
Is he stable? 
What keeps him from falling? 
How did he get there in the first place? 
When and where to is he going to fall? 
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theoretical challenge - too generic? 



practical application too difficult? 

•  noise, measurement error 
•  low resolution (gaps, irregular) 
•  data availability 

QUANTIFYING RESILIENCE

Do early warning indicators consistently predict
nonlinear change in long-term ecological data?

Sarah J. Burthe1*, Peter A. Henrys2†, Eleanor B. Mackay2†, Bryan M. Spears1,

Ronald Campbell3, Laurence Carvalho1, Bernard Dudley1, Iain D. M. Gunn1,

David G. Johns4, Stephen C. Maberly2, Linda May1, Mark A. Newell1, Sarah Wanless1,

Ian J. Winfield2, Stephen J. Thackeray2‡ and Francis Daunt1‡
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Summary

1. Anthropogenic pressures, including climate change, are causing nonlinear changes in
ecosystems globally. The development of reliable early warning indicators (EWIs) to predict

these changes is vital for the adaptive management of ecosystems and the protection of biodi-
versity, natural capital and ecosystem services. Increased variance and autocorrelation are

potential early warning indicators and can be readily estimated from ecological time series.
Here, we undertook a comprehensive test of the consistency between early warning indicators

and nonlinear abundance change across species, trophic levels and ecosystem types.
2. We tested whether long-term abundance time series of 55 taxa (126 data sets) across multi-
ple trophic levels in marine and freshwater ecosystems showed (i) significant nonlinear change

in abundance ‘turning points’ and (ii) significant increases in variance and autocorrelation
(‘early warning indicators’). For each data set, we then quantified the prevalence of three

cases: true positives (early warning indicators and associated turning point), false negatives
(turning point but no associated early warning indicators) and false positives (early warning
indicators but no turning point).
3. True positives were rare, representing only 9% (16 of 170) of cases using variance, and
13% (19 of 152) of cases using autocorrelation. False positives were more prevalent than false

negatives (53% vs. 38% for variance; 47% vs. 40% for autocorrelation). False results were
found in every decade and across all trophic levels and ecosystems.
4. Time series that contained true positives were uncommon (8% for variance; 6% for auto-

correlation), with all but one time series also containing false classifications. Coherence
between the types of early warning indicators was generally low with 43% of time series cate-

gorized differently based on variance compared to autocorrelation.
5. Synthesis and applications. Conservation management requires effective early warnings of
ecosystem change using readily available data, and variance and autocorrelation in abundance

data have been suggested as candidates. However, our study shows that they consistently fail
to predict nonlinear change. For early warning indicators to be effective tools for preventative

management of ecosystem change, we recommend that multivariate approaches of a suite of
potential indicators are adopted, incorporating analyses of anthropogenic drivers and

process-based understanding.

Key-words: ecosystem resilience, food webs, nonlinearity, preventative management, regime

shifts, time-series data, tipping points
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include trophic cascades, desertification, and
shifts in species abundance, community compo-
sition, and climate patterns (Appendix S1:
Table S1). Empirical examples come primarily
from marine and freshwater ecology and climate
studies (Fig. 1B). These empirical studies have
faced two general challenges: the challenge of
identifying and classifying ecosystem shifts that
are suitable for EWS, and the statistical chal-
lenges that are presented by testing EWS with
real data.

Sudden ecosystem transitions that might be
preceded by EWS are often referred to as “regime
shifts,” but this term has never achieved a univer-
sal definition in the literature (Lees et al. 2006).
The term first gained currency in marine ecology,
where regime shifts may be linear biological reac-
tions to abrupt change in an environmental driver
(Rudnick and Davis 2003, Di Lorenzo and Ohman
2013). In the theoretical and general ecology litera-
ture, regime shifts have become synonymous with
critical transitions among alternative states (Schef-
fer et al. 2001, Scheffer and Carpenter 2003, Guttal
and Jayaprakash 2008, Pace et al. 2015). The diffi-
culty in defining the term has meant that “regime
shift” has also been used to mean any large,

