Optimal control of branching diffusion processes Through the modelling and their scaling limit

Antonio Ocello

LPSM Sorbonne Université

Chaire Modélisation Mathématique et Biodiversité October 19, 2023

Controlled branching diffusion processes

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

Scaling limit

Optimization 00000000

Branching diffusion process

Antonio Ocello Control of branching diffusions

Branching diffusion process

Antonio Ocello Control of branching diffusions

Branching diffusion process

Antonio Ocello Control of branching diffusions

3/26

Probabilistic setting

Let T > 0 a finite horizon and consider set of labels $\mathcal{I} = \{\varnothing\} \cup \bigcup_{n=1}^{+\infty} \mathbb{N}^n$.

Antonio Ocello Control of branching diffusions

Probabilistic setting

- Let T > 0 a finite horizon and consider set of labels $\mathcal{I} = \{\emptyset\} \cup \bigcup_{n=1}^{+\infty} \mathbb{N}^n$.
 - $(B_t^i)_{t \in [0,T]}$ is a standard Brownian motion in \mathbb{R}^m for $i \in \mathcal{I}$;
 - $Q^i(dt, dz)$ is a Poisson random measure on $[0, T] \times \mathbb{R}_+$ with intensity dtdz for $i \in \mathcal{I}$;
 - $\{B^i, Q^j, i, j \in \mathcal{I}\}$ forms a family of mutually independent processes.

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Probabilistic setting

- Let T > 0 a finite horizon and consider set of labels $\mathcal{I} = \{\varnothing\} \cup \bigcup_{n=1}^{+\infty} \mathbb{N}^n$.
 - $(B_t^i)_{t \in [0,T]}$ is a standard Brownian motion in \mathbb{R}^m for $i \in \mathcal{I}$;
 - $Q^i(dt, dz)$ is a Poisson random measure on $[0, T] \times \mathbb{R}_+$ with intensity dtdz for $i \in \mathcal{I}$;
 - $\{B^i, Q^j, i, j \in \mathcal{I}\}$ forms a family of mutually independent processes.

Consider A a compact space subset of a Euclidean space.

Definition (Standard strong control)

We say that $\beta = (\beta_i)_{i \in \mathcal{I}}$ is a standard strong control if β is an \mathbb{F} -predictable measurable $A^{\mathcal{I}}$ -valued process.

◆□▶▲冊▶★≣▶★≣▶ ≣ のQ@

Controlled population

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • ○ へ ○ 5/26

Antonio Ocello Control of branching diffusions

Optimization 00000000

LPSM, SU

Controlled population

Considering V_s the set of alive particles at times s, the *controlled branching diffusion* is described by

$$\xi_t^\beta = \sum_{i \in V_t} \delta_{Y_t^{i,\beta}} \; ,$$

Antonio Ocello Control of branching diffusions

Optimization 00000000

Controlled population

Considering V_s the set of alive particles at times s, the *controlled branching diffusion* is described by

$$\xi_t^\beta = \sum_{i \in V_t} \delta_{Y_t^{i,\beta}} \; ,$$

such that

Spatial motion: each i moves according to the following stochastic differential equation

$$dY_{s}^{i,\beta} = b\left(Y_{s}^{i,\beta},\xi_{s}^{\beta},\beta_{s}^{i}\right)ds + \sigma\left(Y_{s}^{i,\beta},\xi_{s}^{\beta},\beta_{s}^{i}\right)dB_{s}^{i} \;.$$

Therefore, the motion is associated with the generator L, with

$$L\varphi(\mathbf{x},\lambda,\mathbf{a}) = b(\mathbf{x},\lambda,\mathbf{a})^{\top} D\varphi(\mathbf{x}) + \frac{1}{2} \operatorname{Tr} \left(\sigma \sigma^{\top}(\mathbf{x},\lambda,\mathbf{a}) D^{2} \varphi(\mathbf{x}) \right) ,$$

Branching rate: given that *i* is alive at *s*, the probability that she dies in $[s, s + \delta s)$ is

 $\gamma\left(Y_{s}^{i,\beta},\xi_{s}^{\beta},\beta_{s}^{i}\right)\delta s+o(\delta s)$.

