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Species abundance

How many species are there?

An old ecological problem when exploring a given environment: how many
species are not observed?

Xi = number of observed
individuals from species i ,

Cx = number of species with x
observed individuals,

C = total number of species
=
∑

x≥0 Cx .

Problem: Ĉ0 =?, Ĉ =?

Fisher et al. (1943)
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Fisher et al. (1943)

S. Robin (AgroParisTech / INRA) Estimating Species Abundance X - MMB, 02/2013 3 / 32



Species abundance Metagenomics

Bacterial communities

Biological context:

Many bacterial species can not be grown artificially out of their
natural environment.

Sets species can only be studied all together, within their
environment, e.g. ocean, human gut, soil, cheese surface, etc.

Their diversity and functions can be studied via NGS by sampling and
sequencing DNA (or RNA) from all species (McHardy and Rigoutsos
(2007)).

Data:

Xi = number of reads from species i (if the genome is available)

Xi = number of reads from gene i (whatever the species)
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Species abundance Species abundance distribution (SAD)

Species abundance distribution

General strategy: The observed counts {Xi} are truncated, meaning that
0’s are not observed.

1 Suppose that the ’complete’ counts are iid, with distribution g :

g = species abundance distribution (SAD);

2 The observed counts {Xi} are iid with truncated SAD g +

g +(x) =
g(x)

1− g(0)
, for x > 0;

3 Fit some (parametric?) distribution to the {Xi} → ĝ +(·) = g +(·; γ̂);

4 Estimate g(0) with the Horwitz-Thomson estimate

Ĉ = c /[1− ĝ(0)] .
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Species abundance Species abundance distribution (SAD)

Estimation of abundance

Standard strategy.

Data: X = {Xi}, Xi = number of
individuals from species i .

Fit some (truncated) distribution
g + to X :

g +(x) = g(x) /[1− g(0)] , x > 0.

Estimate C with the Horwitz-
Thomson estimate

Ĉ = c /[1− ĝ(0)] .

’Non parametric’= parametric mixture g(·) =
∑

k πk fk(·).
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Species abundance Species abundance distribution (SAD)

Species abundance distribution (SAD)

Some classical distributions:

Poisson;

Log-normal (Doroghazi and Buckley (2008));

Poisson-Gamma (Fisher et al. (1943), Hooper et al. (2010)) =
Poisson counts with Gamma intensities;

Mixture of discrete distributions f (·; γ):

g(x) =

∫
f (x ; γ)π(γ)dγ

Interest of the SAD:

Modeling the SAD allows to guaranty identifiability.

SAD provides the saturation curve

Pr{Xi > 0}

which is useful to design experiments.
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Species abundance Species abundance distribution (SAD)

In this talk

Goal:

Provide an estimate of g(0)

With confidence bounds.

1 Bayesian averaging of mixture models

2 A ’true’ non-parametric estimate
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Bayesian averaging of mixture models

Bayesian averaging of mixture models

Joint work with

S. Li-Thiao-Té,

J.-J. Daudin
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Bayesian averaging of mixture models Mixture models

Mixture models

’Non-parametric’ = mixture model: Norris and Pollock (1998)

π(γ) =
∑
k

πkδγk (γ) ⇒ g(x) =
∑
k

πk f (x ; γk).

Truncated mixture vs Mixture of truncated. The distribution of the
observed counts can be expressed in two equivalent ways:

g +(x) =
∑
k

πk f (x ; γk)

/[
1−

∑
k

πk f (0; γk)

]
(1)

or g(x) =
∑
k

π+
k f +(x ; γk). (2)
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Bayesian averaging of mixture models Mixture models

Incomplete data model

A mixture model can be rewritten as:

(Zi )i iid: Zi ∼ M(1;π),

(Xi )i indep. |(Zi )i : Xi |Zi = k ∼ f +(·; γk)

where Zi is the unknown group to which species i belongs.

Notations:

X = (Xi )i observed counts,

Z = (Zi )i unobserved groups,

θ = (π, γ) parameter (γk)k .

We need get an estimate θ̂

or to calculate the posterior
P(θ|X ).
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Bayesian averaging of mixture models Mixture models

Inference

Inference on truncated data:

Inference of mixture of truncated (1) is often easier than this of
truncated mixture (2).

MLE estimates for (1) and (2) are equivalent (Bohning and Kuhnert
(2006)) in the Poisson case.

Bayesian inference

Bayesian inference provides credibility interval through the posterior
P(θ|X ).

Exact Bayesian inference with incomplete data requires
computationally intensive MCMC.

Variational Bayes provides an (optimal) approximation of the joint
posterior P(θ,Z |X ) .
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Bayesian averaging of mixture models Variational Bayes

Exponential family / Conjugate prior

Exponential family:

P(X ,Z |θ) ∝ exp[ψ(θ)′u(X ,Z )]

includes distributions like geometric, Poisson, truncated geometric ... but
not truncated Poisson (while they can still be handled...)

