

Species Abundance Monitoring with Crowdsourcing Data?

Christophe Giraud

Université Paris Sud Ecole Polytechnique

Chaire MMB, décembre 2015

References

- C. Giraud, C. Calenge, C. Coron, R. Julliard. Capitalizing on opportunistic data for monitoring relative species abundances. To appear in Biometrics (2016).
- C. Giraud, R. Julliard, E. Porcher. Delimiting synchronous populations from monitoring data. Environmental and Ecological Statistics (2013).
- C. Calenge, J. Chadoeuf, C. Giraud, S. Huet, R. Julliard, P. Monestiez, J. Piffady, D. Pinaud, S. Ruette. The spatial distribution of Mustelidae in France. PLoS ONE (2015).

Species abundance monitoring

Different goals

- Atlas of presence (where can we find wolves in France?)
- Abundance estimation (how many wolves in Mercantour?)
- Investigation of spatial and/or temporal variations of abundance (temporal evolution of wolves in Mercantour compared to Savoie?)

Abundance versus relative abundance

Notation

 N_{ij} = abundance of species *i* at time/location *j*

Relative abundance

For investigating spatio-temporal variations of abundance, we do not need to estimate absolute abundances but only relative abundances $N_{ij}/N_{ij'}$.

Our goal

In the following, our goal is only to estimate relative abundances

$$\widetilde{N}_{ij}=N_{ij}/N_{i1}.$$

We do not try to estimate abundances.

Data: institutional data

Institutional data

Data from scientists or environmental institution

- universities
- conservation programs, national parks
- hunting management programs

Features

- High-quality data 🙂
- Standardized protocols 🙂
- Small coverage 🙁

\longrightarrow insufficient coverage for large scale relative abundance monitoring

Christophe Giraud (Orsay)

Data: citizen participative data

Citizen data

Many different programs collect data, most of the time via a dedicated website. These programs are very heterogeneous.

Two important families of data

- Citizen science programs from some scientific institution
- Opportunistic data collection program (pure crowdsourcing)

Participative data: citizen science programs

Citizen science program

Institutional programs of data collection with usually:

- a standardized protocol
- some quality controls (of various nature)

Examples

- STOC data (MNHN): common birds (check list), stratified random sampling, 2 visits, 10 observation points of exactly 5 minutes within 4 hours after sunrise. Cooptation.
- SPIPOL data (MNHN): pollinator survey, 20min, with pictures of every insects (for identification), at any time. Open to anyone. Online identification from pictures (with cross-validation).

< 日 > < 同 > < 三 > < 三 >

Participative data: citizen science programs

Participative data: citizen science programs

Features

- Quality controls 🙂
- Standardized protocols 🙂
- Medium coverage

ightarrow insufficient coverage for some ecological investigations

Participative data: opportunistic data

Opportunistic data

Data collections with usually:

- no protocol, no complete check-list,
- no quality controls,
- open to anyone,
- sometimes no scientific purpose (simply social sharing of observations).

Examples

- LPO (french ecological association for birds conservation): anyone can record his own observations after a birding session.
- eBird.org : similar in North America (mainly), with a temporal atlas of migrations
- Peau bleue : similar for divers

About eBird

Global tools for birders, critical data for science

- · Record the birds you see
- Keep track of your bird lists
- Explore dynamic maps and graphs
- Share your sightings and join the eBird community
- Contribute to science and conservation

Overview

A real-time, online checklist program, eBird has revolutionized the way that the birding community reports and accesses information about birds. Launched in 2002 by the Cornell Lab of Ornithology and National Audubon Society, eBird provides rich

About eBird

- Global Big Day
- About eBird
- Regional Portals
- Affiliates and Sponsors
- Publications
- Recommended Citation
- Privacy Policy

News & Features

Latest News

イロト イポト イヨト イヨト

Occurrence Maps

Miracle or Mirage?

MIRACLE !!

We have all the information: don't need stats anymore!

- Thousands of observers !
- Millions of counts !
- FREE !

Miracle or Mirage?

MIRAGE !!

The plural of anecdote is not data!

- no quality control
- partial reporting
- strong socio-geographic biases
- heterogeneity of the observers
- no information on the observational effort

Participative data: opportunistic data

\longrightarrow Can we do something with these data?

Im my point of view:

- we can certainly get informations from these data (ask Google...)
- but, can we draw scientific conclusions from these data?

May be yes, with a good knowledge of the data collection process.

