Modélisation de l'évolution dans les réseaux proies-prédateurs

Manon Costa

CMAP

Rencontre Chaire MMB, 29 janvier 2014

Modélisation de l'évolution dans les réseaux proies-prédateurs

But

- ▶ Prendre en compte l'impact de l'évolution d'une espèce sur une autre.
- Les réseaux proies-prédateurs forment une brique élémentaire des réseaux écologiques.
- On veut donc modéliser l'évolution de l'interaction de prédation pour observer son impact sur le réseau.

Modèle microscopique

Deux populations :

- ightharpoonup Les proies sont caractérisées par un trait x de défense dans \mathcal{X} .
- ▶ Les prédateurs sont caractérisés par un trait y reflétant leur capacité de prédation dans Y.

Exemples:

- ➤ Tailles respectives des proies et prédateurs ([Loeuille et Loreau 2005],[Durrett et Mayberry 2010])
- Quantité d'une toxine émise et résistance du prédateur ([Strauss&al. TRENDS 2002] [Müller&al. TRENDS 2004])

Fixons $\mathbf{x} = (x_1, \dots, x_d) \in \mathcal{X}^d$ et $\mathbf{y} = (y_1, \dots, y_m) \in \mathcal{Y}^m$. L'évolution de la population est décrite par

$$(N_1(t),...,N_d(t),H_1(t),...,H_m(t))$$

Processus de naissance et mort dans $(\mathbb{N})^{d+m}$

Une proie de trait x

- ightharpoonup se reproduit à un taux b(x),
- meurt
 - par mort naturelle d(x)
 - par competition avec les autres proies c(x, x')
 - par prédation $\beta(x, y)$

$$d(x) + \sum_{i=1}^{d} c(x, x_i) N_i(t) + \sum_{l=1}^{m} \beta(x, y_l) H_l(t).$$

Une proie de trait x

- ightharpoonup se reproduit à un taux b(x),
- meurt
 - par mort naturelle d(x)
 - par competition avec les autres proies c(x, x')
 - par prédation $\beta(x, y)$

$$d(x) + \sum_{i=1}^{d} c(x, x_i) N_i(t) + \sum_{l=1}^{m} \beta(x, y_l) H_l(t).$$

Un prédateur de trait y

se reproduit à un taux

$$e\sum_{i=1}^d \beta(x_i,y)N_i(t),$$

• et meurt à un taux D(y).

Une proie de trait x

- ightharpoonup se reproduit à un taux b(x),
- meurt
 - par mort naturelle d(x)
 - par competition avec les autres proies c(x, x')
 - par prédation $\beta(x, y)$

$$d(x) + \sum_{i=1}^{d} \frac{c(x, x_i)}{K} N_i^K(t) + \sum_{l=1}^{m} \frac{\beta(x, y_l)}{K} H_l^K(t).$$

Un prédateur de trait y

se reproduit à un taux

$$e\sum_{i=1}^d \frac{\beta(x_i,y)}{K} N_i^K(t),$$

• et meurt à un taux D(y).

Premier exemple : 2 proies et un prédateur

On considère 2 proies de utilisant une défense **qualitative** : c'est le type de défense et non la quantité qui importe.

Proie 1 : x = 1.7 et Proie 2 : x = 0.8.

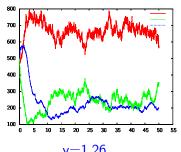
Les proies ont les mêmes taux b et d mais la competition est décroissante en $(x-x')^2$.

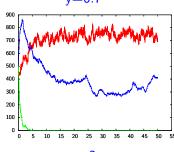
Sans prédateurs les deux proies coexistent.

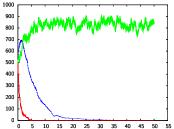
On introduit un prédateur de trait y qui représente sa préférence.

$$\beta(x,y) = \beta_0 \exp(-\frac{(x-y)^2}{2g^2})$$

Proie 1 : x = 1.7, Proie 2 : x = 0.8. y = 0.2







Limite en grande population $K \to \infty$

Renormalisation

$$Z^{K}(t) = \left(\frac{N_{1}^{K}(t)}{K}, ..., \frac{N_{d}^{K}(t)}{K}, \frac{H_{1}^{K}(t)}{K}, ..., \frac{H_{m}^{K}(t)}{K}\right)$$

Théorème

Si $Z^K(0)$ converge en probabilité vers $\mathbf{z}_0 = (\mathbf{n}_0, \mathbf{h}_0) \in \mathbb{R}^{d+m}$ un vecteur déterministe, alors :

$$(Z^K(t), t \in [0, T]) \stackrel{\mathbb{P}}{\longrightarrow} (z(t), t \in [0, T])$$

où $z(t) = (n_1(t), ...n_d(t), h_1(t), ...h_m(t))$ est une fonction continue et déterministe.