■ Branching mechanism: When *i* dies, she has an offspring with probability $\left(p_k\left(Y_s^{i,\beta},\xi_s^\beta,\beta_s^i\right)\right)_{k\in\mathbb{N}} \cdot \square \to \langle \mathcal{D} \rangle \land \exists z \in \mathbb{R} \to \mathbb{R}$

Antonio Ocello Control of branching diffusions

Strong SDE

Let $\mathbf{D}^d = \mathbb{D}([0, T]; M(\mathbb{R}^d))$ be the set of càdlàg functions from [0, T] to $M(\mathbb{R}^d)$. The controlled branching diffusion is associated with the following SDE on \mathbf{D}^d

$$\begin{split} \langle \varphi, \xi_s^\beta \rangle &= \langle \varphi, \xi_t^\beta \rangle + \int_t^s \sum_{i \in V_u} D\varphi(Y_u^{i,\beta})^\top \sigma\left(Y_u^{i,\beta}, \xi_u^\beta, \beta_u^i\right) dB_u^i \\ &+ \int_t^s \sum_{i \in V_u} L\varphi\left(Y_u^{i,\beta}, \xi_u^\beta, \beta_u^i\right) du \\ &+ \int_{(t,s] \times \mathbb{R}_+} \sum_{i \in V_{u-}} \sum_{k \ge 0} (k-1)\varphi(Y_u^{i,\beta}) \mathbb{1}_{l_k\left(Y_u^{i,\beta}, \xi_u^\beta, \beta_u^i\right)}(z) Q^i(dudz) , \end{split}$$
with $l_k(x, \lambda, a) = \left[\gamma(x, \lambda, a) \sum_{\ell=0}^{k-1} p_\ell(x, \lambda, a), \gamma(x, \lambda, a) \sum_{\ell=0}^k p_\ell(x, \lambda, a)\right) ,. \end{split}$

<ロト</p>

Existence and uniqueness

Proposition

Assume the following conditions

• b and σ are Lipschitz continuous, i.e., there exists L > 0 such that

 $\left| b(x,\lambda,a) - b(x',\lambda',a) \right| + \left| \sigma(x,\lambda,a) - \sigma(x',\lambda',a) \right| \le L(|x-x'| + \mathbf{d}_{\mathbb{R}^d}(\lambda,\lambda')) ;$

- b, σ and γ are uniformly bounded;
- the first and second order moments related to $(p_k)_k$ are uniformly bounded, i.e., there exist a constant C > 0 such that

$$\sum_{k\geq 1} kp_k(x,\lambda,a) \leq C, \qquad \sum_{k\geq 1} k(k-1)p_k(x,\lambda,a) \leq C.$$

Let $t \in [0, T]$, $\lambda \in M(\mathbb{R}^d)$ with $\lambda := \sum_{i \in V} \delta_{x_i}$ and V finite, and β be a standard strong control. There exists a unique (up to indistinguishability) càdlàg and adapted process $(\xi_s^\beta)_{s>t}$ satisfying the previous SDE such that $\xi_t^\beta = \lambda$.

▲□▶▲冊▶▲臣▶▲臣▶ 臣 のなで

Martingale properties

Proposition

Fix $(t, \lambda) \in [0, T] \times M(\mathbb{R}^d)$, with $\lambda = \sum_{i \in V} \delta_{x^i}$, V finite, and β a standard strong control. Therefore,

$$\begin{split} F_{\varphi}\left(\xi_{s}^{\beta}\right) &- \int_{t}^{s} F_{\varphi}'\left(\xi_{s}^{\beta}\right) \sum_{i \in V_{s}} L\varphi\left(Y_{u}^{i,\beta},\xi_{u}^{\beta},\beta_{u}^{i}\right) + \\ &+ \frac{1}{2} F_{\varphi}''\left(\xi_{s}^{\beta}\right) \sum_{i \in V_{s}} \left| D\varphi\left(Y_{u}^{i,\beta}\right) \sigma\left(Y_{u}^{i,\beta},\xi_{u}^{\beta},\beta_{u}^{i}\right) \right|^{2} \\ &+ \sum_{i \in V_{s}} \gamma\left(Y_{u}^{i,\beta},\xi_{u}^{\beta},\beta_{u}^{i}\right) \\ &\left(\sum_{k \geq 0} F_{\varphi}\left(\sum_{j \in V_{s}} \delta_{Y_{u}^{j,\beta}} + (k-1)\delta_{Y_{u}^{i,\beta}}\right) p_{k}\left(Y_{u}^{i,\beta},\xi_{u}^{\beta},\beta_{u}^{i}\right) - F_{\varphi}\left(\xi_{u}^{\beta}\right)\right) du \;, \end{split}$$

where F_{φ} denotes the the cylindrical function $F_{\varphi} = F(\langle \varphi, \cdot \rangle)$, for $F \in C_b^2(\mathbb{R})$ and $\varphi \in C_b^2(\mathbb{R}^d)$

