Sepideh Mirrahimi

CNRS, Institut de mathématiques de Toulouse, France

Joint work with Sylvain Gandon (CNRS, Montpellier) CMAP, Septembre 2016

European Research Council Established by the European Commission

- Introduction

A model with two habitats

• $z \in \mathbb{R}$: phenotypical trait

- n_i(z): the density of the population's phenotypical distribution in patch i
- N_i: the total population's size in patch i:

$$N_i=\int_{-\infty}^{\infty}n_i(y)dy.$$

We consider asexual reproduction

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A model with two habitats - equilibriums

We want to characterize the stationary solutions

$$-V_m \frac{\partial^2}{\partial z^2} n_{\varepsilon,i}(z) = n_{\varepsilon,i}(z) w_i(z, N_i) + m_j n_{\varepsilon,j}(z) - m_i n_{\varepsilon,i}(z).$$

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A model with two habitats - equilibriums

We want to characterize the stationary solutions

$$-V_m \frac{\partial^2}{\partial z^2} n_{\varepsilon,i}(z) = n_{\varepsilon,i}(z) w_i(z, N_i) + m_j n_{\varepsilon,j}(z) - m_i n_{\varepsilon,i}(z).$$

The **fitness** of trait z in patches i = 1, 2:

 $w_i(z, N_i) = r_i - g_i(z - \theta_i)^2 - \kappa_i N_i, \quad \theta_1 = -\theta, \quad \theta_2 = \theta.$

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A model with two habitats - equilibriums

We want to characterize the stationary solutions

$$-\varepsilon^{2}\frac{\partial^{2}}{\partial z^{2}}n_{\varepsilon,i}(z)=n_{\varepsilon,i}(z)w_{i}(z,N_{i})+m_{j}n_{\varepsilon,j}(z)-m_{i}n_{\varepsilon,i}(z).$$

The **fitness** of trait z in patches i = 1, 2:

 $w_i(z, N_i) = r_i - g_i(z - \theta_i)^2 - \kappa_i N_i, \quad \theta_1 = -\theta, \quad \theta_2 = \theta.$

 $V_m = \varepsilon^2$: The variance of the mutation kernel \times the probability of mutation.

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A model with two habitats - equilibriums

We want to characterize the stationary solutions

$$-\varepsilon^{2}\frac{\partial^{2}}{\partial z^{2}}n_{\varepsilon,i}(z)=n_{\varepsilon,i}(z)w_{i}(z,N_{i})+m_{j}n_{\varepsilon,j}(z)-m_{i}n_{\varepsilon,i}(z).$$

The **fitness** of trait z in patches i = 1, 2:

 $w_i(z, N_i) = r_i - g_i(z - \theta_i)^2 - \kappa_i N_i, \quad \theta_1 = -\theta, \quad \theta_2 = \theta.$

 $V_m = \varepsilon^2$: The variance of the mutation kernel \times the probability of mutation.

Assumptions:

ε is small

•
$$\max(r_1 - m_1, r_2 - m_2) > 0 \implies \text{Non-extinction}$$

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

What we bring comparing to previous works

Quantitative genetics:

- A single Gaussian distribution: Ronce, Kirkpatrick (2001), Hendry, Day, Taylor (2001)
- One or two Gaussian distributions: Yeaman, Guillaume (2009), Débarre, Ronce, Gandon (2013)

What we bring comparing to previous works

Quantitative genetics:

 A single Gaussian distribution: Ronce, Kirkpatrick (2001), Hendry, Day, Taylor (2001)

 One or two Gaussian distributions: Yeaman, Guillaume (2009), Débarre, Ronce, Gandon (2013)

What we do:

• We provide a **robust method** to characterize analytically the mutation-migration-selection equilibrium (i.e. the stationary solution $n_{\varepsilon,i}(z)$) – going **beyond the Gaussian** approximation.