[Ethier Kurtz, 1986; Champagnat, 2006]

Caractérisation de la limite

$$(Z^K(t), t \in [0, T]) \stackrel{\mathbb{P}}{\longrightarrow} (z(t), t \in [0, T])$$

La fonction $z(t) = (n_1(t), ...n_d(t), h_1(t), ...h_m(t))$ est solution du système différentiel suivant : $\forall 1 \leq i \leq d, \quad \forall 1 \leq k \leq m.$

$$\begin{cases} \frac{dn_i(t)}{dt} = n_i(t) \Big(b(x_i) - d(x_i) - \sum_{j=1}^d c(x_i, x_j) n_j(t) - \sum_{k=1}^m \beta(x_i, y_k) h_k(t) \Big), \\ \frac{dh_k(t)}{dt} = h_k(t) \Big(e \sum_{i=1}^d \beta(x_i, y_k) n_i(t) - D(y_k) \Big), \end{cases}$$

avec pour condition initiale \mathbf{z}_0 .

Comportement en temps long des solutions du système

On cherche des critères d'existence d'équilibres globalement asymptotiquement stables.

C'est à dire, un équilibre $(\mathbf{n}^*, \mathbf{h}^*)$ tel que toute solution de condition initiale strictement positive converge vers cet équilibre.

Stabilité locale

On suppose qu'il existe un équilibre $(\mathbf{n}^*, \mathbf{h}^*)$ du système

$$\begin{cases} \frac{dn_i(t)}{dt} = n_i(t) \Big(b_i - d_i - \sum_{j=1}^d c_{ij} n_j(t) - \sum_{k=1}^m \beta_{ik} h_k(t) \Big), \\ \frac{dh_k(t)}{dt} = h_k(t) \Big(e \sum_{i=1}^d \beta_{ik} n_i(t) - D_k) \Big), \end{cases}$$

Stabilité locale si

$$\begin{cases} \forall 1 \leq i \leq d, \text{ si } n_i^* = 0 \text{ alors } b_i - d_i - \sum_{j=1}^d c_{ij} n_j^* - \sum_{k=1}^m \beta_{ik} h_k^* < 0, \\ \\ \forall 1 \leq k \leq m, \text{ si } h_k^* = 0 \text{ alors } e \sum_{i=1}^d \beta_{ik} n_i^* - D_k < 0, \end{cases}$$

Stabilité globale

Dépend de la matrice d'interaction du système :

$$I = \left(\begin{array}{cc} C & B \\ -eB^T & 0 \end{array} \right).$$

Proposition

Si $C + C^T$ est définie positive et qu'il existe un équilibre vérifiant

$$\begin{cases} \forall 1 \leq i \leq d, \ \textit{si} \ \textit{n}_{i}^{*} = 0 \ \textit{alors} \ \textit{b}_{i} - \textit{d}_{i} - \sum_{j=1}^{d} \textit{c}_{ij} \textit{n}_{j}^{*} - \sum_{k=1}^{m} \beta_{ik} \textit{h}_{k}^{*} < 0, \\ \\ \forall 1 \leq k \leq m, \ \textit{si} \ \textit{h}_{k}^{*} = 0 \ \textit{alors} \ e \sum_{i=1}^{d} \beta_{ik} \textit{n}_{i}^{*} - \textit{D}_{k} < 0, \end{cases}$$

alors il est globalement asymptotiquement stable.

On considère la fonction de Lyapounov :

$$V(n,h) = \sum_{i=1}^{d} e(n_i - n_i^* \log(n_i)) + \sum_{k=1}^{m} (h_k - h_k^* \log(h_k)).$$

En dérivant le long d'une trajectoire

$$\frac{d}{dt}V(n(t),h(t)) = -\frac{e}{2}(\mathbf{n} - \mathbf{n}^*)^T (C + C^T)(\mathbf{n} - \mathbf{n}^*)
+ e \sum_{i:n_i^*=0} n_i (b_i - d_i - \sum_{j=1}^d c_{ij} n_j^* - \sum_{k=1}^m \beta_{ik} h_k^*)
+ \sum_{k:h_i^*=0} h_k (\sum_{j=1}^d e \beta_{jk} n_j^* - D_k).$$

[Takeuchi, Global properties of Lotka-Volterra systems, 1996]