Control problem

Antonio Ocello Control of branching diffusions

LPSM, SU

Control problem

Reward function: Fix $\psi \in C_b(\mathbb{R}^d \times M(\mathbb{R}^d) \times A)$ and $\Psi \in C_b(M(\mathbb{R}^d))$. Consider the following reward function

$$J_1(t,\lambda;eta) := \mathbb{E}\left[\int_t^T \sum_{i \in V_s} \psi\left(Y^{i,eta}_s,\xi^eta_s,eta^i_s
ight) ds + \Psi\left(\xi^eta_T
ight) \left|\xi^eta_t = \lambda
ight]
ight.$$

.

Antonio Ocello Control of branching diffusions

LPSM, SU

Control problem

Reward function: Fix $\psi \in C_b(\mathbb{R}^d \times M(\mathbb{R}^d) \times A)$ and $\Psi \in C_b(M(\mathbb{R}^d))$. Consider the following reward function

$$J_1(t,\lambda;eta) := \mathbb{E}\left[\int_t^T \sum_{i\in V_s} \psi\left(Y^{i,eta}_s,\xi^eta,eta^s_s
ight) ds + \Psi\left(\xi^eta_T
ight) \left|\xi^eta_t = \lambda
ight]
ight..$$

Control problem:

$$v_1(t,\lambda) = \sup \left\{ J_1(t,\lambda,\beta) : \beta \in \mathcal{R}^1_{(t,\lambda)}
ight\}.$$

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで 9/26

Antonio Ocello Control of branching diffusions

★ E > ★ E >

ъ

Verification theorem

Proposition

Let w be a function in $C_b^0([0, T] \times M(\mathbb{R}^d))$ and fix $(t, \overline{\lambda}) \in M(\mathbb{R}^d)$, and assume the following

But ...

Antonio Ocello Control of branching diffusions

But ... what if the particles are too many?

▲□▶▲□▶▲ ■▶ ▲ ■ ▶ ■ の Q @ 11/26

Antonio Ocello Control of branching diffusions

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

12/26

Scaling limit

Antonio Ocello Control of branching diffusions

Scaling limit

Antonio Ocello

Control of branching diffusions

Scaling limit

Antonio Ocello Control of branching diffusions

Scaling limit

Antonio Ocello Control of branching diffusions

Scaling limit

Antonio Ocello

Control of branching diffusions

Scaling limit

Antonio Ocello

Control of branching diffusions

Scaling limit

Antonio Ocello Control of branching diffusions

Weak formulation

Let \mathcal{A} be the set of $\left\{\mathcal{B}(\mathbb{R}^d)\otimes\mathcal{F}_s\right\}_s$ -predictable processes from $[0,T] imes\mathbb{R}^d$ to \mathcal{A} .

Antonio Ocello Control of branching diffusions

Weak formulation

Let \mathcal{A} be the set of $\{\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F}_s\}_s$ -predictable processes from $[0, T] \times \mathbb{R}^d$ to \mathcal{A} . Let \mathcal{L}^1 be the generator

$$\mathcal{L}^{1}F_{\varphi}(x,\lambda,a) = F_{\varphi}'(\lambda)L\varphi(x,\lambda,a) + \frac{1}{2}F_{\varphi}''(\lambda)|D\varphi(x)\sigma(x,\lambda,a)|^{2}$$

$$+ \gamma(x,\lambda,a)\left(\sum_{k\geq 0}F_{\varphi}\left(\lambda + (k-1)\delta_{x}\right)p_{k}(x,\lambda,a) - F_{\varphi}\left(\lambda\right)\right)$$

Antonio Ocello Control of branching diffusions

Weak formulation

Let \mathcal{A} be the set of $\{\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F}_s\}_s$ -predictable processes from $[0, T] \times \mathbb{R}^d$ to \mathcal{A} . Let \mathcal{L}^1 be the generator

$$\mathcal{L}^{1}F_{\varphi}(x,\lambda,a) = F'_{\varphi}(\lambda)L\varphi(x,\lambda,a) + \frac{1}{2}F''_{\varphi}(\lambda)|D\varphi(x)\sigma(x,\lambda,a)|^{2}$$

$$+ \gamma(x,\lambda,a)\left(\sum_{k\geq 0}F_{\varphi}\left(\lambda+(k-1)\delta_{x}\right)p_{k}(x,\lambda,a) - F_{\varphi}\left(\lambda\right)\right)$$

