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NEUTRAL vs. NICHE MODELS IN ECOLOGY

”When we look at the plants and bushes clothing an entangled bank, we
are tempted to attribute their proportional numbers and kinds to what we
call chance. But how false a view is this!”

– Charles Darwin, The Origin of Species
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NEUTRAL vs. NICHE MODELS IN ECOLOGY

After more than 25 years of
research on the tropical forests
of Barro Colorado Island,
however, Stephen Hubbell
controversially proposed
exactly that. . . That random
chance may in fact be the best
explanation of the observed
biodiversity.

Gewin (2006)
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HUBBELL’S UNIFIED NEUTRAL THEORY OF BIODIVERSITY AND
BIOGEOGRAPHY (UNTB)

Alonso, Etienne & McKane (2006).
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RANK ABUNDANCE CURVES: EVIDENCE FOR THE UNTB?

McGill (2003).

I Hubbell saw evidence for neutral assembly in a neutral model’s
accuracy in predicting species abundance distributions.

I Others took up the neutral theory, but in the same manner as neutral
models in genetics, as a null model.
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A REJECTABLE NULL?

Chisholme & Pacala (2010).

However, further modelling showed that niche-based models could produce
species abundance curves almost identical to the neutral model.
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A REJECTABLE NULL?

Jeraldo et. al. (2012).

I Moreover, species abundance curves fit from the neutral theory provide
excellent matches to communities with known niches.

I Does this mean we need to reject the UNTB as even a null model?
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OBJECTIVES

I To find a robust approximation to a wide class of neutral models, and
understand its domain of applicability

I We will take inspiration from Cannings’ models in posing this class.
I Use this approximation to create a fast and accurate means of

simultaneously fit the neutral model to species abundance counts in
samples from islands in an island-mainland metacommunity

I multiple islands with distinct immigration rates
I potentially large numbers of samples (100s of sites) and large samples (1000s

of individuals per site).

I To apply these tools to testing and possibly rejecting the neutral
hypothesis for the assembly of the human gut microbiome.
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CANNINGS’ MODELS

I In 1974, Chris Cannings proposed a class of haploid population genetic
models, which use exchangeability as a general mathematical
formulation of neutrality;

I Random variables ν1, . . . , νN are exchangeable if the random vectors
(νπ(1), . . . , νπ(N)) are equal in distribution for all permutations π of
{1, . . . ,N}.

I Informally, the labels 1, . . . ,N are arbitrary, and can be changed without
essentially changing the process.

I In a Cannings’ model, population size is fixed at N and generations are
discrete.

I the ith individual of the nth generation has νi(n) offspring.
I (ν1, . . . , νN) is exchangeable.
I
∑N

i=1 νi = N.
I e.g., (ν1, . . . , νN) ∼ Multinomial

(
N, 1

N

)
in the Wright-Fisher model.
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A “CANNINGS” NEUTRAL COMMUNITY MODEL

I Want a broad class of neutral island-mainland metacommunity models
that includes the UNTB.

I Use Cannings’ models as basis:

I We assume the mainland supports a population of size N0 = N
I Islands 1, . . . ,M; island i supports a population of size Ni.
I We will assume that the islands are all approximately the same size, and

asymptotically smaller than the mainland.
I The jth individual on the ith island (or mainland if i = 0) has ν(N)

ij (n)

offspring in the nth time step.
I (ν

(N)
i1 (n), . . . , ν

(N)
iNi

(n)) is exchangeable.

I (ν
(N)
i1 (n), . . . , ν

(N)
iNi

(n)) is independent of (ν
(N)
j1 (m), . . . , ν

(N)
jNj

(m)) unless i = j

and m = n

I cNi := E[(νi1)2]
Ni−1 ; c−1

Ni
is the coalescent effective population size of the ith deme

–
we will assume that c−1

Ni
� c−1

N0
for all i ≥ 1.
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AN INFINTE ALLELES “CANNINGS” NEUTRAL COMMUNITY MODEL

I Still need to incorporate mutation and migration:

I Migration:

I With probability cNi
Ii
2 + o(cNi ) per generation, an individual in the ith deme

is replaced by a migrant offspring from another deme.
I The parent of the migrant is chosen uniformly at random from all parents in

all demes.
I Scaling by cNi means that the number of migrants is O(1) (in N).