persistent change in a system, springing from a
diverse set of underlying dynamics (Brock and
Carpenter 2010). Given this vagueness in the liter-
ature, it is unsurprising that empirical studies
have taken a variety of approaches to the problem
of identifying ecological transitions that might
produce EWS. Some studies rigorously test shifts
for conformity with a model of nonlinear change
between alternative states (e.g., Carpenter et al.
2011, Wang et al. 2012). More commonly, studies
use simple temporal or spatial breakpoint analy-
ses as evidence of a less rigorously defined shift of
indeterminate nature (e.g., Beaugrand et al. 2008,
Litzow et al. 2008, 2013, Carstensen and Weyd-
mann 2012, Wouters et al. 2015, Burthe et al.
2016). Some of these studies explicitly acknowl-
edge that tests for critical transitions are impossi-
ble given the data on hand, and recognize the use
of breakpoint analysis as a necessary compromise
(e.g., Carstensen and Weydmann 2012). Still other
studies, without directly testing for nonlinearity,
reference features of the study system that are
heuristically consistent with critical transitions
between alternative states (e.g., Litzow et al. 2008,
2013, Hewitt and Thrush 2010, Wouters et al.
2015). This reliance on heuristic arguments risks
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Fig. 1. Summary of early warning signals (EWS) studies published in print or online during 2006–2015.
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compared between study systems with linear or undefined dynamics vs. systems with nonlinear dynamics.
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Resilience indicators: prospects and
limitations for early warnings of
regime shifts
Vasilis Dakos1, Stephen R. Carpenter2, Egbert H. van Nes3

and Marten Scheffer3

1Integrative Ecology Group, Estación Biológica de Doñana, c/Américo Vespucio s/n, Seville 41092, Spain
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In the vicinity of tipping points—or more precisely bifurcation points—
ecosystems recover slowly from small perturbations. Such slowness may be
interpreted as a sign of low resilience in the sense that the ecosystem could
easily be tipped through a critical transition into a contrasting state. Indicators
of this phenomenon of ‘critical slowing down (CSD)’ include a rise in temporal
correlation and variance. Such indicators of CSD can provide an early warning
signal of a nearby tipping point. Or, they may offer a possibility to rank reefs,
lakes or other ecosystems according to their resilience. The fact that CSD may
happen across a wide range of complex ecosystems close to tipping points
implies a powerful generality. However, indicators of CSD are not manifested
in all cases where regime shifts occur. This is because not all regime shifts are
associated with tipping points. Here, we review the exploding literature about
this issue to provide guidance on what to expect and what not to expect when
it comes to the CSD-based early warning signals for critical transitions.

1. Introduction
Real world systems occasionally undergo substantial changes triggered by just
small disturbances [1]. The onset of an epidemic, the spread of a forest fire or
the sudden eutrophication of a lake are examples of such unexpected behaviour.
In the marine world similar cases abound. Early work on sessile fouling commu-
nities [2] and on simple food webs of rocky intertidal areas [3] demonstrated that
disturbances might lead to alternative endpoint communities. Subsequent studies
suggested a similar potential of shifting between alternative states (or ‘regimes’)
also in coral reefs [4,5], kelp forests [6,7], macroalgae beds [8], fish populations
[9–11], and even whole pelagic and benthic communities [12–16].

Despite the rich advances in the understanding of the mechanisms behind
marine regime shifts [17–19], our ability to predict them remains poor. In recent
years, this challenge has gained importance as it is unclear how marine ecosys-
tems will respond to current trends in climate patterns and anthropogenic
pressures. Interestingly enough, this situation is not unique to the marine
world; it holds for a whole range of ecosystems that have experienced regime
shifts in the past or may do so in the future.

A novel approach for tackling this challenge is the recently developed early
warning signals for critical transitions [20]. Critical transitions are defined as
abrupt qualitative changes in the state of an ecosystem that occur close to bifurcation
points [21]. Below we offer a more rigorous description of a critical transition.
Most early warning signals are temporal and spatial statistical signatures of the
phenomenon of critical slowing down (CSD) that arises in the vicinity of bifur-
cations [22–24]. CSD can be interpreted as an indication of low resilience in the
sense that the ecosystem could easily be tipped into a contrasting state. Indicators
of CSD have been demonstrated in a variety of systems, ranging from yeast and
zooplankton populations close to extinction [25,26] and collapsing phytoplankton