Definition

Fix $(t, \lambda) \in [0, T] \times M(\mathbb{R}^d)$ with $\lambda = \sum_{i \in V} \delta_{x^i}$ with $\lambda = \sum_{i \in V} \delta_{x^i}$ and V finite. We say that $(\mathbb{P}, \alpha) \in \mathcal{P}(\mathbf{D}^d) \times \mathcal{A}$ is a *controlled branching diffusion process*, and we denote $(\mathbb{P}, \alpha) \in \mathcal{R}^1_{(t,\lambda)}$, if $\mathbb{P}(\mu_t = \lambda) = 1$ and the process

$$M_s^{F_{\varphi}} = F_{\varphi}(\mu_s) - \int_t^s \int_{\mathbb{R}^d} \mathcal{L}^1 F_{\varphi}(x, \mu_u, \alpha_u(x)) \mu_u(dx) du$$

is a (\mathbb{P}, \mathbb{F})-martingale for any $F \in C_b^2(\mathbb{R})$, $\varphi \in C_b^2(\mathbb{R}^d)$, and $s \ge t$.

De-zooming

Consider the de-zooming of the population solution in \mathbf{D}^d of the previously considered SDE

$$\xi_t^{(n)} = \frac{1}{n} \xi_{nt} = \frac{1}{n} \sum_{i \in V_{nt}} \delta_{Y_{nt}^i}.$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • ○ Q ○ 15/26

Antonio Ocello Control of branching diffusions

De-zooming

Consider the de-zooming of the population solution in \mathbf{D}^d of the previously considered SDE

$$\xi_t^{(n)} = \frac{1}{n} \xi_{nt} = \frac{1}{n} \sum_{i \in V_{nt}} \delta_{Y_{nt}^i}.$$

Therefore, the previous martingale problem translates into

$$\begin{aligned} F_{\varphi}(n\xi_{s}^{(n)}) &- \int_{t}^{s} \int_{\mathbb{R}^{d}} \left[\frac{1}{n} F_{\varphi}^{\prime}(n\xi_{u}^{(n)}) L\varphi\left(x, n\xi^{(n)}, \alpha_{u}(x)\right) + \right. \\ &\left. + \frac{1}{2n^{2}} F_{\varphi}^{\prime\prime}\left(n\xi_{u}^{(n)}\right) \left| D\varphi(x)\sigma\left(x, n\xi^{(n)}, \alpha_{u}(x)\right) \right|^{2} + \right. \\ &\left. + n\gamma\left(x, n\xi^{(n)}, \alpha_{u}(x)\right) \left(\sum_{k\geq 0} F_{\varphi}\left(n\xi_{u}^{(n)} + (k-1)\delta_{x}\right) p_{k} - F_{\varphi}\left(n\xi_{u}^{(n)}\right) \right) \right] n\xi_{u}^{(n)}(dx) du \end{aligned}$$

is a (\mathbb{P}, \mathbb{F}) -martingale for $s \geq t$, and for any $F \in C_b^2(\mathbb{R})$ and $\varphi \in C_b^2(\mathbb{R}^d)$.

▲□▶▲□▶▲□▶▲□▶▲□▶ □ のQ@

LPSM, SU

•

Weak rescaled formulation

Renaming φ/n with φ and γ for $n\gamma$ oin the previous computation, we obtain a new martingale problem. Let \mathcal{L}^n be the generator

$$\mathcal{L}^{n}F_{\varphi}(x,\lambda,a) = F_{\varphi}'(\lambda)L\varphi(x,\lambda,a) + \frac{1}{2n}F_{\varphi}''(\lambda)|D\varphi(x)\sigma(x,\lambda,a)|^{2} + \gamma(x,\lambda,a)\left(\sum_{k\geq 0}F_{\varphi}\left(\lambda + \frac{k-1}{n}\delta_{x}\right)p_{k} - F_{\varphi}(\lambda)\right)$$