Overview

Contents

A rationale for exploiting opportunistic data

- ② From rationale to practice
- Section 3 Example of possible application

Basic modeling of observations

Modeling of a count

The count X_{ij} for the species *i* at location *j* is

$$X_{ij} = \sum_{v_j \in \mathcal{V}_j} \sum_{a_{ij}=1}^{N_{ij}} Z_{a_{ij}v_j}, \quad \text{with} \ \ Z_{a_{ij}v_j} \sim \mathcal{B}(p_{a_{ij}v_j}).$$

Approximative distribution

With Le Cam Inequality (hypotheses...)

$$\begin{split} \mathrm{law}(X_{ij}) &\approx \mathrm{Poisson}\bigg(N_{ij}\sum_{v_j \in \mathcal{V}_j} \bar{p}_{iv_j}\bigg), \quad \mathrm{with} \ \ \bar{p}_{iv_j} = \frac{1}{N_{ij}}\sum_{a_{ij}=1}^{N_{ij}} p_{a_{ij}v_j} \\ &\approx \mathrm{Poisson}(N_{ij}O_{ij}). \end{split}$$

Image: A image: A

Observational bias

The observational bias

$$O_{ij} = \sum_{v_j \in \mathcal{V}_j} ar{p}_{iv_j}$$

reflects the observational process

Abundance	Effort			Errors
Species abundance distribution	× Observ Obser d	× Observers distribution Observational effort distribution		Partial reporting Misidentification Misreporting
$\stackrel{sampling}{\longrightarrow}$		Data Animal counts		

Main Assumption

Main assumption

We have the decomposition

$$O_{ij} \approx E_j P_i.$$

Interpretation

- E_j =function(prospecting effort in site j, weather conditions, etc)
- P_i = detection/reporting probability for the species *i*

Validity?

Can be justified when the sites j have homogeneous habitat type proportions. If not? ... see later.

< /₽ > < ∃ >

Identifiability

Model

$$Count(species=i, site=j) \sim Poisson(N_{ij} E_j P_i)$$

where

- N_{ij} = abundance of species *i* at site *j*
- E_j = prospecting effort at site j
- P_i = detection/reporting probability of species i

Identifiability issue

prospecting effort E_j : unknown for opportunistic data, even in relative scale $E_j/E_{j'}$.

 \longrightarrow we cannot have access to relative abundances $N_{ij}/N_{ij'}$ from the distribution. $\textcircled{\mbox{$\Xi$}}$

(人間) くちり くちり

Rationale

What can we do?

- Modeling *E_j* (too complex too sensitive)
- Combining opportunistic data with "effort standardized data"

"Effort standardized data" = data where we know (or can estimate) the ratios $E_j/E_{j'}$

Notation

Dataset labelling:

- k = 0 : "effort standardized data"
- k = 1: opportunistic data

Rationale

Combining data sets (basic model)

```
Count(species=i, site=j, data=k) ~ Poisson(N_{ij} E_{jk} P_{ik})
```

with

- $E_{j0}/E_{j'0}$ known (institutional), $E_{j1}/E_{j'1}$ unknown (opportunistic)
- $E_{j1} \gg E_{j0}$ (in general)

\bigcirc 2IJ observations for IJ + 2I + J unknown parameters

Identifiability requires I + 1 additional constraints

A simple Generalized Linear Model

Generalized Linear Model

Count(species=*i*, site=*j*, data=*k*) ~ Poisson(
$$\lambda_{ijk}$$
)
with log(λ_{ijk}) = $n_{ij} + e_{jk} + p_{ik}$.

\rightarrow we can estimate the relative abundance for each species

Does it make sense?

Gain of combining?

- In theory?
- In practice?

-

Theoretical gain of combining

Reduction of variance

• Single "standardized" dataset: with *E*_{j0} known

$$\operatorname{variance}(\widehat{N}_{ij}^{(1)}) = \frac{N_{ij}}{P_{i0}E_{j0}}$$

• standardized+opportunistic datasets: with $E_{j1} \gg E_{j0}$

Remark: Combining gain is limited.