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

What we bring comparing to previous works

Adaptive dynamics:

 Main results for symmetric habitats: Meszéna, Czibula, Geritz (1997), Day (2000), Fabre, Méléard, Porcher, Teplitsky, Robert (2012)

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

What we bring comparing to previous works

Adaptive dynamics:

 Main results for symmetric habitats: Meszéna, Czibula, Geritz (1997), Day (2000), Fabre, Méléard, Porcher, Teplitsky, Robert (2012)

What we do:

To characterize the equilibriums, we provide some preliminary results in the adaptive dynamics framework, without making any symmetry assumption.

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

What we bring comparing to previous works

Adaptive dynamics:

 Main results for symmetric habitats: Meszéna, Czibula, Geritz (1997), Day (2000), Fabre, Méléard, Porcher, Teplitsky, Robert (2012)

What we do:

- To characterize the equilibriums, we provide some preliminary results in the adaptive dynamics framework, without making any symmetry assumption.
- We make a connection between notions in adaptive dynamics and quantitative genetics.

A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

The Hamilton-Jacobi approach for evolutionary biology

An old method to study the asymptotic behavior of reaction-diffusion equations:

Freidlin (1985), Evans, Souganidis, Barles, ...

The Hamilton-Jacobi approach for evolutionary biology

An old method to study the asymptotic behavior of reaction-diffusion equations:

Freidlin (1985), Evans, Souganidis, Barles, ...

In evolutionary biology: asymptotic behavior of populations (nonlocal models):

- Heuristics by: Diekmann, Jabin, Mischler, Perthame (2005)
- Rigorous derivation for homogeneous and heterogeneous environments, interaction with resource, etc.: Barles, Bouin, Champagnat, Jabin, Lam, Lorz, Lou, M., Méléard, Perthame, Souganidis, Taing, Turanova, Wakano

The Hamilton-Jacobi approach for evolutionary biology

An old method to study the asymptotic behavior of reaction-diffusion equations:

Freidlin (1985), Evans, Souganidis, Barles, ...

In evolutionary biology: asymptotic behavior of populations (nonlocal models):

- Heuristics by: Diekmann, Jabin, Mischler, Perthame (2005)
- Rigorous derivation for homogeneous and heterogeneous environments, interaction with resource, etc.: Barles, Bouin, Champagnat, Jabin, Lam, Lorz, Lou, M., Méléard, Perthame, Souganidis, Taing, Turanova, Wakano

Towards more quantitative results: approximation of the phenotypical distribution:

Homogeneous environments : M., Roquejoffre

Table of contents

1 Introduction

Preliminary results in adaptive dynamics
 Some notions from adaptive dynamics
 Identification of the ESS

3 A method to describe selection-mutation-migration equilibria

4 Numerics and comparison with previous results

Table of contents

1 Introduction

Preliminary results in adaptive dynamics Some notions from adaptive dynamics Identification of the ESS

3 A method to describe selection-mutation-migration equilibria

4 Numerics and comparison with previous results

- Preliminary results in adaptive dynamics
 - └─Some notions from adaptive dynamics

Effective fitness

Consider a **resident population** $(n_1(z), n_2(z))$, with the total population's sizes $(N_1 = \int_{\mathbb{R}} n_1(y) dy, N_2 = \int_{\mathbb{R}} n_2(y) dy)$.

Then, the effective growth rate $W(z; N_1, N_2)$, associated with trait z in the resident population $(n_1(z), n_2(z))$, is the largest eigenvalue of :

$$\mathcal{A}(z; N_1, N_2) = \left(\begin{array}{cc} w_1(z; N_1) - m_1 & m_2 \\ m_1 & w_2(z; N_2) - m_2 \end{array}\right)$$

Preliminary results in adaptive dynamics

-Some notions from adaptive dynamics

Adaptive dynamics framework–Demographic equilibria Since there are two habitats, we consider only monomorphic and dimorphic equilibria:

Preliminary results in adaptive dynamics

-Some notions from adaptive dynamics

Adaptive dynamics framework–Demographic equilibria Since there are two habitats, we consider only monomorphic and dimorphic equilibria:

• A monomorphic equilibrium is characterized by

$$n_i^M(z) = N_i^M \delta(z - z^M)$$

with $\begin{pmatrix} N_1^M \\ N_2^M \end{pmatrix}$ the **right eigenvector** associated with the dominant eigenvalue $W(z^M; N_1^M, N_2^M) = 0$ of $\mathcal{A}(z^M; N_1^M, N_2^M)$.