I Mutation:

I Each genotype is given an arbitrary (i.i.d.) label from [0, 1].
I P(N)(x,A) is the probability that the offspring of an individual of type x has

a type in A ⊆ [0, 1].
I
∫

f (y) P(N)(x, dy) =
(

1 − cN0
θ
2

)
f (x) + cN0

θ
2

∫
f (y) dy + o(cN0 ).
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INTRODUCTION MODELS INVARIANCE PRINCIPLE GIBBS SAMPLER APPLICATIONS TO THE GUT MICROBIOME

EXAMPLE: HUBBELL’S UNTB

I In Hubbell’s original model, only a single individual is replaced in each
deme at at each time step: νij ∈ {0, 1, 2}, with

(νi1, . . . , νiNi ) = (1, . . . , 1, 0, 1, . . . , 1, 2, 1, . . . , 1)

(the vector with ith entry 0 and jth entry 2 for some i 6= j) with probability
2

Ni(Ni−1)

I Thus the νij are exchangeable.
I For the UNTB we have cNi = 2

Ni(Ni−1) .

I In Hubbell’s model, immigrants are always from the mainland, which is
assumed to have a fixed, stationary distribution (so that samples are
distributed according to Ewens formula), and no mutations are assumed
to occur on the islands.

I We will not need to make these assumptions, but will instead derive
them (in the limit as N →∞) as a consequence of the relative size of the
mainland and the islands.
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INTRODUCTION MODELS INVARIANCE PRINCIPLE GIBBS SAMPLER APPLICATIONS TO THE GUT MICROBIOME

ROBUSTNESS OF THE WRIGHT-FISHER DIFFUSION

I Möhle (2001) showed that if time is rescaled by c−1
N , i.e., by the effective

population size, then the frequencies of types in a Cannings’ model
converge to those given by the Wright-Fisher diffusion, if and only if

lim
N→∞

E [ν1(ν1 − 1)(ν1 − 2)]

NE [ν1(ν1 − 1)]
= 0.

I We can thus say that the Wright-Fisher diffusion is a robust
approximation to a broad class of neutral population genetic processes.

I We will see that a similar invariance principle exists for the class of
Cannings’ neutral community models, and moreover its stationary
distribution is the Hierarchical Dirichlet Process (Teh, 2006)
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I Möhle (2001) showed that if time is rescaled by c−1
N , i.e., by the effective

population size, then the frequencies of types in a Cannings’ model
converge to those given by the Wright-Fisher diffusion, if and only if

lim
N→∞

E [ν1(ν1 − 1)(ν1 − 2)]

NE [ν1(ν1 − 1)]
= 0.

I We can thus say that the Wright-Fisher diffusion is a robust
approximation to a broad class of neutral population genetic processes.

I We will see that a similar invariance principle exists for the class of
Cannings’ neutral community models, and moreover its stationary
distribution is the Hierarchical Dirichlet Process (Teh, 2006)

18 / 33



INTRODUCTION MODELS INVARIANCE PRINCIPLE GIBBS SAMPLER APPLICATIONS TO THE GUT MICROBIOME

ROBUSTNESS OF THE WRIGHT-FISHER DIFFUSION
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INTRODUCTION MODELS INVARIANCE PRINCIPLE GIBBS SAMPLER APPLICATIONS TO THE GUT MICROBIOME

INVARIANCE PRINCIPLE I: ISLANDS

I Let Xij(n) ∈ [0, 1] be the type of the jth individual in the ith deme in the
nth generation, and let

G(N)
i (n) =

1
Ni

Ni∑
j=1

δXij(n).