Existence de tels équilibres

En utilisant des techniques liées aux Problèmes de complémentarité linéaire, on peut montrer que quelle que soit la matrice

$$I = \left(\begin{array}{cc} C & B \\ -eB^T & 0 \end{array} \right),$$

il existe un équilibre du système LVP, vérifiant :

$$\begin{cases} \forall 1 \leq i \leq d, \text{ si } n_i^* = 0 \text{ alors } b_i - d_i - \sum_{j=1}^d c_{ij} n_j^* - \sum_{k=1}^m \beta_{ik} h_k^* \leq 0, \\ \\ \forall 1 \leq k \leq m, \text{ si } h_k^* = 0 \text{ alors } e \sum_{i=1}^d \beta_{ik} n_i^* - D_k \leq 0, \end{cases}$$

[Cottle Pang Stone, Linear complementarity problems, 1992]

En conclusion

Théorème

Si $C + C^T$ est définie positive et (H), alors il existe un unique équilibre équilibre globalement asymptotiquement stable $(\mathbf{n}^*, \mathbf{h}^*)$. Celui-ci vérifie

$$\begin{cases} \forall 1 \leq i \leq d, \; \textit{si} \; \textit{n}_{i}^{*} = 0 \; \textit{alors} \; \textit{b}_{i} - \textit{d}_{i} - \sum_{j=1}^{d} \textit{c}_{ij} \textit{n}_{j}^{*} - \sum_{k=1}^{m} \beta_{ik} \textit{h}_{k}^{*} < 0, \\ \\ \forall 1 \leq k \leq m, \; \textit{si} \; \textit{h}_{k}^{*} = 0 \; \textit{alors} \; e \sum_{i=1}^{d} \beta_{ik} \textit{n}_{i}^{*} - \textit{D}_{k} < 0, \end{cases}$$

Comportement en temps long du processus stochastique

Fixons $\mathbf{x}=(x_1,\ldots,x_d)\in\mathcal{X}^d$ et $\mathbf{y}=(y_1,\ldots,y_m)\in\mathcal{Y}^m$. Si $\mathbf{Z}^K(0)$ converge en probabilité vers $\mathbf{z}_0=(\mathbf{n}_0,\mathbf{h}_0)\in\mathbb{R}^{d+m}$ un vecteur déterministe.

Arrivée au voisinage de l'équilibre z* est l'équilibre globalement stable associé.

A l'aide des résultats précédents, il existe t_{ε} tel que

$$\lim_{\mathcal{K}} \mathbb{P}(|\mathbf{Z}^{\mathcal{K}}(t_{\varepsilon}) - \mathbf{z}^*| > \varepsilon) = 0.$$

Temps de sortie du voisinage de l'équilibre

Combien de temps le processus va rester proche de l'équilibre?

Théorème

Pour tout $\varepsilon'' > 0$, il existe $V_{\varepsilon''} > 0$ et $\varepsilon'' > \varepsilon$ tels que si $\mathbf{Z}^K(0) \in \mathcal{B}_{\varepsilon}$ le processus $(\mathbf{Z}^K(t); t \geq 0)$ ne sort pas de $\mathcal{B}_{\varepsilon''}$ avant un temps $e^{V_{\varepsilon''}K}$ avec une probabilité qui tend vers 1 quand $K \to \infty$.

De plus, le résultat reste vrai si les taux de saut sont modifiés par un processus (\mathcal{F}_t) -adapté uniformément borné par κ_0 .

[Champagnat, Jabin, Méléard, 2013]

Cette modification peut être

- une petite population de mutant,
- une modification dans le taux de naissance,

Temps d'extinction des espèces non adaptées

Cas simple : deux proies x_1 , x_2 et un prédateur. L'équilibre du système déteministe associé est $\mathbf{z} = (n_1^*, 0, h^*)$.

En combien de temps va s'éteindre la population N_2^K des individus de traits x_2 ?

Comme précédemment, on prend $\mathbf{Z}^K(0) \in \mathcal{B}_{arepsilon}$

Il existe a > 0 tel que

$$\lim_{K} \mathbb{P}\Big(N_2^K(a\log K) = 0\Big) = 1.$$

Mutations

But : Visualiser l'impact de la sélection naturelle dans les communautés.

On ajoute à chaque naissance une probabilité de mutation du trait u_K.

Mutations

But : Visualiser l'impact de la sélection naturelle dans les communautés.

On ajoute à chaque naissance une probabilité de mutation du trait uK.

On suppose que les mutations sont rares. :

$$\log \mathsf{K} \ll \frac{1}{\mathsf{Ku}_\mathsf{K}} \ll \mathsf{exp}(\mathsf{V}\mathsf{K}), \quad \forall \mathsf{V} > 0.$$

Fitness d'invasion

Fixons $\mathbf{x} = (x_1, \dots, x_d) \in \mathcal{X}^d$ et $\mathbf{y} = (y_1, \dots, y_m) \in \mathcal{Y}^m$. Considérons $\mathbf{Z}^K(0)$ au voisinage de l'équilibre \mathbf{z}^* déterministe. Quel est le comportement d'un mutant?