<ロト<回ト<互ト<互ト<互ト<互ト ヨーのへの 1

Antonio Ocello Control of branching diffusions

Weak rescaled formulation

Renaming φ/n with φ and γ for $n\gamma$ oin the previous computation, we obtain a new martingale problem. Let \mathcal{L}^n be the generator

$$\mathcal{L}^{n}F_{\varphi}(x,\lambda,a) = F_{\varphi}'(\lambda)L\varphi(x,\lambda,a) + \frac{1}{2n}F_{\varphi}''(\lambda)|D\varphi(x)\sigma(x,\lambda,a)|^{2} + \gamma(x,\lambda,a)\left(\sum_{k\geq 0}F_{\varphi}\left(\lambda + \frac{k-1}{n}\delta_{x}\right)p_{k} - F_{\varphi}(\lambda)\right)$$

Definition

Fix $(t, \lambda) \in [0, T] \times M(\mathbb{R}^d)$ with $\lambda = \sum_{i \in V} \delta_{x^i}$ with $\lambda = \frac{1}{n} \sum_{i \in V} \delta_{x^i}$ and V finite. We say that $(\mathbb{P}, \alpha) \in \mathcal{P}(\mathbf{D}^d) \times \mathcal{A}$ is a *n*-rescaled controlled branching diffusion process, and denote $(\mathbb{P}, \alpha) \in \mathcal{R}^n_{(t,\lambda)}$, if $\mathbb{P}(\mu_t = \lambda) = 1$ and the process

$$M_s^{F_{\varphi}} = F_{\varphi}(\mu_s) - \int_t^s \int_{\mathbb{R}^d} \mathcal{L}^n F_{\varphi}(x, \mu_u, \alpha_u(x)) \mu_u(dx) du$$

is a (\mathbb{P}, \mathbb{F}) -martingale for any $F \in C_b^2(\mathbb{R})$, $\varphi \in C_b^2(\mathbb{R}^d)$, and $s \ge t$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Controlled superprocesses

Suppose that $p_k(x, \lambda, a) = p_k$ and that $\sum_{k>0} kp_k = 1$.

Antonio Ocello Control of branching diffusions LPSM, SU

17/26

LPSM, SU

Controlled superprocesses

Suppose that $p_k(x, \lambda, a) = p_k$ and that $\sum_{k \ge 0} kp_k = 1$. Let \mathcal{L} be the generator

$$\mathcal{L}F_{\varphi}(x,\lambda,\mathbf{a}) = F'_{\varphi}(\lambda)L\varphi(x,\lambda,\mathbf{a}) + \frac{1}{2}F''_{\varphi}(\lambda)\gamma(x,\lambda,\mathbf{a})\varphi^{2}(x) .$$

Antonio Ocello Control of branching diffusions

Controlled superprocesses

Suppose that $p_k(x, \lambda, a) = p_k$ and that $\sum_{k \ge 0} kp_k = 1$. Let \mathcal{L} be the generator

$$\mathcal{L}F_{\varphi}(x,\lambda,a) = F'_{\varphi}(\lambda)L\varphi(x,\lambda,a) + \frac{1}{2}F''_{\varphi}(\lambda)\gamma(x,\lambda,a)\varphi^{2}(x).$$

Definition

Fix $(t, \lambda) \in [0, T] \times M(\mathbb{R}^d)$. We say that $(\mathbb{P}, \alpha) \in \mathcal{P}(\mathbf{D}^d) \times \mathcal{A}$ is a *controlled superprocesses*, and denote $(\mathbb{P}, \alpha) \in \mathcal{R}_{(t,\lambda)}$, if $\mathbb{P}(\mu_t = \lambda) = 1$ and the process

$$M_s^{F_{\varphi}} = F_{\varphi}(\mu_s) - \int_t^s \int_{\mathbb{R}^d} \mathcal{L}F_{\varphi}(x, \mu_u, \alpha_u(x))\mu_u(dx)du$$

is a (\mathbb{P}, \mathbb{F}) -martingale for any $F \in C_b^2(\mathbb{R})$, $\varphi \in C_b^2(\mathbb{R}^d)$, and $s \ge t$.

・ロト・(部)・(注)・(注)・ 注 のへで 17

Theorem

Fix
$$\alpha \in A$$
, $t \in [0, T]$, and $\lambda, \lambda_n \in M(\mathbb{R}^d)$, for $n \ge 1$, such that $\lambda_n = \frac{1}{n} \sum_{i \in V_n} \delta_{x^{i,n}}$ and $\lambda_n \to \lambda$ for $n \to \infty$. Then,

- there exists a $\mathbb{P}^n \in \mathcal{P}(\boldsymbol{D}^d)$ such that $(\mathbb{P}^n, \alpha) \in \mathcal{R}^n_{(t,\lambda_n)}$;
- $\mathbb{P}^n \to \mathbb{P}$ for $n \to \infty$;
- there exists a unique $\mathbb{P} \in \mathcal{P}(\mathbf{D}^d)$, denoted by $\mathbb{P}^{(t,\lambda,\alpha)}$, such that $(\mathbb{P}, \alpha) \in \mathcal{R}_{(t,\lambda)}$.