Conjugate prior.
P(θ) ∝ exp[ψ(θ)′ν]

that is

Dirichlet for the multinomial distribution (Z ),

Gamma for Poisson or Beta for the geometric (X |Z ),

⇒ P(θ|X ,Z ) ∝ exp{ψ(θ)′[u(X ,Z ) + ν]}.
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Bayesian averaging of mixture models Variational Bayes

Variational Bayes E-M

Best approximation. As P(θ,Z |X ) is intractable, we look for the best
’manageable’ approximation:

Q∗(θ,Z ) = arg min
Q∈Q

KL[Q(Z , θ); P(Z , θ|X )]

= arg min
Q∈Q

H(Q)− EQ [log P(X ,Z , θ)] + cst

Factorisable distributions. When considering the class

Q = {Q(θ,Z ) = Qθ(θ)QZ (Z )},

the optimal Q∗ ∈ Q can be recovered via (Beal and Ghahramani (2003))

’M’-step: Qθ(θ) ∝ exp
(
ψ(θ)′ [EQZ

u(X ,Z ) + ν]
)

’E’-step: QZ (Z ) ∝ exp(EQθ
ψ(θ)′u(X ,Z )]
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Bayesian averaging of mixture models Bayesian model averaging

Bayesian model averaging

Number of components.

The number of components K is unknown

... but the existence of a ’true’ number of component is questionable.

Bayesian model averaging (BMA). Consider a parameter of interest
∆ = ∆(θ) that can be defined for a series of models 1, . . . ,K . . . .
Denoting

E(∆|X ,K ) =

∫
∆(θ)P(θ|X ,K )dθ

we have
E(∆|X ) =

∑
wkE(∆|X ,K )

where
wK = P(K |X ),

the calculation of which is an issue.
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Bayesian averaging of mixture models Bayesian model averaging

Evaluating the weights

Optimal variational approximation. Optimal weights can be obtained by
direct minimisation of

KL[Q(K ,Z , θ),P(K ,Z , θ|X )]

to get (Volant et al. (2012))

w̃K ∝ P(K |X ) exp {−KL[Q∗(Z , θ|K ); P(Z , θ|X ,K )]} .

which combines

the posterior probability of the model P(K |X )

with the quality of the variational inference within the model

(although none of the two can be computed).
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Bayesian averaging of mixture models Microbial diversity in human gut

Microbial diversity in human gut (Tap et al. (2009))

Fit of different geometric mixtures K = 1, . . . 5: θ̂K = mode of Qθ(θ).

Mixture: ĝ +K (x) =
∑
k

π̂K f +(x ; γ̂K ), BMA: g̃ +(x) =
∑
K

wK f̂ +K (x).
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Bayesian averaging of mixture models Microbial diversity in human gut

Saturation curve

Reverse use of f̃ +(x): Design of NGS metagenomics experiment

Li-Thiao-Té et al. (2012)
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Bayesian averaging of mixture models Credibility interval for the number of species

Confidence interval for the number of species

Geometric distribution. The proportion of absent species under the
geometric distribution is

ĝ(0) = γ̂

for which the approximate posterior Q∗K (γ) is a Beta distribution.

Mixture of geometric, we get

ĝK (0) =
K∑

k=1

π̂k γ̂k .

Number of absent species. The Horwitz-Thomson is

ĈK = c/[1− ĝK (0)].

BMA can also be applied:

C̃ =
Kmax∑
K=1

wK ĈK .
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Bayesian averaging of mixture models Importance sampling

Importance sampling

Approximate posterior.

Variational Bayes only provides an approximate posterior Qθ(θ).

which is known to often under-estimate the posterior variances.

Importance sampling (IS). For any distribution Q, taking {θb} iid ∼ Q,∫
I

P(X |θ)P(θ)dθ =

∫
I

P(X |θ)
P(θ)

Q(θ)
Q(θ)dθ

' 1

B

∑
θb∈I

P(θb)

Q(θb)
P(X |θb) =: P̂(θ ∈ I|X ).

The variance gets smaller when Q gets closer to P(θ|X ).

→ The variational approximation Q∗(θ) can be used as a proxy.
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Bayesian averaging of mixture models Importance sampling

Approximate posterior distribution

A Gibbs sampler is used as a gold standard for P̂(·|X ).

Simulated data: ĝ(0)

0.35 0.40 0.45 0.50 0.55 0.60
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Li-Thiao-Té et al. (2012)

Human gut: Ĉ0 = 25, 700

CI95% = [19, 421; 36, 355].
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A ’true’ non-parametric estimate

A ’true’ non-parametric estimate

Joint work with

C. Durot,

F. Koladjo,

S. Huet
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A ’true’ non-parametric estimate Convexity assumption

Convexity assumption

Most real-life SAD
seem to be convex.

→ Assumption:

g(·) is convex.
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A ’true’ non-parametric estimate Decomposition of convex distributions

Decomposition of convex distributions

Any convex distribution g can
be decomposed as a mixture

g(x) =
∑
j

πjTj(x)

where the Tj are triangular
distributions1

Tj(x) =
2(j − x)

j(j + 1)
.