I Suppose that there exists aN such that

lim
N→∞

cNi

aN
=

{
γi if i ≥ 1, and
0 otherwise.

exists for all i.
I Then, if G(N)

i (0)
w

=⇒ Gi(0), a probability measure on [0, 1], then

G(N)
i (ba−1

N tc) w
=⇒ Gi(γit),

where G0(t) ≡ G0(0) for all t ≥ 0 and Gi(t) satisfies the infinite alleles
model with base measure G0(0) and “mutation rate” Ii.

I Further, conditional on G0(0), the G(N)
i (0) are independent.
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INTRODUCTION MODELS INVARIANCE PRINCIPLE GIBBS SAMPLER APPLICATIONS TO THE GUT MICROBIOME

INVARIANCE PRINCIPLE I: STATIONARY DIRICHLET PROCESS

I As t→∞, the infinite alleles model with
mutation rate θ and base measure µ tends to
a stationary distribution with law DP(θ, µ)

I A Dirichlet Process with law DP(θ, µ) can be
constructed via stick breaking:

I Draw β′i ∼ Beta(1, θ).
I Set βi = β′i

∏i−1
j=1(1 − β′j ).

I Let µ be a probability measure on a space Θ
and let Xi ∼ µ be i.i.d.

I
∑∞

i=1 βiδXi is a random variable with law
DP(θ, µ)

I E
[∑∞

i=1 βiδXi

]
= µ.

I In particular, samples from a DP(θ, µ) r.v. can
be generated using Aldous’ Chinese restaurant
process and are distributed according to
Ewens’ sampling formula.
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INTRODUCTION MODELS INVARIANCE PRINCIPLE GIBBS SAMPLER APPLICATIONS TO THE GUT MICROBIOME

INVARIANCE PRINCIPLE II: MAINLAND

I Further, if we assume that G(N)
i (0)

w
=⇒ Gi(0), where

Gi(0) ∼ DP(Ii,G0(0)), i.e., we assume that the islands are already at their
stationary state, then

G(N)
0 (bc−1

N0
tc) w

=⇒ G0(t),

where G0 is the infinite alleles process with Lebesgue measure on [0, 1],
λ, as base measure and mutation rate θ.

I This tends, as t→∞, to a stationary distribution DP(θ, λ).
I In particular, if we assume that G0(0) ∼ DP(θ, λ), then the process is

stationary, and the islands to hierarchical Dirichlet processes (HDP) with
laws DP(Ii,G0(0)).

I We can thus apply the extensive statistical machinery for the HDP
developed in the machine learning literature.
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stationary, and the islands to hierarchical Dirichlet processes (HDP) with
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AN EFFICIENT MCMC ALGORITHM

I The HDP lends itself very well to inference via a Gibbs sampler:
I Gibbs sampling is a special case of Metropolis–Hastings.
I Construct an ergodic discrete time Markov chain such that the joint

probability distribution of the parameters, conditional on the observed data,
is its stationary distribtution.

I Parameters are the rescaled mutation and migration rates, θ and the Ii.
I Data are counts Xij of incidence of species j in community i.
I Use the auxiliary variables approach of Escobar & West (1995),
I Gamma priors for our parameters.

I Ergodicity of the Markov chain allows us to average over repeated
samples to obtain expectations of arbitrary functions of the parameters.

I The expected value of the parameters gives the Bayes’ minimum square
estimators (MSE), θ̂, Îi.

I We can easily determine the full posterior distribution or any related
summary statistics.
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TESTING THE GIBBS SAMPLER I: SIMULATED DATA
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Estimated immigration rates vs. true values for the UNTB-HDP model fit to a
neutral model simulation. Predictions are medians (solid line) from 25,000
posterior samples together with lower (2.5%) and upper (97.5%) Bayesian
confidence intervals (dotted lines). The predictions from the two-stage
approximation are also given (blue line).
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TESTING THE GIBBS SAMPLER II: PANAMA CANAL ZONE DATASETS

Method θ IBCI IC IS

Etienne fixed I 259 44.2 44.2 44.2
Etienne approx 342 53.7 30.8 33.9
Etienne exact 235± 23 65.3± 5.9 31.5± 3.9 35.7± 3.9
HDP approx 231± 22 65.5± 5.9 31.6± 3.8 35.8± 3.9

I Neutral parameter estimates for samples from three local tree
communities (Sherman, BCI and Cocoli) in the Panama Canal Zone
using previous approaches and the hierarchical Dirichlet process
approximation. Standard errors are given for the methods where they
are available.