Preliminary results in adaptive dynamics

└─Some notions from adaptive dynamics

Adaptive dynamics framework–Demographic equilibria Since there are two habitats, we consider only monomorphic and dimorphic equilibria:

• A monomorphic equilibrium is characterized by

$$n_i^M(z) = N_i^M \delta(z - z^M)$$

with $\begin{pmatrix} N_1^M \\ N_2^M \end{pmatrix}$ the **right eigenvector** associated with the dominant eigenvalue $W(z^M; N_1^M, N_2^M) = 0$ of $\mathcal{A}(z^M; N_1^M, N_2^M)$.

• A dimorphic equilibrium is characterized by:

$$n_i^D(z) = \nu_{a,i}\delta(z - z_a^D) + \nu_{b,i}\delta(z - z_b^D), \quad \nu_{a,i} + \nu_{b,i} = N_i^D$$

with $\begin{pmatrix} \nu_{k,i} \\ \nu_{k,j} \end{pmatrix}$ the **right eigenvectors** associated with the largest eigenvalues $W(z_k^D; N_1^D, N_2^D) = 0$ of $\mathcal{A}(z_k^D; N_1^D, N_2^D)$.

- Preliminary results in adaptive dynamics
 - └─Some notions from adaptive dynamics

Adaptive dynamics framework-Evolutionary equilibria

Evolutionary stable strategies (ESS):

•The monomorphic strategy z^{M*} is an **ESS** if for any mutant $z_0 \neq z^{M*}$, $W(z_0; N_1^{M*}, N_2^{M*}) < 0.$

• The dimorphic strategy $\{z_a^{D*}, z_b^{D*}\}$ is an **ESS** if for any mutant $z_0 \notin \{z_a^{D*}, z_b^{D*}\}$, $W(z_0; N_1^{D*}, N_2^{D*}) < 0.$

Preliminary results in adaptive dynamics

└─ Identification of the ESS

Migration in both directions – Identification of the ESS **Theorem**:

Assume that $m_1 > 0$, $m_2 > 0$. There exists a **unique ESS**. (i) The ESS is **dimorphic** if and only if

$$\frac{m_1 m_2}{4g_1 g_2 \theta^4} < 1 \tag{1}$$

$$C_1 < \alpha_2 r_2 - \alpha_1 r_1 \tag{2}$$

$$C_2 < \beta_1 r_1 - \beta_2 r_2. \tag{3}$$

with C_i , α_i and β_i constants depending on $m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta$ which can be determined explicitly.

Preliminary results in adaptive dynamics

└─ Identification of the ESS

Migration in both directions – Identification of the ESS **Theorem**:

Assume that $m_1 > 0$, $m_2 > 0$. There exists a **unique ESS**. (i) The ESS is **dimorphic** if and only if

$$\frac{m_1 m_2}{4g_1 g_2 \theta^4} < 1 \tag{1}$$

$$C_1 < \alpha_2 r_2 - \alpha_1 r_1 \tag{2}$$

$$C_2 < \beta_1 r_1 - \beta_2 r_2. \tag{3}$$

with C_i , α_i and β_i constants depending on $m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta$ which can be determined explicitly. Then the dimorphic ESS is given by $\{-z^{D*}, z^{D*}\}$ with

$$z^{D*} := \sqrt{\theta^2 - \frac{m_1 m_2}{4\theta^2 g_1 g_2}}.$$

└─ Identification of the ESS

Migration in both directions – Identification of the ESS **Theorem**:

Assume that $m_1 > 0$, $m_2 > 0$. There exists a **unique ESS**. (i) The ESS is **dimorphic** if and only if

$$\frac{m_1 m_2}{4g_1 g_2 \theta^4} < 1 \tag{1}$$

$$C_1 < \alpha_2 r_2 - \alpha_1 r_1 \tag{2}$$

$$C_2 < \beta_1 r_1 - \beta_2 r_2. \tag{3}$$

with C_i , α_i and β_i constants depending on $m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta$ which can be determined explicitly. Then the dimorphic ESS is given by $\{-z^{D*}, z^{D*}\}$ with

$$\mathsf{z}^{D*} := \sqrt{\theta^2 - \frac{m_1 m_2}{4\theta^2 g_1 g_2}}.$$

(ii) If the above conditions are not satisfied then the ESS is **monomorphic**.