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

LPSM, SU

Scaling limit

Theorem

Fix
$$\alpha \in A$$
, $t \in [0, T]$, and $\lambda, \lambda_n \in M(\mathbb{R}^d)$, for $n \ge 1$, such that $\lambda_n = \frac{1}{n} \sum_{i \in V_n} \delta_{x^{i,n}}$ and $\lambda_n \to \lambda$ for $n \to \infty$. Then,

- there exists a $\mathbb{P}^n \in \mathcal{P}(\boldsymbol{D}^d)$ such that $(\mathbb{P}^n, \alpha) \in \mathcal{R}^n_{(t,\lambda_n)}$;
- $\mathbb{P}^n \to \mathbb{P}$ for $n \to \infty$;
- there exists a unique $\mathbb{P} \in \mathcal{P}(\mathbf{D}^d)$, denoted by $\mathbb{P}^{(t,\lambda,\alpha)}$, such that $(\mathbb{P}, \alpha) \in \mathcal{R}_{(t,\lambda)}$.

Reward function:

$$J_{\infty}(t,\lambda;\alpha) := \mathbb{E}^{\mathbb{P}^{(t,\lambda,\alpha)}} \left[\int_{t}^{T} \int_{\mathbb{R}^{d}} \psi(x,\mu_{s},\alpha_{s}(x)) \, \mu_{s}(dx) ds + \Psi(\mu_{T}) \, \bigg| \mu_{t} = \lambda \right]$$

<ロト<回ト<三ト<三ト<三ト<三、</td>

Antonio Ocello

Theorem

Fix
$$\alpha \in A$$
, $t \in [0, T]$, and $\lambda, \lambda_n \in M(\mathbb{R}^d)$, for $n \ge 1$, such that $\lambda_n = \frac{1}{n} \sum_{i \in V_n} \delta_{x^{i,n}}$ and $\lambda_n \to \lambda$ for $n \to \infty$. Then,

• there exists a $\mathbb{P}^n \in \mathcal{P}(\boldsymbol{D}^d)$ such that $(\mathbb{P}^n, \alpha) \in \mathcal{R}^n_{(t,\lambda_n)}$;

•
$$\mathbb{P}^n \to \mathbb{P}$$
 for $n \to \infty$;

• there exists a unique $\mathbb{P} \in \mathcal{P}(\mathbf{D}^d)$, denoted by $\mathbb{P}^{(t,\lambda,\alpha)}$, such that $(\mathbb{P}, \alpha) \in \mathcal{R}_{(t,\lambda)}$.

Reward function:

$$J_{\infty}(t,\lambda;\alpha) := \mathbb{E}^{\mathbb{P}^{(t,\lambda,\alpha)}} \left[\int_{t}^{T} \int_{\mathbb{R}^{d}} \psi(x,\mu_{s},\alpha_{s}(x)) \, \mu_{s}(dx) ds + \Psi(\mu_{T}) \, \bigg| \mu_{t} = \lambda \right]$$

Control problem:

$$v_{\infty}(t,\lambda) = \sup \bigg\{ J_{\infty}(t,\lambda;\alpha) : \alpha \in \mathcal{A} \bigg\}.$$

Antonio Ocello Control of branching diffusions

Theorem

Fix
$$\alpha \in A$$
, $t \in [0, T]$, and $\lambda, \lambda_n \in M(\mathbb{R}^d)$, for $n \ge 1$, such that $\lambda_n = \frac{1}{n} \sum_{i \in V_n} \delta_{x^{i,n}}$ and $\lambda_n \to \lambda$ for $n \to \infty$. Then,

• there exists a $\mathbb{P}^n \in \mathcal{P}(\boldsymbol{D}^d)$ such that $(\mathbb{P}^n, \alpha) \in \mathcal{R}^n_{(t,\lambda_n)}$;

•
$$\mathbb{P}^n \to \mathbb{P}$$
 for $n \to \infty$;

• there exists a unique $\mathbb{P} \in \mathcal{P}(\mathbf{D}^d)$, denoted by $\mathbb{P}^{(t,\lambda,\alpha)}$, such that $(\mathbb{P}, \alpha) \in \mathcal{R}_{(t,\lambda)}$.