& 2014 The Author(s) Published by the Royal Society. All rights reserved.
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Tipping points mark the abrupt shift between contrasting eco-
system states (broadly termed regime shifts) when environ-
mental conditions cross specific thresholds (Box 1). Prominent 

examples are the shift of shallow lakes from a clear to turbid water 
state1 and the collapse of vegetation leading to a desert state in dry-
lands2. Societal stakes associated with tipping points in natural eco-
systems can be high, and there is a large emphasis on uncovering the 
mechanisms that trigger them3 and possible methods to detect and 
avoid them4. Currently, however, tipping point theory largely lacks 
an evolutionary perspective, and this might limit the understanding 
of the occurrence, timing, and abruptness of shifts between states 
(see figure in Box 1). Here we argue that both trait variation and 
evolution are important for understanding how ecosystem dynam-
ics affect tipping points.

Developing a trait-based evolutionary perspective on tipping 
points in ecosystems is warranted by the growing amount of evi-
dence that changes in standing levels of trait variation and contem-
porary trait evolution are important drivers of ecological processes 
(for example, refs. 5,6) by influencing population dynamics7, shaping 
the structure of species interactions in communities8, or affecting 
species composition at the metacommunity level9. Such ecologi-
cal effects of evolution also extend to ecosystem functioning10–12 
by modifying material fluxes13, primary production14, nutrient 
recycling15, and decomposition16. Changes in life-history traits of 
organisms caused by environmental stress (like fishing) have been 
shown to destabilize dynamics of populations17 or whole communi-
ties18, and even to increase the risk of extinction19. Fitness-related 
traits (for example, body size) can systematically change before 
populations collapse20 and can be used as indicators of biologi-
cal transitions21,22. Thus, it is reasonable to expect that changes in 
trait distributions might be important for understanding ecologi-
cal tipping points, as they might affect the variation in sensitivity 
to environmental stress among species, populations, or individuals 
in an ecosystem23,24. This sensitivity underlies the response capac-
ity of communities to stress25,26 such that trait changes could affect  

the resilience of entire ecosystems27 and their probability of tip-
ping to a different state. It is the effect of evolutionary trait changes  
on tipping points at the ecosystem level that we are focusing on in 
this perspective.

Ecosystem resilience can be affected by variation in traits10,11 that 
underlie the performance and fitness of organisms that exist in a 
given environmental state (that is, response traits), or those traits 
through which organisms have direct or indirect effects on the 
environmental state (that is, effect traits) (Table 1). The distribu-
tion of such response and effect traits can vary because of pheno-
typic plasticity, species sorting, and evolutionary trait change, and 
distinguishing between these mechanisms can be important for 
understanding the ecological dynamics of trait change in general28 
and of tipping points in particular. Phenotypic plasticity, whereby a 
genotype exhibits different phenotypes in different environments, is 
a relevant source of trait variation, particularly when the phenotypic 
changes relate to the capacity of organisms to respond to stress. 
However evolutionary responses to stress depend on heritable trait 
variation in a population29, which can originate from novel variants 
due to mutation30, recombination31, and gene flow among popula-
tions and species32. Below, we do not a priori distinguish between 
the genetic versus plastic sources of trait distributions (although we 
comment on their differences), but instead focus on how trait varia-
tion and trait change over time can influence ecosystem tipping 
points in a generic way. We do this using a graphical approach and 
illustrate how trait changes might modify the collapse and recovery 
trajectories of ecosystems along an environmental gradient.

Trait variation could affect the probability of tipping points
Differences in the amount of trait variation within or among popu-
lations could affect their response capacity to stress. In general, we 
predict that a high level of trait variation may decrease the prob-
ability of catastrophic ecosystem responses. A decrease in the prob-
ability of tipping events occurs because standing trait variation 
allows for portfolio effects that introduce strong heterogeneity in 
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Tipping points mark the abrupt shift between contrasting eco-
system states (broadly termed regime shifts) when environ-
mental conditions cross specific thresholds (Box 1). Prominent 

examples are the shift of shallow lakes from a clear to turbid water 
state1 and the collapse of vegetation leading to a desert state in dry-
lands2. Societal stakes associated with tipping points in natural eco-
systems can be high, and there is a large emphasis on uncovering the 
mechanisms that trigger them3 and possible methods to detect and 
avoid them4. Currently, however, tipping point theory largely lacks 
an evolutionary perspective, and this might limit the understanding 
of the occurrence, timing, and abruptness of shifts between states 
(see figure in Box 1). Here we argue that both trait variation and 
evolution are important for understanding how ecosystem dynam-
ics affect tipping points.