└─ Identification of the ESS

Migration in both directions – Identification of the ESS **Theorem**:

Assume that $m_1 > 0$, $m_2 > 0$. There exists a **unique ESS**. (i) The ESS is **dimorphic** if and only if

$$\frac{m_1 m_2}{4g_1 g_2 \theta^4} < 1 \tag{1}$$

$$C_1 < \alpha_2 r_2 - \alpha_1 r_1 \tag{2}$$

$$C_2 < \beta_1 r_1 - \beta_2 r_2. \tag{3}$$

with C_i , α_i and β_i constants depending on $m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta$ which can be determined explicitly. Then the dimorphic ESS is given by $\{-z^{D*}, z^{D*}\}$ with

$$z^{D*} := \sqrt{\theta^2 - \frac{m_1 m_2}{4\theta^2 g_1 g_2}}.$$

(ii) If the above conditions are not satisfied then the ESS is **monomorphic**.

₅ For symmetric habitats, the ESS is given by $\{z^{M*} = 0\}$.

└─ Identification of the ESS

The source-sink case; identification of the ESS

Theorem: Assume that $m_1 > 0$, $m_2 = 0$.

• There exists a **unique ESS** in each habitat (not necessarily the same).

Preliminary results in adaptive dynamics

└─ Identification of the ESS

The source-sink case; identification of the ESS

Theorem: Assume that $m_1 > 0$, $m_2 = 0$.

- There exists a **unique ESS** in each habitat (not necessarily the same).
- \bullet In habitat 1 the ESS is always monomorphic and it is given by $\{-\theta\}$

└─ Identification of the ESS

The source-sink case; identification of the ESS

Theorem: Assume that $m_1 > 0$, $m_2 = 0$.

• There exists a **unique ESS** in each habitat (not necessarily the same).

- \bullet In habitat 1 the ESS is always monomorphic and it is given by $\{-\theta\}$
- \bullet In habitat 2 there are two possibilities: (i) the ESS is dimorphic if and only if

$$m_1rac{(r_1-m_1)}{\kappa_1} < 4g_2 heta^2rac{r_2}{\kappa_2}$$

Then the dimorphic ESS is given by $\{-\theta, \theta\}$.

└─ Identification of the ESS

The source-sink case; identification of the ESS

Theorem: Assume that $m_1 > 0$, $m_2 = 0$.

• There exists a **unique ESS** in each habitat (not necessarily the same).

- \bullet In habitat 1 the ESS is always monomorphic and it is given by $\{-\theta\}$
- \bullet In habitat 2 there are two possibilities: (i) the ESS is dimorphic if and only if

$$m_1\frac{(r_1-m_1)}{\kappa_1} < 4g_2\theta^2\frac{r_2}{\kappa_2}$$

Then the dimorphic ESS is given by $\{-\theta, \theta\}$.

(ii) Otherwise, the ESS in the second patch is also monomorphic and is given by $\{-\theta\}$.

Table of contents

1 Introduction

2 Preliminary results in adaptive dynamics
a Some notions from adaptive dynamics
a Identification of the ESS

3 A method to describe selection-mutation-migration equilibria

4 Numerics and comparison with previous results

 igsir A method to describe selection-mutation-migration equilibria

The selection-mutations-migration equilibria- the method We want to approximate the equilibrium $(n_{\varepsilon,1}(z), n_{\varepsilon,2}(z))$:

$$\begin{cases} -\varepsilon^2 \frac{\partial^2}{\partial z^2} n_{\varepsilon,1}(z) = n_{\varepsilon,1} w_1(z, N_{\varepsilon,1}) + m_2 n_{\varepsilon,2}(z) - m_1 n_{\varepsilon,1}(z), \\ \\ -\varepsilon^2 \frac{\partial^2}{\partial z^2} n_{\varepsilon,2}(z) = n_{\varepsilon,2} w_2(z, N_{\varepsilon,2}) + m_1 n_{\varepsilon,1}(z) - m_2 n_{\varepsilon,2}(z). \end{cases}$$

assuming that ε is small.

