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The Wright–Fisher model with selection

Consider the classical Wright–Fisher Markov chain which describes the
proportion of an advantageous allele in a population of fixed size made
of two types, say A and a, and A has a per generation selective
advantage s over a.
If N denotes the size of the population, α = s N, and XN

t denotes the
proportion of the advantageous allele A in the population at
generation [Nt], then as N →∞, XN ⇒ X , where X solves the SDE

Xt = x + α

∫ t

0
Xs(1− Xs)ds +

∫ t

0

√
Xs(1− Xs)dBs .
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Malécot’s formula

In this model one of the two alleles fixates in finite time, i.e.

Tfix = inf{t > 0, Xt ∈ {0, 1}} <∞ a.s.

and the probability that type A fixates is given by Malécot’s formula
(usually attributed to Kimura)

P(XTfix = 1) =
1− e−2αx

1− e−2α
.

Note that the genealogy of the population in this model is Kingman’s
coalescent, and the fact that one of the two alleles fixates in finite
time is due to the fact that Kingman’s coalescent “comes down from
infinity”, i.e. a countable number of individuals has finitely many
ancestors at any time t > 0 back in time. Equivalently, forward in time
soon or later the progeny of a single individual will invade the whole
population.
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Another model

It is possible to choose a variant of the above model, such that the
limiting proportion as N →∞ of advantageous alleles A obeys the less
classical SDE

Xt = x + α

∫ t

0
Xs(1− Xs)ds +

∫
[0,t]×(0,1)2

pΨ(u,Xs−)M̄(ds, du, dp),

where

Ψ(u, r) = 1u≤r − r ,

M̄(ds, du, dp) = M(ds, du, dp)− p−2 ds du dp,

and M is a Poisson Random Measure on R+ × (0, 1)2 with mean
ν(ds, du, dp) = p−2 ds du dp, i.e. a random collection of points such
that the number of points in any subset A ⊂ R+ × (0, 1)2 is Poisson
distributed, with parameter

∫
A p−2 ds du dp, and the number of points

in disjoint subsets are mutually independent.
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Bolthausen–Sznitman

The genealogy of a population associated to the above SDE is not
described by Kingman’s coalescent, but by the Bolthausen–Sznitman
coalescent.
The Bolthausen–Sznitman coalescent has the property that while
there are k lineages in the genealogy, any subset of ` of them
coalesces at rate

λk,` =

∫ 1

0
p`−2(1− p)k−`dp.

The Bolthausen–Sznitman coalescent belongs to the class of the
Λ–coalescents, which are defined in the exact same way, except that
we repalce dp by Λ(dp), where Λ is an arbitrary measure on [0, 1),
Kingman’s coalescent being the special case where Λ = cδ0, in which
case only binary merges happen.
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Our first formula

The Bolthausen–Sznitman coalescent does not come down from
infinity. As a consequence, in our new model we do not have fixation
in finite time. In other words, Tfix = +∞ a.s.
However, it is easy to see that Xt → X∞ a.s., where X∞ ∈ {0, 1}. But
0 < Xt < 1 a.s. for all t > 0 (of course provided that 0 < x < 1).
Our first formula reads

PBS(X∞ = 1) =
xeα

xeα + (1− x)
.
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Comparison with Kimura’s formula
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Idea of the proof

Let Kt denote the number of active lineages in the ASG at time t.
Kt is positive recurrent, and has a unique invariant probability
measure, which is the geometric distribution with parameter e−α.
We have the duality relation (a similar relation in the case of the
Kingman model can be found e.g. in Pokalyuk, Pfaffelhuber (2013)).

E[(1− Xt)
k |X0 = x ] = E[(1− x)Kt |K0 = k].

Note that the duality is between Yt = 1− Xt and Kt .
The result follows by letting t →∞ in the above identity, hence

P(X∞ = 0|X0 = x) = E((1− x)K∞).
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A formula in terms of the per generation selection
parameter s

Etienne Pardoux (AMU) MMB 18/02/2016 11 / 22



The Wright–Fisher model

In the Wright–Fisher model, the per generation selection parameter s
is interpreted as follows. 1 + s is the ratio of the probability of
choosing an advantageous father to the probability of choosing a
non–advantageous father in the previous generation.
As indicated above, in order to to take a continuous time limit of the
Wright–Fisher model we scale time by considering a length of
continuous time 1/N between two consecutive generations, and let
s = sN = α

N .

It is then natural to use Malécot’s formula 1−e−2xα
1−e−2α with α = s N, and

x = 1/N, in order to compute the probability of fixation of a new
advantageous allele.
We get

1− e−2s

1− e−2sN
' 1− e−2s ,

a formula which is well–known in population genetics.
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Approximating the Bolthausen–Sznitman model by a
generation model

We follow a construction due to Schweinsberg (2003). We consider a
population of fixed size N, whose genealogy from generation to
generation is described as follows.
Let X1, . . . ,XN be i.i.d. N–valued r.v.’s be such that
P(X1 ≥ k) = 1/k , k ≥ 1. For 1 ≤ i ≤ N, Xi is the number of children
of i . Since EX1 = +∞, with probability almost 1, X1 + · · ·+ XN ≥ N.
We obtain the next generation by sampling N of the X1 + · · ·+ XN

individuals uniformly without replacement. The offsprings of i in the
next generation are those individuals among the Xi ’s which are
sampled (the others die).
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Convergence to the Bolthausen–Sznitman coalescent

We now sample n < N individuals in the present generation 0, and
define a discrete–time Markov chain Ψn,N(m)m≥0 with values in the
set Pn of partitions of the set {1, . . . , n}. i and j are in the same block
of Ψn,N(m) iff the individuals i and j have the same ancestor in
generation −m.
We have the following result from Schweinsberg (2003).

