µ22 − H2µ12 ≤ 0

the steady state (0, ḡ2) is globally asymptotically stable. The
mutant population has invaded the space. Notice that it does
not live on the same spacial position as the type 1. From an
ecological point of view, that example is interesting because
it shows a change of spatial niche due to a selection event. ā2 = 1.2, H2µ11−H1µ21 = 0.487, H1µ22−H2µ12 = −0.037

Perspectives
Our objective now is to understand the framework of adaptative dynamics for this spatially structured
population. The theory of adaptative dynamics, developped by Metz et al. and Dieckmann and Law,
supposed that the time scale of the selective events is faster than the time scale of mutation events.
Thus, we want now to understand the time scale of mutation events : between two mutations is the
dynamic driven by the previous system of differential equations ? What is the effect of the spatial
structure on that kind of dynamics ?