 igsir A method to describe selection-mutation-migration equilibria

The selection-mutations-migration equilibria- the method We want to approximate the equilibrium $(n_{\varepsilon,1}(z), n_{\varepsilon,2}(z))$:

$$\begin{cases} -\varepsilon^2 \frac{\partial^2}{\partial z^2} n_{\varepsilon,1}(z) = n_{\varepsilon,1} w_1(z, N_{\varepsilon,1}) + m_2 n_{\varepsilon,2}(z) - m_1 n_{\varepsilon,1}(z), \\ \\ -\varepsilon^2 \frac{\partial^2}{\partial z^2} n_{\varepsilon,2}(z) = n_{\varepsilon,2} w_2(z, N_{\varepsilon,2}) + m_1 n_{\varepsilon,1}(z) - m_2 n_{\varepsilon,2}(z). \end{cases}$$

assuming that ε is small. We make a WKB ansatz

$$n_{arepsilon,i}(z) = rac{1}{\sqrt{2\piarepsilon}}\expig(rac{u_{arepsilon,i}(z)}{arepsilon}ig).$$

 igsir A method to describe selection-mutation-migration equilibria

The selection-mutations-migration equilibria- the method We want to approximate the equilibrium $(n_{\varepsilon,1}(z), n_{\varepsilon,2}(z))$:

$$\begin{cases} -\varepsilon^2 \frac{\partial^2}{\partial z^2} n_{\varepsilon,1}(z) = n_{\varepsilon,1} w_1(z, N_{\varepsilon,1}) + m_2 n_{\varepsilon,2}(z) - m_1 n_{\varepsilon,1}(z), \\ \\ -\varepsilon^2 \frac{\partial^2}{\partial z^2} n_{\varepsilon,2}(z) = n_{\varepsilon,2} w_2(z, N_{\varepsilon,2}) + m_1 n_{\varepsilon,1}(z) - m_2 n_{\varepsilon,2}(z). \end{cases}$$

assuming that ε is small. We make a WKB ansatz

$$n_{\varepsilon,i}(z) = rac{1}{\sqrt{2\pi\varepsilon}} \expig(rac{u_{\varepsilon,i}(z)}{arepsilon}ig).$$

Note that a common Gaussian approximation is given by

$$\begin{split} \eta_{\varepsilon,i}(z) &= \frac{N_i}{\sqrt{2\pi\varepsilon\sigma}} \exp\left(\frac{-(z-z^*)^2}{\varepsilon\sigma^2}\right) \\ &= \frac{1}{\sqrt{2\pi\varepsilon}} \exp\left(\frac{-\frac{1}{2\sigma^2}(z-z^*)^2 + \varepsilon \log\frac{N_i}{\sigma}}{\varepsilon}\right). \end{split}$$

 \square A method to describe selection-mutation-migration equilibria

The selection-mutation-migration equilibria- the method

An expected asymptotic expansion:

 $u_{\varepsilon,i}(z) = u_i(z) + \varepsilon v_i(z) + \varepsilon^2 w_i(z) + O(\varepsilon^3),$

which means, in terms of $n_{\varepsilon,i}$,

$$n_{\varepsilon,i}(z) = \frac{1}{\sqrt{2\pi\varepsilon}} \exp\left(\frac{u_i(z)}{\varepsilon} + v_i(z) + \varepsilon w_i(z) + O(\varepsilon^2)\right)$$

The selection-mutation-migration equilibria- the method

An expected asymptotic expansion:

$$u_{\varepsilon,i}(z) = u_i(z) + \varepsilon v_i(z) + \varepsilon^2 w_i(z) + O(\varepsilon^3),$$

which means, in terms of $n_{\varepsilon,i}$,

$$n_{\varepsilon,i}(z) = \frac{1}{\sqrt{2\pi\varepsilon}} \exp\left(\frac{u_i(z)}{\varepsilon} + v_i(z) + \varepsilon w_i(z) + O(\varepsilon^2)\right)$$

