

## Collaborators

- Dominique Schneider

Larissa Viraphong
University Joseph Fourier Grenoble

- Jeff Barrick

University of Texas Austin

- Richard Lenski

Michigan State University

## Tempo and mode in Evolution

## Tempo Monde Mode Evolution

George Gaylord Simpson


A Columbia Classic in Evolution

With a new introduction by George Gaylord Simpson

## Tempo and mode in Evolution

Tempo: evolutionary rates ... their acceleration and deceleration...

Tempo concerns rates

Mode: the study of the way, manner, or pattern of evolution, a study in which tempo is a basic factor, but which embraces considerably more than tempo

Mode concerns the underlying mechanisms and the global patterns of tempo

Evolution's tempo can impart information about its mode

## tempo and mode in Bacterial evolution



## Forecasting evolution

- Rates of fitness improvement
- Rates of mutation accumulation
- Which underlying patterns at the molecular level

Are there any rules and simple explanatory models

## Tempo of Fitness improvement

## A short term approach

- Evolve several lineages with different initial fitness


Kryazhimskiyet al 2014,Perfeito et al 2014

## Tempo: Rules of declining adaptability in fitness trajectories



Alejandro Couce

Couce \& Tenaillon Frontier in Genetics 2015

## A Long-term approach

- Mal-adapted strain,
- Long term 50000 generations


Wiser et al Science 2013

## Consistant through time



## Underlying models

- Many alternative models can lead to that pattern
- No epistasis: exhaustion of beneficial mutation
- Macroscopic epistasis without sign epistasis: beneficial mutations stay beneficial, but their effect decrease with adaptation
- Macroscopic epistasis with sign epistasis: the fraction of beneficial mutations change with adaptation

Wiser et al 2013, Good Desai 2014, Couce Tenaillon 2015, McCandlish et al 2015

# Tempo and mode in molecular evolution 

## A Long-term approach

- Mal-adapted strain,
- Long term 50000 generations
- Sequence 264 genomes



## Phylogeny



Mutators !

generations (K)

Emergence of mutators


$\square$

## Mutation rate decays



Wielgoss et al , PNAS 2013

## Dynamics of mutation rate



Barrick \& Lenski Nature Review Genetics 2013

## Decrease genomic in another population



## The bumpy decay of mutation rate



## Fitness and mutations

Fitness of mutator lineages is slightly different from the one of non mutator Yet
Very different tempo of mutation accumulation

Mutation numbers are not telling us the underlying model

# Tersipo ansl made ins frioleculars evolutions: 



Impact of the mutators on mutations


Some non-random organisation on MMR-


## Some local biases, similar to MA




## Focussing on a single gene

What are the molecular determinants of that distribution


## A large database



## Determinants: Type of mutation

Functional


Inactivated


## Blossum62



In the case of mutators: Biases stronger than selection?

Despite the presence of selection patterns are consistant with mutation accumulation results

No correlation with any of the matrices

## Fitness and mutations

Fitness of mutator lineages is slightly different from the one of non mutator Yet
Very different tempo of mutation accumulation

Mutation numbers are not telling us the underlying model

## Matincion acculuculation jun fuga shutatos populations

## In non mutator populations



More similar in point mutations


Whisat fisaction of berseficicials

A combination of square root and linear


## Predict a large fraction of beneficial



## What fraction of beneficial

All Point Mutations


NonSynonymous Mutations


Synonymous Mutations


Intergenic Point Mutations


## Use Mutation Accumulation

Long et al Nature Review Genetics 2015

## A excess of beneficial even after 50K

Point Mutations


Large Indels


Insertion Sequences


Small Indels


## Tempo of mutations

Fast mutation accumulation decrease to a linear accumulation

Still a sustained fraction of beneficial mutations despite a lower fitness improvement

Several models may still fit both mutation accumulation and fitness trajectories

Consclusions

## Forecasting evolution

- Fitness trajectories appear higly predictable with a global rule of declining adaptability
- Many models can produce that shape
- Mutation trajectory are not sufficient
- Benefical mutation trajectory may be better
- Convergence adds another layer of complexity
- Simple models do not match easily all tempos, more complex forms of epistasis may have to be included

An adaptationist view

A large fraction of mutations are the product of selection even after 50000 generations more draft than drift
is it general? what is specific:
-artificial
-boringly stable
-no sex

## Conclusion



## Acknowledgements

University of California Irvine

## Albert Bennett

Anthony Long
Brandon Gaut
Alejandra Rodriguez
University J. Fourier (Grenoble)
Dominique Schneider
Sebastian Wielgoss (ETH)
University Michigan
Richard Lenski

Genoscope
Claudine Médigue
IAME INSERM 1137
Erick Denamur
Mathilde Lescat
Jérémy Glodt
Sara Dion
Oana Zamfir
Maxime Levert
Odile Bouvet
Olivier Clermont
Catherine Branger
Staphéne Cruvelier
Valérie Barbe