Developing a trait-based evolutionary perspective on tipping 
points in ecosystems is warranted by the growing amount of evi-
dence that changes in standing levels of trait variation and contem-
porary trait evolution are important drivers of ecological processes 
(for example, refs. 5,6) by influencing population dynamics7, shaping 
the structure of species interactions in communities8, or affecting 
species composition at the metacommunity level9. Such ecologi-
cal effects of evolution also extend to ecosystem functioning10–12 
by modifying material fluxes13, primary production14, nutrient 
recycling15, and decomposition16. Changes in life-history traits of 
organisms caused by environmental stress (like fishing) have been 
shown to destabilize dynamics of populations17 or whole communi-
ties18, and even to increase the risk of extinction19. Fitness-related 
traits (for example, body size) can systematically change before 
populations collapse20 and can be used as indicators of biologi-
cal transitions21,22. Thus, it is reasonable to expect that changes in 
trait distributions might be important for understanding ecologi-
cal tipping points, as they might affect the variation in sensitivity 
to environmental stress among species, populations, or individuals 
in an ecosystem23,24. This sensitivity underlies the response capac-
ity of communities to stress25,26 such that trait changes could affect  

the resilience of entire ecosystems27 and their probability of tip-
ping to a different state. It is the effect of evolutionary trait changes  
on tipping points at the ecosystem level that we are focusing on in 
this perspective.

Ecosystem resilience can be affected by variation in traits10,11 that 
underlie the performance and fitness of organisms that exist in a 
given environmental state (that is, response traits), or those traits 
through which organisms have direct or indirect effects on the 
environmental state (that is, effect traits) (Table 1). The distribu-
tion of such response and effect traits can vary because of pheno-
typic plasticity, species sorting, and evolutionary trait change, and 
distinguishing between these mechanisms can be important for 
understanding the ecological dynamics of trait change in general28 
and of tipping points in particular. Phenotypic plasticity, whereby a 
genotype exhibits different phenotypes in different environments, is 
a relevant source of trait variation, particularly when the phenotypic 
changes relate to the capacity of organisms to respond to stress. 
However evolutionary responses to stress depend on heritable trait 
variation in a population29, which can originate from novel variants 
due to mutation30, recombination31, and gene flow among popula-
tions and species32. Below, we do not a priori distinguish between 
the genetic versus plastic sources of trait distributions (although we 
comment on their differences), but instead focus on how trait varia-
tion and trait change over time can influence ecosystem tipping 
points in a generic way. We do this using a graphical approach and 
illustrate how trait changes might modify the collapse and recovery 
trajectories of ecosystems along an environmental gradient.

Trait variation could affect the probability of tipping points
Differences in the amount of trait variation within or among popu-
lations could affect their response capacity to stress. In general, we 
predict that a high level of trait variation may decrease the prob-
ability of catastrophic ecosystem responses. A decrease in the prob-
ability of tipping events occurs because standing trait variation 
allows for portfolio effects that introduce strong heterogeneity in 
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There is growing concern over tipping points arising in ecosystems because of the crossing of environmental thresholds. Tipping 
points lead to abrupt and possibly irreversible shifts between alternative ecosystem states, potentially incurring high societal 
costs. Trait variation in populations is central to the biotic feedbacks that maintain alternative ecosystem states, as they govern 
the responses of populations to environmental change that could stabilize or destabilize ecosystem states. However, we know 
little about how evolutionary changes in trait distributions over time affect the occurrence of tipping points and even less about 
how big-scale ecological shifts reciprocally interact with trait dynamics. We argue that interactions between ecological and 
evolutionary processes should be taken into account in order to understand the balance of feedbacks governing tipping points 
in nature.