We compute these coefficients using

$$\begin{cases} -\varepsilon \frac{\partial^2}{\partial z^2} u_{\varepsilon,1} = |\frac{\partial}{\partial z} u_{\varepsilon,1}|^2 + w_1(z, N_{\varepsilon,1}) + m_2 \exp\left(\frac{u_{\varepsilon,2} - u_{\varepsilon,1}}{\varepsilon}\right) - m_1, \\ \\ -\varepsilon \frac{\partial^2}{\partial z^2} u_{\varepsilon,2} = |\frac{\partial}{\partial z} u_{\varepsilon,2}|^2 + w_2(z, N_{\varepsilon,2}) + m_1 \exp\left(\frac{u_{\varepsilon,1} - u_{\varepsilon,2}}{\varepsilon}\right) - m_2. \end{cases}$$

How to compute u_i

We present the method in the case $:m_1 > 0, m_2 > 0.$

How to compute u_i

We present the method in the case $:m_1 > 0, m_2 > 0.$

Theorem:

(i) As $\varepsilon \to 0$, $(n_{\varepsilon,1}, n_{\varepsilon,2})$ converges to (n_1^*, n_2^*) , the equilibrium corresponding to the unique ESS of the metapopulation.

How to compute u_i

We present the method in the case $:m_1 > 0, m_2 > 0.$

Theorem:

(i) As $\varepsilon \to 0$, $(n_{\varepsilon,1}, n_{\varepsilon,2})$ converges to (n_1^*, n_2^*) , the equilibrium corresponding to the **unique ESS** of the metapopulation.

(ii) As $\varepsilon \to 0$, both sequences $(u_{\varepsilon,i})_{\varepsilon}$ converge to a viscosity solution to

$$\begin{cases} -\left|\frac{\partial}{\partial z}u\right|^2 = W(z, N_1^*, N_2^*), & \text{ in } \mathbb{R}, \\\\ \max_{z \in \mathbb{R}} u(z) = 0. \end{cases}$$

Moreover, apart from a very particular set of parameters,

 $\operatorname{supp} n_1^* = \operatorname{supp} n_2^* = \{ z \mid u(z) = 0 \} = \{ z \mid W(z, N_1^*, N_2^*) = 0 \}.$

and hence the solution u is unique.

How to compute *u*

Such solution u can be computed explicitly:

How to compute *u*

Such solution u can be computed explicitly:

(i) Monomorphic ESS : Assume that the unique ESS is monomorphic and is given by $\{z^{M*}\}$. Then *u* is given by

$$u(z) = -\left|\int_{z^{M*}}^{z} \sqrt{-W(x; N_1^{M*}, N_2^{M*})} dx\right|$$

How to compute *u*

Such solution u can be computed explicitly:

(i) Monomorphic ESS : Assume that the unique ESS is monomorphic and is given by $\{z^{M*}\}$. Then *u* is given by

$$u(z) = -\big|\int_{z^{M*}}^{z} \sqrt{-W(x; N_1^{M*}, N_2^{M*})} dx\big|.$$

(ii) **Dimorphic ESS** : Assume that the unique ESS is dimorphic and is given by $\{z_a^{D*}, z_b^{D*}\}$. Then *u* is given by

$$u(z) = \max \left(\begin{array}{c} -|\int_{z_a^{D*}}^{z} \sqrt{-W(x; N_1^{D*}, N_2^{D*})} dx|, \\ , -|\int_{z_b^{D*}}^{z} \sqrt{-W(x; N_1^{D*}, N_2^{D*})} dx| \right).$$

Asymptotic expansions for u, v_i and w_i

We present the results in the **monomorphic case**. The dimorphic case can be analyzed following similar arguments.

Asymptotic expansions for u, v_i and w_i

We present the results in the **monomorphic case**. The dimorphic case can be analyzed following similar arguments.

When u < 0, $n_{\varepsilon,i}$ is exponentially small.

 \Rightarrow Only the values of v_i and w_i near the ESS point z^{M*} matter.

Asymptotic expansions for u, v_i and w_i

We present the results in the **monomorphic case**. The dimorphic case can be analyzed following similar arguments.