Theoretical gain of combining: explanation

A simple formula

If the ratios P_{i0}/P_{i1} are the same for all *i*, we have

$$\widehat{N}_{ij} = rac{X_{ij0} + X_{ij1}}{\sum_{I} (X_{ij0} + X_{Ij1})} imes rac{\sum_{I} X_{Ij0}}{E_{j0}} \,,$$

and when $X_{ij1} \gg X_{ij0}$

$$\widehat{N}_{ij} \stackrel{X_{ij1} \gg X_{ij0}}{\approx} \frac{X_{ij1}}{\sum_{I} X_{Ij1}} imes rac{\sum_{I} X_{Ij0}}{E_{j0}}$$

Explanation

Roughly, dataset 1 provides a precise estimate of $N_{ij} / \sum_{l} P_{l0} N_{lj}$ and dataset 0 is used to estimate $\sum_{l} P_{l0} N_{lj}$

Another theoretical gain

Species not monitored in "standardized dataset"

- Correspond to $P_{i0} = 0$
- We can still estimate \widehat{N}_{ij}

Theoretical performance

We have

$$\operatorname{var}(\widehat{N}_{ij}) \overset{E_{j_1 \to \infty}}{\sim} \frac{N_{ij}^2}{\sum_I P_{I0} N_{Ij} E_{j0}}.$$

so in particular

$$\operatorname{var}(\widehat{N}_{ij}) \overset{E_{j1} \to \infty}{\sim} \operatorname{var}(\widehat{N}_{ij}^{0,\operatorname{imaginary}}) \times \frac{P_{i0}^{\operatorname{imaginary}} N_{ij}}{\sum_{l} P_{l0} N_{lj}}$$

Numerical test

Dataset: birds in Aquitaine

Estimation:

- (A) ACT dataset (from hunting management)
- (B) LPO dataset (opportunistic)

Validation:

(C) STOC dataset (high-quality participative science)

Predictive power

Full ACT dataset						
Data	ACT	ACT+LPO				
ρ 0.27		0.55				

Subsampled ACT dataset $(1/18)$					
Data	ACT'	ACT'+LPO			
ρ	0.06	0.54			

 \longrightarrow clear gain of combining...

... despite the fact that the basic assumption $O_{ijk} = E_{jk}P_{ik}$ is not likely to be met (due to heterogeneous habitat type repartition)

Another example of application

Spatial distribution of Mustelidae

Data from a conservation institution (professional)

- proxy of the observational effort for part of the data
- but not for most of it

Christophe Giraud (Orsay)

Crowdsourcing Data in Ecology

Cornell 2015 29 / 45

Another version of the combining idea (Fithian, Elith, Hastie & Keith, to appear in MEE)

Thinning model

- Species distribution: IPP (λ_i) with $\lambda_i(s) = \exp(\alpha_i + \langle \beta_i, x(s) \rangle)$
- Observations: $IPP(\lambda_i b_{ik})$ with
 - $b_{i0}(s) = 1$ at locations where survey data are available, 0 else
 - $b_{i1}(s) = \exp\left(\gamma_i + \langle \delta, z(s) \rangle\right)$

Thought different (effort modeling, thinning), similar idea of "combining" survey data with opportunistic data.

A more realistic model

Stratification according to the habitat

Must take into account:

- Habitat type specificity of species: S_{ih}
- Habitat type bias of the observer: q_{hk}

 \longrightarrow requires a more complex modeling

$$X_{ick} \sim \text{Poisson}\left(N_{ij}E_{ck}P_{ik}\sum_{h \in c} \frac{q_{hk}}{\sum_{h' \in c} q_{h'k}} \frac{\alpha_h S_{ih} V_{hc}}{\sum_{h'} S_{ih'} V_{h'j}}\right)$$

Results: promising preliminary results.

Some opportunities for Ecology: an example

Delimiting synchronous populations

We want to identify areas where populations have the same temporal evolution (due to climatic forces, food avalaibility, etc).

Formalization

Find regions R such that

$$Z_{st} \sim ext{Poisson}(\exp(heta_s + f(x_s, t))) \quad ext{with } f(x, t) \approx \sum_R
ho_R(t) \mathbf{1}_{x \in R}.$$

A tentative estimation procedure

Penalized negative log-likelihood

$$(\hat{\theta}, \hat{f}) \in \operatorname*{argmin}_{\theta, f} \left\{ \mathcal{L}_{Z}(\theta, f) + \Omega(f) \right\},$$

with $\Omega(f)$ a convex penalty promoting solution with the shape

$$\hat{f}(x,t) = \sum_{j=1}^{J} \hat{\rho}_j(t) \mathbf{1}_{\hat{R}_j}(x).$$

Which penalty $\Omega(f)$?