NATURE ECOLOGY & EVOLUTION | www.nature.com/natecolevol
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Supplementary,Information,1,Shallow,lake,eutrophication,model,2 

,3 

We#used#a#minimal#model#that#describes#the#dynamics#of#transition#from#a#clear#water#state#4 

dominated#by#macrophytes#to#a#turbid#water#state#where#macrophytes#are#practically#absent1.#5 

Such#transition#occurs#at#a#crossing#of#a#fold#bifurcation#(tipping#point)#due#to#changes#in#6 

nutrient#loading#(eutrophication).#Below#we#explain#how#we#analysed#the#model#to#highlight#7 

the#presence#of#alternative#states#as#function#of#environmental#stress#(Box#1),#and#the#effects#of#8 

standing#phenotypic#variation#(Figure#1).#9 

The#model#describes#the#interactions#between#macrophyte#coverage#and#turbidity#of#a#shallow#10 

lake#with#the#following#two#ordinary#differential#equations:#11 

!12 

!13 

where#macrophyte#cover#M#grows#logistically#with#rate#rM#(=#0.05)#and#carrying#capacity#K#(=#1),#14 

while#it#is#limited#by#turbidity#following#a#nonlinear#decreasing#Hill#function#defined#by#the#halfI15 

saturation#hT#(=#2)#and#exponent#p#(=4).##Turbidity#T#grows#with#rate#rT#(=#0.1)#depending#on#the#16 

level#of#background#turbidity#To#(=#[2I8],##used#as#proxy#of#nutrient#loading#acting#as#the#17 

environmental#stress#in#our#analysis#(nutrient#loading,#Fig#I#Box#I)).#Turbidity#is#negatively#18 

affected#by#the#level#of#macrophyte#cover#following#an#inverse#Hill#function#with#halfIsaturation#19 

hM#(=#0.2).#20 
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Solving#for#steady#state#the#nullclines#of#the#system#are:#21 

!22 

!23 

Their#intersections#mark#the#two#alternative#stable#states#(clear#and#turbid#state)#and#the#24 

unstable#saddle#depending#on#the#value#of#background#turbidity#To#(Fig.#1a).#We#hypothesize#25 

that#the#halfIsaturation#hT#that#affects#the#strength#of#nonlinear#response#of#macrophytes#to#26 

turbidity#is#defined#by#a#response#trait#z#(e.g.#capacity#to#grow#under#low#light#27 

conditionsshading).#DIfferent#values#of#z#will#thus#change#the#response#of#macrophytes#to#28 

turbidity#by#changes#in#hT#(Supplementary#Figure#1a).#We#assumed#that#trait#z#follows#a#beta#29 

distribution#(closed#limits)#that#we#can#parameterize#in#order#to#define#a#given#mean#μ#(=0)#and#30 

variance#σ2.#We#further#assumed#that#the#halfIsaturation#hT#depends#on#the#trait#z#following#31 

,#where#hTo#is#a#background#value#(=#2)#and#c#a#factor#(=0.5)#(Supplementary#Figure#32 

1b).##33 

Using#this#relationship#and#integrating#for#different#limits#of#trait#z#and#levels#of#variance#of#the#34 

Beta#distribution,#we#can#calculate#the#macrophyte#equilibrium#in#the#presence#of#standing#35 

phenotypic#variation#in#z#as:##36 

!37 

!38 

where&p(z)#is#defined#by#the#Beta#distribution#as#explained#above#within#a#range#of#z#(=#[I2,2]).#39 

We#repeat#this#for#a#range#of#turbidity#T#values#(=#[0I8])#to#estimate#the#nullcline#of#40 



macrophytes#M#for#this#range#of#turbidity#T,#and#we#find#the#new#equilibria#states#from#the#41 

cross#sections#with#the#turbidity#nullcline#(Fig.#1a).##42 

We#repeat#this#procedure#to#estimate#all#equilibria#as#a#function#of#environmental#conditions#43 

(To)#and#for#different#levels#of#standing#phenotypic#variation#(σ2)#to#construct#the#two#44 

dimensional#bifurcation#plot#of#Fig.#1b.#45 

#46 

1## Scheffer,#M.#(1998)#Ecology&of&Shallow&Lakes,#(1st#edn)#Chapman#and#Hall.#47 

#48 

#49 

Supplementary,Figure,1#a)#Variation#in#a#response#trait#z#of#macrophytes#(e.g.#shading#50 

tolerance)#can#affect#the#way#macrophytes#respond#to#water#turbidity#through#parameter#hT#51 

that#determines#the#response#of#macrophytes#to#turbidity#( ).#b)#Two#scenarios#of#52 

high#(dashed)#and#low#(solid)#variation#in#the#phenotype#distribution#of#the#response#trait#z&(~#53 

Beta(μ,&σ2)),#where#parameter#hT##has#a#positive#relationship#with#the#trait#(red#line).#54 
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Adding	evolution	to	the	shallow	lake	model	

Catalina	Chaparro	(with	input	of	Blake	and	Luc)	

	

The	model	

Using	the	model	in	(Dakos	et	al.	2019):	

!"
!" = !!! 1 − !