I HDP gives good agreement with exact methods.
I When we applied our HDP approach to 29 Panamanian tropical tree

communities, we found a significant negative correlation between
distance and estimated immigration rate – the latter are informative.
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CAN NEUTRALITY EXPLAIN DIVERSITY IN THE GUT MICROBIOME?

I Microbial communities play functionally important roles in many
ecosystems yet are rich in diversity.

I Such systems might, a priori, be expected to contain at least
subpopulations shaped primarily by stochastic forces.

I Jeraldo, et. al. (2012) found that neutrality could not be rejected using
species abundance curves.

I However, evidence of clustering of gut microbiota into different
enterotypes (Arumugam et al., 2011; Holmes et al., 2012), which implies
non- neutral structuring at the whole community level.

I We explored this by subdividing the species according to their taxa at
multiple taxonomic levels; it should be increasingly the case that species
in smaller clades occupy similar community roles and for neutrality we
may only require this in the broadest sense, e.g., methanogens vs.
sulphate reducers.
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METHODS

I Used gut microbiome data from twins and their mothers (Turnbaugh et
al., 2009): faecal samples from 154 individuals, characterized by family
and body mass index (BMI), at two time points two months apart.

I The V2 hypervariable region of the 16S rRNA gene was amplified by
PCR and then sequenced using 454 and de-noised using the
AmpliconNoise pipeline (Quince et al., 2009, 2011).

I 570,851 reads split over 278 samples – sample size 53 to 10,580 with a
median of 1,598.

I 19,647 unique sequences following noise removal, taxonomically
classified using the RDP stand-alone classifier of Wang et al. (2007), split
by phylum, using a cut-off of 70% bootstrap confidence

I Constructed 7,238 Operational Taxonomic Units (OTUs) at 3% sequence
difference using average linkage clustering (Youssef et al., 2009)

I Fitted UNTB-HDP to each phylum, family and genus separately
I Only samples with > 100 representatives from a taxa were included,

only fit to taxa with > 50 such samples.
I Used Monte Carlo significance test for neutrality from Etienne (2007): pN

metacommunity p-value; pL ‘local’ p-value.
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FITTING THE UNTB-HDP MODEL TO HUMAN GUT MICROBIOTA

Taxa %age #samples #3% OTU θ̂ Îi pN pL
Bacteroidetes 29.9 249 585 151.32 1.46-5.57-13.52 0.0 0.0

Bacteroidaceae 23.6 221 224 50.79 0.85-3.33-7.70 0.0 0.05
Bacteroides 23.6 238 227 51.01 0.71-3.33-7.80 0.0 0.04

Rikenellaceae
Alistipes 2.22 66 40 8.72 0.33-2.38-11.10 0.02 0.77

Firmicutes 66.1 277 4771 1383.38 21.44-44.82-80.81 0.0 0.0
Incertae Sedis XIV 7.56 124 217 47.75 2.16-9.88-27.42 0.0 0.06

Blautia 7.55 197 252 52.01 2.26-10.62-34.18 0.0 0.14
Lachnospiraceae 12.4 230 1076 314.66 6.57-13.28-23.91 0.0 0.0

Roseburia 2.61 87 124 38.21 0.40-2.41-7.12 0.0 0.18
Ruminococcaceae 24.2 257 1489 412.68 4.19-15.73-38.20 0.0 0.0

Faecalibacterium 12.1 236 369 84.27 0.66-6.87-21.46 0.0 0.01
Oscillibacter 1.90 58 72 19.33 0.84-3.23-8.16 0.068 0.34
Ruminococcus 1.74 60 35 10.99 0.00-0.38-1.94 0.013 0.65
Subdoligranulum 2.95 94 86 23.14 0.22-1.67-8.50 0.0 0.32

I θ̂: median over 25,000 Gibbs samples

I Îi: the fitted immigration rates (lower 2.5% – median – upper 97.5%
quantiles) over 25,000 Gibbs samples

I The immigration rates are again informative: they are much lower for
the Bacteroides than the Firmicutes, probably reflecting the fact that the
latter are spore-forming.
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IMMIGRATION RATES vs. BMI
.