Reward function:

$$J_{\infty}(t,\lambda;\alpha) := \mathbb{E}^{\mathbb{P}^{(t,\lambda,\alpha)}} \left[\int_{t}^{T} \int_{\mathbb{R}^{d}} \psi(x,\mu_{s},\alpha_{s}(x)) \mu_{s}(dx) ds + \Psi(\mu_{T}) \middle| \mu_{t} = \lambda \right]$$

Control problem:

$$v_{\infty}(t,\lambda) = \sup \bigg\{ J_{\infty}(t,\lambda;\alpha) : \alpha \in \mathcal{A} \bigg\}.$$

And now, we can start optimizing ...

Antonio Ocello

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Optimization

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

19/26

Dynamic programming principle

We recall

$$v_{\infty}(t,\lambda) = \sup_{\alpha \in \mathcal{A}} \mathbb{E}^{\mathbb{P}^{(t,\lambda,\alpha)}} \left[\int_{t}^{T} \int_{\mathbb{R}^{d}} \psi(x,\mu_{s},\alpha_{s}(x)) \mu_{s}(dx) ds + \Psi(\mu_{T}) \middle| \mu_{t} = \lambda \right] .$$

If we have an optimal control $\hat{\alpha}$, what is the behaviour of an optimally controlled trajectory $(\mu_s)_s$ under $\mathbb{P}^{(t,\lambda,\hat{\alpha})}$? How $v_{\infty}(s,\mu_s)$ and $v_{\infty}(s+h,\mu_{s+h})$ for $s,s+h \in [t,T]$ under $\mathbb{P}^{(t,\lambda,\hat{\alpha})}$?

Theorem (Dynamic programming principle)

We have

$$v_{\infty}(t,\lambda) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}^{\mathbb{P}^{t,\lambda,\alpha}} \left[\int_{t}^{\tau} \int_{\mathbb{R}^{d}} \psi(x,\mu_{s},\alpha_{s}(x)) \mu_{s}(dx) ds + v_{\infty}(\tau,\mu_{\tau}) \right],$$

for any $(t,\lambda) \in [0,T] \times M(\mathbb{R}^d)$, and au stopping time taking value in [t,T].

◆□▶◆冊▶★∃▶★∃▶ ∃ のなべ

Differential properties

Definition

A continuous and bounded function $u: M(\mathbb{R}^d) \to \mathbb{R}$ has a linear derivative $\delta_{\lambda} u$ if there exists a bounded function $\delta_{\lambda} u: M(\mathbb{R}^d) \times \mathbb{R}^d \ni (\lambda, x) \mapsto \delta_{\lambda} u(\lambda, x) \in \mathbb{R}$, continuous for the product topology, such that

$$u(\lambda) - u(\lambda') = \int_0^1 \int_{\mathbb{R}^d} \delta_\lambda u\left(t\lambda + (1-t)\lambda', x\right)(\lambda - \lambda')(dx) dt,$$

for $\lambda, \lambda' \in M(\mathbb{R}^d)$. We denote $C^1(M(\mathbb{R}^d))$ this class of functions.

We say u has intrinsic derivative $D_{\lambda}u$ if $u \in C^1(M(\mathbb{R}^d))$ and $\delta_{\lambda}u$ is of class C^1 with respect to the second variable, and

$$D_{\lambda}u(\lambda,x)=\partial_{x}\delta_{\lambda}u(\lambda,x).$$

We denote with $C^{1,1}(M(\mathbb{R}^d))$ this class of functions.

・ ロ ト ・ 同 ト ・ 同 ト ・ 回 ト

Optimization 00000000

Generalized martingale problem

We define the operator ${f L}$ on $u\in C^{2,2}_b(Mig({\mathbb R}^dig))$ by

$$Lu(\lambda, x, a) = b(x, \lambda, a)^{\top} D_{\lambda} u(\lambda, x) + \frac{1}{2} \operatorname{Tr} \left(\sigma \sigma^{\top}(x, \lambda, a) \partial_{x} D_{\lambda} u(\lambda, x) \right) \\ + \frac{1}{2} \gamma(x, \lambda, a) \delta_{\lambda}^{2} u(\mu, x, x)$$

for $(x, \lambda, a) \in \mathbb{R}^d \times M(\mathbb{R}^d) \times A$.