When u < 0, $n_{\varepsilon,i}$ is exponentially small. \Rightarrow Only the values of v_i and w_i near the ESS point z^{M*} matter.

We indeed compute

$$u(z) = -\frac{A}{2}(z - z^{M*})^2 + B(z - z^{M*})^3 + C(z - z^{M*})^4 + O(z - z^{M*})^5$$

$$v_i(z) = \log(\sqrt{A}N_i^{M*}) + D_i(z - z^{M*}) + E_i(z - z^{M*})^2 + O(z - z^{M*})^3.$$

$$w_i(z) = F_i + O(z - z^{M*}).$$

This is **enough** to obtain a good approximation of the population's distribution : **moments** approximated with an **error of order** ε^2 .

Approximation of the moments

• Total population: $N_{\varepsilon,i} = N_i^{M*}(1 + \varepsilon(F_i + \frac{E_i}{A} + \frac{3C}{A^2}) + O(\varepsilon))$.

• Mean:
$$\mu_{\varepsilon,i} = \frac{1}{N_{\varepsilon,i}} \int z n_{\varepsilon,i} dz = z^{M*} + \varepsilon \left(3\frac{B}{A^2} + \frac{D_i}{A}\right) + O(\varepsilon^2).$$

• Variance:
$$\sigma_{\varepsilon,i}^2 = \frac{1}{N_{\varepsilon,i}} \int (z - \mu_{\varepsilon,i}^M)^2 n_{\varepsilon,i}(z) dz = \frac{\varepsilon}{A} + O(\varepsilon^2).$$

• Skewness: $s_{\varepsilon,i} = \frac{1}{\sigma_{\varepsilon,i}^3 N_{\varepsilon,i}} \int (z - \mu_{\varepsilon,i})^3 n_{\varepsilon,i}(z) dz = 6 \frac{B}{A^{\frac{3}{2}}} \sqrt{\varepsilon} + O(\varepsilon^{\frac{3}{2}}).$

Table of contents

1 Introduction

2 Preliminary results in adaptive dynamics
a Some notions from adaptive dynamics
a Identification of the ESS

3 A method to describe selection-mutation-migration equilibria

4 Numerics and comparison with previous results

Symmetric habitats with monomorphic ESS

Comparison between **numerical** and **analytical** solution for $n_{\varepsilon,1}(z)$ (at left) and $n_{\varepsilon,2}(z)$ (at right) with $\varepsilon = 0.1$.

$$r_{max} = 3, \quad g = 1, \quad \theta = 0.5, \quad \kappa = 1, \quad m = 1.$$

Symmetric habitats with monomorphic ESS

Comparison between **numerical** and **analytical** solution for $n_{\varepsilon,1}(z)$ (at left) and $n_{\varepsilon,2}(z)$ (at right) with $\varepsilon = 0.1$.

$$r_{max}=3, \quad g=1, \quad \theta=0.5, \quad \kappa=1, \quad m=1.$$

In particular, we correct the approximation of the variance:

$$\sigma_{arepsilon,i}^2 = arepsilon / \sqrt{g(1-2g heta^2/m)} + O(arepsilon^2),$$

Symmetric habitats with monomorphic ESS

Comparison between **numerical** and **analytical** solution for $n_{\varepsilon,1}(z)$ (at left) and $n_{\varepsilon,2}(z)$ (at right) with $\varepsilon = 0.1$.

$$r_{max}=3, \quad g=1, \quad \theta=0.5, \quad \kappa=1, \quad m=1.$$

In particular, we correct the approximation of the variance:

$$\sigma_{arepsilon,i}^2 = arepsilon / \sqrt{g(1-2g heta^2/m)} + O(arepsilon^2),$$

Symmetric habitats with monomorphic ESS

Symmetric habitats with monomorphic ESS

Comparison of the solutions n_1 and n_2 with Gaussian distribution with fixed variance (previous approximation given in Debarre et al. 2013).