!!
ℎ! +!
ℎ!

	

!"
!" = !!! 1 − !

!!
ℎ!! + !!
ℎ!!

	

(1)	

Assuming	that	a	quantitative	trait	!	is	normally	distributed	in	the	macrophyte	population	

with	mean	! = !(!)	and	variance	!!,	then	its	density	is	given	by:	

!(!, !) = 1
2!! !

! !!! !
!!! 	

Macrophyte	have	an	optimal	trait	value	!	when	turbidity	is	low.	Then,	the	performance	of	a	

macrophyte	individual	under	low	turbidity	conditions	is	maximal	when	! = !	and	decreases	
in	a	Gaussian	manner	as	!	moves	away	from	!:	

!!(!) = !!
! !!! !
!!! 	

!	determines	the	width	of	the	Gaussian	distribution	defined	above.	We	can	interpret	!!(!)	
as	i.e.	the	amount	of	photopigments	to	perform	under	low	turbidity	conditions,	thus	less	

than	the	optimal	causes	a	decrease	in	the	performance	and	more	come	with	a	cost	in	

performance.	

Here	the	trait	modifies	the	carrying	capacity	!!	of	the	macrophytes	(It	is	possible	to	assume	

that	the	trait	modifies	the	growth	rate	!!	instead	of	the	carrying	capacity,	nonetheless	
notice	that	given	that	there	is	not	mortality,	this	modification	does	not	affect	the	

equilibrium	or	asymptotical	behavior	of	the	system).	

	

In	addition,	the	trait	!	affects	the	response	of	macrophytes	to	turbidity	(i.e.	amount	of	

photopigments)		ℎ! 	following	(Dakos	et	al.	2019):	
ℎ!(!) = ℎ!!!!"	

The	fitness	of	a	macrophyte	individual	with	trait	!	is	

!(!,!,!) = !! 1 − !
!!(!)

ℎ!(!)! + !!
ℎ!(!)!

	

(2)	

The	average	!!	of	the	macrophyte	population	is	given	by	

x 
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Solving#for#steady#state#the#nullclines#of#the#system#are:#21 

!22 

!23 

Their#intersections#mark#the#two#alternative#stable#states#(clear#and#turbid#state)#and#the#24 

unstable#saddle#depending#on#the#value#of#background#turbidity#To#(Fig.#1a).#We#hypothesize#25 

that#the#halfIsaturation#hT#that#affects#the#strength#of#nonlinear#response#of#macrophytes#to#26 

turbidity#is#defined#by#a#response#trait#z#(e.g.#capacity#to#grow#under#low#light#27 

conditionsshading).#DIfferent#values#of#z#will#thus#change#the#response#of#macrophytes#to#28 

turbidity#by#changes#in#hT#(Supplementary#Figure#1a).#We#assumed#that#trait#z#follows#a#beta#29 

distribution#(closed#limits)#that#we#can#parameterize#in#order#to#define#a#given#mean#μ#(=0)#and#30 

variance#σ2.#We#further#assumed#that#the#halfIsaturation#hT#depends#on#the#trait#z#following#31 

,#where#hTo#is#a#background#value#(=#2)#and#c#a#factor#(=0.5)#(Supplementary#Figure#32 

1b).##33 

Using#this#relationship#and#integrating#for#different#limits#of#trait#z#and#levels#of#variance#of#the#34 

Beta#distribution,#we#can#calculate#the#macrophyte#equilibrium#in#the#presence#of#standing#35 

phenotypic#variation#in#z#as:##36 

!37 

!38 

where&p(z)#is#defined#by#the#Beta#distribution#as#explained#above#within#a#range#of#z#(=#[I2,2]).#39 

We#repeat#this#for#a#range#of#turbidity#T#values#(=#[0I8])#to#estimate#the#nullcline#of#40 
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Tipping points mark the abrupt shift between contrasting eco-
system states (broadly termed regime shifts) when environ-
mental conditions cross specific thresholds (Box 1). Prominent 

examples are the shift of shallow lakes from a clear to turbid water 
state1 and the collapse of vegetation leading to a desert state in dry-
lands2. Societal stakes associated with tipping points in natural eco-
systems can be high, and there is a large emphasis on uncovering the 
mechanisms that trigger them3 and possible methods to detect and 
avoid them4. Currently, however, tipping point theory largely lacks 
an evolutionary perspective, and this might limit the understanding 
of the occurrence, timing, and abruptness of shifts between states 
(see figure in Box 1). Here we argue that both trait variation and 
evolution are important for understanding how ecosystem dynam-
ics affect tipping points.