Total variation norm

For \mathcal{D} an open domain in \mathbb{R}^d and $F: \mathcal{D} \to \mathbb{R}$.

TV(F) normTV(F) $= \sup \left\{ -\int_{\mathcal{D}} F(x) \operatorname{Div}(\phi(x)) \, dx : \phi \in C^{\infty}_{c}(\mathcal{D}, \mathbb{R}^{d}) \text{ and } \|\phi\|_{\infty} \leq 1 \right\}$ $= \int_{\mathcal{D}} \|\nabla F(x)\| \, dx \quad \text{if } F \in C^{1}.$

Reminder: $TV(\mathbf{1}_R) = perimeter(R)$

• • = • • = • = •

Example of use in image segmentation

Synchronized Total Variation Norm

Our model

$$Z_{st} \sim ext{Poisson}(\exp(\theta_s + f(x_s, t))) \quad ext{with } f(x, t) \approx \sum_R \rho_R(t) \mathbf{1}_{x \in R}.$$

- Similar : at each time t the function $x \to f(x, t)$ is "block-constant"
- New : the blocks of $x \to f(x, t)$ must coincide at all time t.

Synchronized Total Variation Norm

STV norm

$$\begin{aligned} \mathsf{STV}(f) &= \sup_{\substack{\phi(.,t) \in C_c^{\infty}(\mathcal{D}, \mathbb{R}^d) \\ \|\sum_t \|\phi(.,t)\|\|_{\infty} \leq 1 \\}} \left\{ -\sum_t \int_{\mathcal{D}} f(x,t) \operatorname{div}_x(\phi(x,t)) \, dx \right\} \\ &= \int_{\mathcal{D}} \max_t \|\nabla_x f(x,t)\| \, dx, \quad \text{when } f(.,t) \in C^1 \text{ for all } t. \end{aligned}$$

Properties

- $f \rightarrow STV(f)$ is convex
- Minimizers of $\mathcal{L}_{Z}(\theta, f) + \alpha \operatorname{STV}(f)$ have the shape

$$\hat{f}(x,t) = \sum_{j} \hat{\rho}_{\widehat{R}_{j}}(t) \mathbf{1}_{x \in \widehat{R}_{j}}$$

< E

・ロト ・日下・ ・日下

Discretization issue

For images

straightforward discretization on a grid (discrete gradient)

For monitoring program

The observations are not spread on a grid \longrightarrow the discretization is not straightforward.

Choice

Discretization of $\|\nabla_x f(x, t)\|$ with

$$\max_{u\in V(s)} |f(x_u, t) - f(x_s, t)|$$

where V(s) is a neighborhood of s.

< ロ > < 同 > < 回 > <

Estimation procedure

Estimator

We estime θ_s and $f(x_s, t)$ by $\hat{\theta}_s$ and \hat{f}_{st} minimizing

$$\sum_{s,t} \left[e^{\theta_s + f_{st}} - Z_{st}(\theta_s + f_{st}) \right] + \alpha \sum_s \max_{t} \max_{u \in V(s)} |f_{st} - f_{ut}|$$

with $f_{s1} = 0$ for all s.

Optimization : with a primal-dual scheme (quite intensive)

Example: blackcap

Data

STOC data (only):

- high-quality "effort-standardized" data
- but many missing values
- from 2001 to 2009

Blackcap: 361 sites with at least 7 years of observations.

Results: estimated regions Blackcap

Figure: Left: PCA of (\hat{f}) and kmeans clustering. Right: regions selected by kmeans.

Cornell 2015 41 / 45

Results: temporal dynamics

Christophe Giraud (Orsay)

Crowdsourcing Data in Ecology

Cornell 2015 42 / 45

Results: discussion

The results fit the ecological knowledge \bigcirc

- decline in mediterannean places
- increase in cold places

But, I think that

- insufficient coverage
- a better estimation procedure?

Perspective

Combining data

Combine standardized with opportunistic datasets

$$Z_{istk} \sim ext{Poisson}(\exp(\theta_{isk} + e_{stk} + f(x_s, t))) \quad ext{with } f(x, t) \approx \sum_{R} \rho_R(t) \mathbf{1}_{x \in R}.$$

and e_{st0} known up to (additive) constant.

Conclusion

- Opportunistic ecological data are massive but very heterogeneous.
- They can be useful for relative abundance monitoring.
- They could be crucial for investigating some fundamental questions in Ecology.