Pour un mutant proie de trait x' on définit la fitness

$$W(x';\mathbf{z}^*) = b(x') - d(x') - \sum_{i=1}^d c(x',x_i)n_i^* - \sum_{l=1}^m \beta(x',y_k)h_k^*.$$

Pour un mutant prédateur de trait y'

$$W_{pred}(y'; \mathbf{z}^*) = e \sum_{i=1}^d \beta(x_i, y') n_i^* - D(y').$$

Limite en mutation rare $\left(\nu_{t/Ku_{K}}^{K}, \eta_{t/Ku_{K}}^{K}\right)$

A la limite, on obtient un processus de saut sur l'espace des équilibres du système déterministe.

Ce processus saute de $\mathbf{z}^*(\mathbf{x}, \mathbf{y})$

ightharpoonup à $\mathbf{z}^*((\mathbf{x},x_i+u),\mathbf{y})$ à taux

$$b(x_i)n_i^*\frac{[W(x_i+u;\mathbf{z}^*(\mathbf{x},\mathbf{y}))]_+}{b(x_i+u)}m_p(x_i,u)du$$

ightharpoonup à $\mathbf{z}^*(\mathbf{x},(\mathbf{y},y_k+v))$ à taux

$$h_{k}^{*}e\left(\sum_{i=1}^{d}\beta(x_{i},y_{k})n_{i}^{*}\right)\frac{[W_{pred}(y_{k}+v;\mathbf{z}^{*}(\mathbf{x},\mathbf{y}))]_{+}}{e\left(\sum_{i=1}^{d}\beta(x_{i},y_{k}+v)n_{i}^{*}\right)}m_{P}(y_{k},v)dv$$

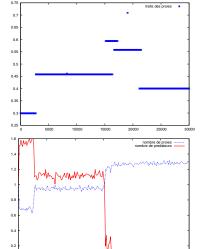
Évolution de la quantité x de toxine produite

On suppose que plus une proie produit de toxine, plus sa défense est efficace. Coût allométrique lié à la production de nombreuses toxines.

Paramètres :

$$b(x) = 2 \exp(-x/10), d = 0$$

- c est constante (cas dégénéré du cadre mathématique)
- $\beta(x) = \beta_0 \exp(-2x).$
- K = 1000
- ightharpoonup probabilité de mutation 10^{-5} .



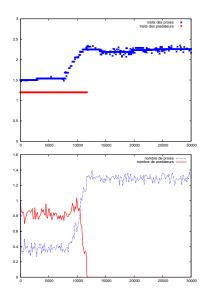
20000

Évolution du type de toxine produite

On suppose maintenant que c'est le type de toxine qui influe sur la qualité de la défense.

Paramètres:

- b et d constants
- $c(x,x') = c_0 \exp(\frac{-(x-x')^2}{2}).$
- $\beta(x) = \beta_0 \frac{1}{0.3} \exp(\frac{-(x-1.2)^2}{0.18}).$
- K = 1000,
- ▶ probabilité de mutation 10⁻⁴.



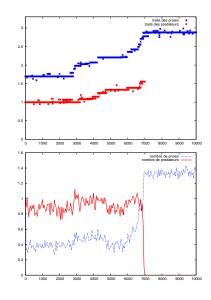
Ajout de l'adaptation du prédateur

On prend maintenant en compte l'évolution de la capacité digestive y du prédateur :

$$\beta(x,y) = \beta_0 \frac{1}{0.3} \exp(\frac{-(x-y)^2}{0.18}).$$

 mortalité des prédateurs D constante.

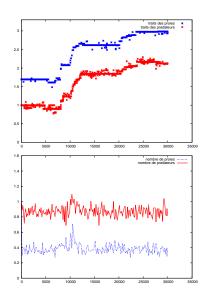
On suppose que la probabilité de mutation des prédateurs est égale à celle des proies.



Accélération de l'adaptation du prédateur

On considère que la probabilité de mutation des prédateurs est trois fois plus élevée que celle des proies.

Dans ce cas, les prédateurs arrivent à suivre l'évolution des proies.



Accélération de l'adaptation du prédateur

On considère que la probabilité de mutation des prédateurs est trois fois plus élevée que celle des proies.

Dans ce cas, les prédateurs arrivent à suivre l'évolution des proies.

Merci de votre attention!