Developing a trait-based evolutionary perspective on tipping 
points in ecosystems is warranted by the growing amount of evi-
dence that changes in standing levels of trait variation and contem-
porary trait evolution are important drivers of ecological processes 
(for example, refs. 5,6) by influencing population dynamics7, shaping 
the structure of species interactions in communities8, or affecting 
species composition at the metacommunity level9. Such ecologi-
cal effects of evolution also extend to ecosystem functioning10–12 
by modifying material fluxes13, primary production14, nutrient 
recycling15, and decomposition16. Changes in life-history traits of 
organisms caused by environmental stress (like fishing) have been 
shown to destabilize dynamics of populations17 or whole communi-
ties18, and even to increase the risk of extinction19. Fitness-related 
traits (for example, body size) can systematically change before 
populations collapse20 and can be used as indicators of biologi-
cal transitions21,22. Thus, it is reasonable to expect that changes in 
trait distributions might be important for understanding ecologi-
cal tipping points, as they might affect the variation in sensitivity 
to environmental stress among species, populations, or individuals 
in an ecosystem23,24. This sensitivity underlies the response capac-
ity of communities to stress25,26 such that trait changes could affect  

the resilience of entire ecosystems27 and their probability of tip-
ping to a different state. It is the effect of evolutionary trait changes  
on tipping points at the ecosystem level that we are focusing on in 
this perspective.

Ecosystem resilience can be affected by variation in traits10,11 that 
underlie the performance and fitness of organisms that exist in a 
given environmental state (that is, response traits), or those traits 
through which organisms have direct or indirect effects on the 
environmental state (that is, effect traits) (Table 1). The distribu-
tion of such response and effect traits can vary because of pheno-
typic plasticity, species sorting, and evolutionary trait change, and 
distinguishing between these mechanisms can be important for 
understanding the ecological dynamics of trait change in general28 
and of tipping points in particular. Phenotypic plasticity, whereby a 
genotype exhibits different phenotypes in different environments, is 
a relevant source of trait variation, particularly when the phenotypic 
changes relate to the capacity of organisms to respond to stress. 
However evolutionary responses to stress depend on heritable trait 
variation in a population29, which can originate from novel variants 
due to mutation30, recombination31, and gene flow among popula-
tions and species32. Below, we do not a priori distinguish between 
the genetic versus plastic sources of trait distributions (although we 
comment on their differences), but instead focus on how trait varia-
tion and trait change over time can influence ecosystem tipping 
points in a generic way. We do this using a graphical approach and 
illustrate how trait changes might modify the collapse and recovery 
trajectories of ecosystems along an environmental gradient.

Trait variation could affect the probability of tipping points
Differences in the amount of trait variation within or among popu-
lations could affect their response capacity to stress. In general, we 
predict that a high level of trait variation may decrease the prob-
ability of catastrophic ecosystem responses. A decrease in the prob-
ability of tipping events occurs because standing trait variation 
allows for portfolio effects that introduce strong heterogeneity in 
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There is growing concern over tipping points arising in ecosystems because of the crossing of environmental thresholds. Tipping 
points lead to abrupt and possibly irreversible shifts between alternative ecosystem states, potentially incurring high societal 
costs. Trait variation in populations is central to the biotic feedbacks that maintain alternative ecosystem states, as they govern 
the responses of populations to environmental change that could stabilize or destabilize ecosystem states. However, we know 
little about how evolutionary changes in trait distributions over time affect the occurrence of tipping points and even less about 
how big-scale ecological shifts reciprocally interact with trait dynamics. We argue that interactions between ecological and 
evolutionary processes should be taken into account in order to understand the balance of feedbacks governing tipping points 
in nature.
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