20 30 40 50 60 70

0
10

20
30

40
50

BMI

I

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

I Moreover, when we compared fitted migration rates against BMI, a
significant negative correlation is observed (p-value = 0.006776 -
Pearson’s correlation) in Ruminococcaceae and Firmicutes.

I Increasing nutrient supply counterintuitively reduces local biodiversity.
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FITTED RANK-ABUNDANCE CURVES
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A) Bacteroides B) Blautia

C) Faecalibacterium D) Oscillibacter

I Empricial metacommunity distributions (black line) and neutral
metacommunity predictions (red line) for four genera: A) Bacteroides, B)
Blautia, C) Faecalibacterium and D) Oscillibacter

I Unlike Jeraldo, et. al. (2012), when we fit the whole model, as opposed to
the rank-abundance curve, we can reject the neutral hypothesis.
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SUMMARY

I The UNTB-HDP Gibbs sampler, can fit large multi-sample data sets in a
way that can detect deviations of the metacommunity from neutrality
whilst still inferring informalive immigration rates.

I Under the assumption of large samples, it is invariant under a variety of
neutral models, and is thus a good test of the neutral hypothesis, rather
than the specifics of the model.

I The resulting significance tests and fitted parameters reveal a great deal
about the ecology of the human gut microbiota:

I Only at the genus level do we consistently see evidence of neutral local
community assembly in the gut; however, neutral local community
assembly may be operating within the species occupying those roles, and
that neutral processes may be responsible for maintaining some of the vast
diversity that is observed in the human microbiota.

I The immigration rates, are also informative; for the family Ruminococcaceae
and phylum Firmicutes, they correlated negatively with body mass index;
they are much lower for the Bacteroides than the Firmicutes, reflecting the
much higher tendency for the latter to be spore-forming.

I Moreover, we have formally linked a model from ecology, the UNTB,
with a highly flexible model from machine learning, the hierarchical
Dirichlet process; we hope that the connection we have made here will
lead to further hierarchical Bayesian modelling in ecology.
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A Community Model With Tradeoffs, No Fixed N

XN
i (t) = the number of individuals of species i at time t

Event Rate
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i (t)→ XN
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i (t)− 1 δiXN
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I Individuals of species i give birth at per-capita rate βi.
I They die at rate δi.
I Individuals of species i immigrate from the mainland at rate mi = $i

N .
I Individuals survive if they find an empty patch or if they out-compete

an individual in an occupied patch.
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A Community Model With Tradeoffs, No Fixed N

For the community model with tradeoffs, long-term coexistence is only
possible if κij ≡ κ and

βi

δi
≡ 1− ν.

For t ∈ (δ,∞) for any fixed δ > 0, the relative frequency process,
P(t) = 1∑K

i=1 Xi(t)
X(Nt) is a diffusion on the standard simplex with generator:

Lf =

K−1∑
i=1

(1− ν)(1− κ)

ν

[
µi −

µ�βipi∑K
k=1 βkpk

+
βipi( 1

α
− 1
) (∑K

k=1 βkpk

)
2

K∑
k=1

(βk − βi)βkpk

]
∂pi f

+

K−1∑
i=1

K−1∑
j=1

(1− ν)(1− κ)

ν
βipi

(
δij −

βjpj∑K
k=1 βkpk

)
∂pi∂pj f .
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I The probability of having relative species abundances (p1, . . . , pK) is
Dirichlet distributed:

Γ
(∑K

i=1
$i
βi

)
∏K

i=1 Γ
(
$i
βi

) K∏
i=1

p
$i
βi
−1

i

I This offers one potential explanation for the effectiveness of the UNTB in
fitting real species abundance data: if we assume migration rates are
proportional to birth rates ($i = βiθ,) then the abundance distribution
under trade-offs is type independent.
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