Proposition

For $(t, \lambda) \in [0, T] \times M(\mathbb{R}^d)$ and $\alpha \in \mathcal{A}$, the following are equivalent: $\left(\mathbb{P}^{t,\lambda,\alpha}, \alpha \right) \in \mathcal{R}_{(t,\lambda)};$

2 the process

$$M_s^u = u(\mu_s) - \int_t^s \int_{\mathbb{R}^d} \mathbf{L}u(x, \mu_u, \alpha_u(x))\mu_u(dx)du$$

is a (\mathbb{P}, \mathbb{F}) -martingale for any $u \in C_b^{2,2}(\mathbb{R}^d)$, and $s \ge t$.

HJB equation

$$H(x,\lambda,a,p,M,r) = b(x,\lambda,a)^{\top}p + \frac{1}{2}\operatorname{Tr}\left(\sigma\sigma^{\top}(x,\lambda,a)M\right) + \frac{1}{2}\gamma(x,\lambda,a)r + \psi(x,\lambda,a).$$

Theorem (Verification theorem)

Let $V : [0, T] \times M(\mathbb{R}^d) \to \mathbb{R}$ be a function living in $C_b^{1,(2,2)}([0, T) \times M(\mathbb{R}^d)) \cap C^0([0, T] \times M(\mathbb{R}^d))$. Suppose that V satisfies

$$\begin{cases} \partial_t V(t,\lambda) + \int_{\mathbb{R}^d} \inf_{a \in A} H\left(x,\lambda,a,D_\lambda V(q),\partial_x D_\lambda V(q),\delta_\lambda^2 V(q,x)\right)_{|q=(t,x,\lambda)} \lambda(dx) = 0\\ V(T,\lambda) = \Psi(\lambda). \end{cases}$$

and there exists a continuous function $\hat{a}(t, x, \lambda)$ valued in A such that

 $\hat{a}(t,x,\lambda) \in \arg\min_{a \in \mathcal{A}} H\left(x,\lambda,a,D_{\lambda}v(t,\lambda,x),\partial_{x}D_{\lambda}v(t,\lambda,x),\delta_{\lambda}^{2}v(t,\lambda,x,x)\right).$

Therefore, if $\alpha^* = \{\alpha^*_s(x) := \hat{a}(s, x, \mu_s), s \in [t, T)\} \in A$, then $V = v_{\infty}$ and α^* is an optimal Markovian control.

イロト 不得 トイヨト イヨト 一臣

Exercise

Assume that b, σ , and γ do not depend on the measure. Fix $h \in C_b(\mathbb{R}^d)$ with $h \ge 0$ and define the following value function

$$v_{\infty}(t,\lambda) = \sup_{lpha \in \mathcal{A}} \mathbb{E}^{\mathbb{P}^{t,\lambda,lpha}} \Big[\exp(-\langle h, \mu_T
angle) \Big] \; .$$

Proposition

Suppose there exists a function $w \in C_b^{1,2}([0,T] \times \mathbb{R}^d)$, such that

$$\begin{cases} -\partial_t w(t,x) - \sup_{a \in A} \left\{ b(x,a)^\top D w(t,x) + \frac{1}{2} \operatorname{Tr} \left(\sigma \sigma^\top(x,a) D^2 w(t,x) \right) \\ - \frac{1}{2} \gamma(x,a) w(t,x)^2 \right\} = 0 , \end{cases}$$

Therefore, we have that

$$v_{\infty}(t,\lambda) = \exp\left(\langle w(t,\cdot),\lambda
angle
ight)$$
 .

▲□▶▲□▶▲■▶▲■▶ ■ のへで 24/26

Questions

◆□▶<⑦▶<≧▶<≧▶<≧▶<</p>

Antonio Ocello Control of branching diffusions

LPSM, SU

Questions

Modelling:

- Do these dynamics reflect reality?
- Which cost functions?
- What is important to control? Is it a direct control or an inverse control?

Questions

Modelling:

- Do these dynamics reflect reality?
- Which cost functions?
- What is important to control? Is it a direct control or an inverse control?

Mathematics:

- Convergence rate for the scaling limit
- Characterization of regular solutions for the HJB equation
- Viscosity solutions for the HJB equation
- Simulations

Antonio Ocello Control of branching diffusions

Antonio Ocello Control of branching diffusions