1this also holds for continuous convex distributions.
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A ’true’ non-parametric estimate Convex SAD

A definition of convex SAD

Mixture interpretation. Species are spread into groups

(Zi ) iid ∼ M(1;π)

(Xi ) indep|(Zi ) : Xi |Zi = j ∼ Tj

Interpretation of group 1. T1 is Dirac mass on 0

→ Species from group 1 can only display Xi = 0

→ Such species can be thought of as ... absent species.

Definition. (Durot et al. (2012)) g is a convex SAD if

(i) g is convex discrete distribution.

(ii) The proportion of T1 is null: π1 = 0.
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(i) g is convex discrete distribution.

(ii) The proportion of T1 is null: π1 = 0.
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A ’true’ non-parametric estimate Convex SAD

Non-parametric (convex) estimate of g

Empirical truncated distribution.

g̃ +
n (x) = n−1

∑
i

I{Xi = x}, x > 0

Least-square truncated convex SAD estimate.

ĝ +
n = arg min

g∈C
‖g − g̃ +

n ‖2

where C denotes the set of truncated convex SAD.

Inference. ĝ +
n can be obtained via an extension of the support reduction

algorithm (Groeneboom et al. (2001)) to an unknown support for g +.
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A ’true’ non-parametric estimate Convex SAD

Some properties of ĝ+
n

1 The support ŝn of ĝ + is finite.

2 If g + is convex, ĝ + is consistent at rate
√

n:

√
n‖ĝ + − g +‖r = OP(1), for r ≥ 2.

3 If g + is not convex, ĝ + converge towards the projection of g + onto C:

√
n‖ĝ + − ΠCg +‖r = OP(1), for r ≥ 2.

4 Absolute moments are larger for ĝ + than for g̃ +.
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2 If g + is convex, ĝ + is consistent at rate
√

n:

√
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A ’true’ non-parametric estimate Convex SAD

Sensitivity to non-convexity
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function of n for set of non-convex Poisson distribution (λ ≤ 2−

√
2).

S. Robin (AgroParisTech / INRA) Estimating Species Abundance X - MMB, 02/2013 28 / 32



A ’true’ non-parametric estimate Proportion of unobserved species

Proportion of unobserved species

Estimate of g(0). Using the definition of convex SAD (i.e. π1 = 0):

ĝ(0) =
θ̂

1 + θ̂
where θ̂ = 2ĝ +(1)− ĝ +(2).

Ongoing work.

Asymptotic variance of θ̂: no closed form.

√
n(θ̂ − θ) converges in distribution towards a non-standard

distribution2.
→ Bootstrap procedure.

2The asymptotic distribution of θ̃ is standard
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A ’true’ non-parametric estimate Proportion of unobserved species

Some examples
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A ’true’ non-parametric estimate Proportion of unobserved species

Sensitivity to truncation

As SAD are often long-tailed, Chao and Shen (2004) suggest truncation at
some τ to infer g(0).

τ ĈmCNP Ĉu ĈUNP ĈWL ĈCONV

10 716 715 715 716 782
11 711 715 715 739 782
12 729 723 722 730 782
13 731 724 724 728 782
14 726 723 723 724 782
15 724 722 722 724 782
20 721 718 718 725 782
24 721 719 719 722 782

Estimates of N on Fisher’s butterfly data.
N̂mCNP , N̂u, N̂UNP and N̂WL reported from Wang and Lindsay (2005).
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Conclusion

Conclusion & Future works

Species abundance is an old statistical problem revisited by metagenomics.

First estimate: Parametric with Bayesian inference

Mixture models → flexible modeling of the SAD;

Variational Bayes Model Averaging → approximate posterior
distribution;

Importance sampling → exact posterior, less computationally
demanding than MCMC.

Second estimate: Non-parametric with frequentist inference

Convexity → natural assumption for SAD;

Triangular decomposition → definition of convex SAD;

Asymptotic distribution of ĝ(0) → under study.
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Li-Thiao-Té, S., Jean-Jacques, D. and Stéphane, R. (2012). Bayesian model averaging for estimating the number of

classes: applications to the total number of species in metagenomics. Journal of Applied Statistics. 39 (7) 1489–1504.

McHardy, A. C. and Rigoutsos, I. (Oct, 2007). What’s in the mix: phylogenetic classification of metagenome sequence

samples. Curr. Opin. Microbiol. 10 499–503.

Norris, J. L. I. and Pollock, K. H. (1998). Non-parametric MLE for poisson species abundance models allowing for

heterogeneity between species. Envir. Ecol. Statist. 5 391–402.

S. Robin (AgroParisTech / INRA) Estimating Species Abundance X - MMB, 02/2013 32 / 32



Conclusion

Tap, J., Mondot, S., Levenez, F., Pelletier, E., Caron, C., Furet, J., Ugarte, E., Muñoz-Tamayo, R., Paslier, D.,
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