Proposition

The process {Ψn,N([t logN]), t ≥ 0} converges in law as N →∞ towards
{Ψn,∞(t), t ≥ 0}, which is the restriction to {1, . . . , n} of the
Bolthausen–Sznitman coalescent.

Let us comment on the time scale. In the above discrete–time model,
the mean number of generations we should follow backwards for two
randomly chosen individuals to find a common ancestor is logN.
Consequently the above scaling is such that in the limit two individuals
find a common ancestor in mean time 1.
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Discrete time approximation of the ASG

We now describe a process which converges, as N →∞, towards the
n–Bolthausen–Sznitman Ancestral Selection Graph. Start with n lines
at time t = 0.
We alternate the two following procedures at each discrete time step.

1 With probability sN = α/ log(N), each line splits into 2, independently
of all other lines.

2 The existing lines (whose number is smaller than N, since n << N)
coalesce according to the Schweinsberg procedure, those lines being
e.g. the first of the N lines in Scheinsberg construction.

s = sN can be interpreted as a selection coefficient per generation.
Indeed, the effect of the first step is that above each individual, there
is one branch with probability 1− s, and there are two branches with
probability s. The rule in the ASG is that the individual is A, i.e.
carries the selective allele if at least one branch above him is A. From
exchangeability, the fact that N is large and de Finetti’s theorem, the
probability of being A becomes after step 1

Xt(1− s) + sXt(1 + Yt) = Xt + sXtYt = Xt + sXt(1− Xt).
Etienne Pardoux (AMU) MMB 18/02/2016 15 / 22
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Convergence to the ASG

The above construction produces an N–valued Markov chain
{Ψ̃n,N(`), ` ≥ 0}. Define KN

t = |Ψ̃n,N([t logN])|, the number of
lineages in Ψ̃n,N([t logN]).
Recall the process Kt which counts the number of active branches in
the ASG and has been defined above.
We have

Proposition

{KN
t , t ≥ 0} converges in law, as N →∞, towards {Kt , t ≥ 0}.

The proof is easy, given Schweinsberg’s Proposition.
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Probability of fixation of a new mutation

We consider that at time t = 0 a unique individual in the population
carries the new mutation. Consequently, with s = α/ logN, we have

Theorem
Consider a population of size N which evolves according to the
Bolthausen–Sznitman model, where a mutation occurs in one individual,
which confers him a selective advantage s, then the probability of fixation
of that new mutation is approximately given by

PBS(X∞ = 1|X0 = 1/N) =
1

1 + N1−s − N−s
' 1

1 + N1−s .

Proof : This formula from the first with x = 1/N and α = s logN :

PBS(X∞ = 1|X0 = 1/N) =
N−1es log(N)

N−1es log(N) + 1− N−1

=
Ns−1

Ns−1 + 1− N−1
.

Etienne Pardoux (AMU) MMB 18/02/2016 17 / 22



Probability of fixation of a new mutation

We consider that at time t = 0 a unique individual in the population
carries the new mutation. Consequently, with s = α/ logN, we have

Theorem
Consider a population of size N which evolves according to the
Bolthausen–Sznitman model, where a mutation occurs in one individual,
which confers him a selective advantage s, then the probability of fixation
of that new mutation is approximately given by

PBS(X∞ = 1|X0 = 1/N) =
1

1 + N1−s − N−s
' 1

1 + N1−s .

Proof : This formula from the first with x = 1/N and α = s logN :

PBS(X∞ = 1|X0 = 1/N) =
N−1es log(N)

N−1es log(N) + 1− N−1

=
Ns−1

Ns−1 + 1− N−1
.

Etienne Pardoux (AMU) MMB 18/02/2016 17 / 22



Comment on the second formula

We note that when s = 0 the above probability equals 1/N, as it
should. For all 0 ≤ s < 1 (resp. s > 1), that probability tends to 0
(resp. to 1) as N →∞, while it tend to 1/2 if s = 1. We see that the
only non trivial value for large N is obtained when s is close to 1.
The behaviour for s > 1 can be compared to the following result of
Foucart (2013), Griffiths (2014). If we consider a model associated to a
general Λ–coalescent, fixation of the advantageous allele happens with
probability one, irrespective of its initial proportion, iff α ≥ α∗, where

α∗ = −
∫ 1

0

log(1− p)

p2
Λ(dp).

Note that in the BS (Bolthausen–Sznitman) model as well as in the K
(Kingman) model, α∗ = +∞.
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Conclusion

If we believe that we should compare the BS model and the K model
for the same value of α, and if the initial proportion of the
advantageous allele is smaller than 1/2, then the probability of fixation
is significantly larger in the BS model. However, if we believe that the
parameter which is the same in both models is rather s, then α in the
BS model would be much smaller for large N than in the K model,
which would make the above comparison meaningless.
In the BS model, the probability of fixation in terms of the per
generation selective advantage s depends heavily upon N, in
contradiction with the K model. A mutation with a small s fixates
much easier in the K model, while a mutation with a large effect
(s > 1) fixates with a probability close to 1 in the BS model. This may
have important impact concerning the evolution of parasites and
pathogens. A population which follows the BS model is likely to see
few small effect mutations, but relatively many mutations with large
effect.
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