Symmetric habitats with monomorphic ESS

	Numerical	Analytical	Gaussian approx
N_1	2.68	2.68	2.75
N ₂	2.68	2.68	2.75
μ_1	- 0.06	- 0.07	0
μ_2	0.06	0.07	0
σ_1^2	0.13	0.14	0.03
σ_2^2	0.13	0.14	0.03
<i>s</i> ₁	0.04	0	0
s 2	- 0.04	0	0

Comparison between **numerical** and **analytical** values for the total populations, the mean trait, the variance and the skewness in the two habitats, for $\varepsilon = 0.1$.

-Numerics and comparison with previous results

Symmetric habitats with dimorphic ESS

$$r_{max} = 3, \quad g = 1, \quad \theta = 0.5, \quad \kappa = 1, \quad m = 0.2.$$

Comparison between **numerical** and **analytical** solution for $n_{\varepsilon,1}(z)$ (at left) and $n_{\varepsilon,2}(z)$ (at right) with $\varepsilon = 0.01$.

Symmetric habitats with dimorphic ESS

$$r_{max} = 3, \quad g = 1, \quad \theta = 0.5, \quad \kappa = 1, \quad m = 0.2.$$

Comparison of the solutions $n_{\varepsilon,1}(z)$ (at left) and $n_{\varepsilon,2}(z)$ (at right) with the Gaussian approximations with fixed variance.

Symmetric habitats with dimorphic ESS

	Numerical	Analytical	Gaus. approx
$\mu_{a,1}$	- 0.455	- 0.455	458
$\mu_{a,2}$	- 0.431	- 0.433	- 0.458
$\mu_{b,1}$	0.431	0.433	.458
$\mu_{b,2}$	0.455	0.455	0.458
$\sigma_{a,1}^2$	0.011	0.011	0.010
$\sigma_{a,2}^2$	0.012	0.011	0.010
$\sigma_{b,1}^2$	0.012	0.011	0.010
$\sigma_{b,2}^2$	0.011	0.011	0.010
<i>s</i> _{a,1}	0.049	0.036	0
S _{a,2}	0.081	0.036	0
<i>s</i> _{b,1}	- 0.081	- 0.036	0
<i>s</i> _{b,2}	- 0.049	- 0.036	0

Conclusion

- We provide an analytic approximation of the selection-mutation-migration equilibrium which goes beyond the Gaussian approximations.
- We make a connection between the tools in quantitative genetics and adaptive dynamics.
- The method could be adapted to study : other fitness functions or mutation kernels, several habitats, the dynamics of the poplation's distribution.
- We introduce a robust method based on Hamilton-Jacobi equations that can also be used in other contexts.

-Numerics and comparison with previous results

Thank you for your attention !

-Numerics and comparison with previous results

Non-symmetric habitats with monomorphic ESS

$$r_1 = 20, \quad g_1 = 1, \quad \kappa_1 = 1, \quad m_1 = 0.5, \quad \theta = 0.5.$$

 $r_2 = 0.3, \quad g_2 = 4, \quad \kappa_2 = 1, \quad m_2 = 0.2.$

Comparison between numerical and analytical solution for $n_{\varepsilon,1}(z)$ and $n_{\varepsilon,2}(z)$ with $\varepsilon = 0.01$.

-Numerics and comparison with previous results

Source-sink case with dimorphic ESS

$$r_1 = 3, \quad g_1 = 1, \quad \kappa_1 = 1, \quad m_1 = 0.5, \quad \theta = 0.5.$$

 $r_2 = 4, \quad g_2 = 1, \quad \kappa_2 = 1, \quad m_2 = 0.$

Comparison between **numerical** and **analytical** solution for $n_{\varepsilon,1}(z)$ and $n_{\varepsilon,2}(z)$ with $\varepsilon = 0.01$.

-Numerics and comparison with previous results

Source-sink case with monomorphic ESS

$$r_1 = 3, \quad g_1 = 1, \quad \kappa_1 = 1, \quad m_1 = 0.5, \quad \theta = 0.5.$$

 $r_2 = 1, \quad g_2 = 1, \quad \kappa_2 = 1, \quad m_2 = 0.$

Comparison between numerical and analytical solution for $n_{\varepsilon,1}(z)$ and $n_{\varepsilon,2}(z)$ with $\varepsilon = 0.01$.