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Agent-based model

Obstacles: Centers Xi (t) ∈ R2,
i = 1 . . .N attached to anchor points
Yi ∈ R2 via hookean springs

Swimmers: Centers Zk (t) ∈ R2,
self-propelled along orientation vectors
αk (t) ∈ S1, k = 1 . . .M
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Agent-based model

Obstacles: Centers Xi (t) ∈ R2,
i = 1 . . .N attached to anchor points
Yi ∈ R2 via hookean springs

Swimmers: Centers Zk (t) ∈ R2,
self-propelled along orientation vectors
αk (t) ∈ S1, k = 1 . . .M

Equations of motion (Newton overdamped):

dXi =− κ

η
(Xi − Yi )dt − 1

η

1
M

M∑
k=1

∇φ (Xi − Zk ) dt + +
√

2do dB i
t ,

dZk =u0αk dt − 1
ζ

1
N

N∑
i=1

∇φ (Zk − Xi ) dt − 1
ζ

1
M

M∑
l 6=k

∇ψ (Zk − Zl ) dt ,

dαk =Pα⊥
k
◦
[
νᾱk dt +

√
2ds dB̃k

t

]
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Swimmer-Obstacle repulsion potential

φ(x) =
3Cφ
2πτ

(
1−
|x |
τ

)2
+

Equations of motion (Newton overdamped):

dXi =− κ

η
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Swimmer-Swimmer repulsion potential

ψ(x) =
6µ
πrR

2
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|x |
rR

)2
+

Equations of motion (Newton overdamped):
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1
N
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M
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Agent-based model

Swimmer-Swimmer alignment

ᾱk =
Jk

|Jk |
, Jk =

M∑
j=1,|Zk−Zj |≤rA

αj

Equations of motion (Newton overdamped):

dXi =− κ

η
(Xi − Yi )dt − 1

η

1
M

M∑
k=1

∇φ (Xi − Zk ) dt +
√

2do dB i
t ,

dZk =u0αk dt − 1
ζ

1
N

N∑
i=1

∇φ (Zk − Xi ) dt − 1
ζ

1
M

M∑
l 6=k

∇ψ (Zk − Zl ) dt ,

dαk =Pα⊥
k
◦
[Sw-Sw alignment︷ ︸︸ ︷

νᾱk dt +
√

2ds dB̃k
t

]
,
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Mean-field limit
Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Derivation of a kinetic model in the limit N,M → ∞

Distribution functions:

gM (x , α, t): density distribution of the M swimmers

f N(x , y , t): density distribution of the N obstacles
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Hydrodynamic model

Scaling assumptions:
Scaling asumptions for the swimmers:

Small swimmer-swimmer alignment radius : rA = O(ε)
Small swimmer-swimmer repulsion distance: rR = O(ε)
Swimmer alignment rate and orientational noise intensity large:
ds, ν = O( 1

ε
), ds
ν

= O(1)

Scaling assumptions for the obstacles:
Uniform anchor density ρA ≡ 1
Stiff springs: γ = η

κ
� 1

Low obstacle noise: d = d0γ � 1
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Observables:
ρg(x , t): local density of the swimmers
Ω(x , t): local orientation of the swimmers
ρf (x , t): local density of the obstacles

The macroscopic swimmer density ρg and orientation Ω fulfil:

∂tρg +∇ · (Uρg) = 0,
ρg∂t Ω + ρg (V · ∇) Ω + d3PΩ⊥∇ρg = 0,

where
U = d1Ω−

1
ζ
∇ρ̄f −

µ

ζ
∇ρg ,

V = d2Ω−
1
ζ
∇ρ̄f −

µ

ζ
∇ρg .

Under assumptions γ � 1 and δ � 1, the obstacle density ρf (x , t) is given by:

ρf = 1 +
γ

η
∆ρ̄g −

γ2

η
∂t ∆ρ̄g +

γ2

η2
N (ρ̄g) +O

(
γ3
)
, N (ρ̄g) := detH(ρ̄g),

Theorem (Macroscopic model)
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Numerical simulations of the macroscopic model

Numerical scheme adapted from [Motsch, Navoret, Mult. Mod. Simul., 2011],
[Carrillo, Chertock, Huang. Comm. in Comp. Phys., 2015]
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Linear stability analysis

PDE system:

∂tρg +∇ ·
((

d1Ω− 1
ζ
∇ρ̄f −

µ

ζ
∇ρg

)
ρg
)

= 0,

ρg∂t Ω + ρg
((

d2Ω− 1
ζ
∇ρ̄f −

µ

ζ
∇ρg

)
· ∇
)
Ω + d3PΩ⊥∇ρg = 0,

ρf = 1 +
γ

η
∆ρ̄g −

γ2

η
∂t ∆ρ̄g +

γ2

η2N (ρ̄g) +O
(
γ3
)
,

Linearize around (ρ0,Ω0): ρg = ρ0 + ερ1 + O(ε2), Ω = Ω0 + εΩ1 + O(ε2)

∂tρ1 + d1Ω0 · ∇ρ1 + d1ρ0∇ · Ω1 = µ̄ρ0∆ρ1 + ρ0λ̄
(
∆2 ¯̄ρ1 − γ∆2∂t ¯̄ρ1

)
,

ρ0∂t Ω1 + ρ0d2 (Ω0 · ∇) Ω1 + d3PΩ⊥
0
∇ρ1 = 0,

Ω0 · Ω1 = 0, λ̄ =
ρA

κζ

Consider plane wave perturbations

ρ1(x , t) = ρ̃eik·x+αt , Ω1(x , t) = Ω̃eik·x+αt

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



Agent-based model
PDE model

Micro-Macro comparison
Conclusion/perspectives

Mean-field limit
Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Linear stability analysis

PDE system:

∂tρg +∇ ·
((

d1Ω− 1
ζ
∇ρ̄f −

µ

ζ
∇ρg

)
ρg
)

= 0,

ρg∂t Ω + ρg
((

d2Ω− 1
ζ
∇ρ̄f −

µ

ζ
∇ρg

)
· ∇
)
Ω + d3PΩ⊥∇ρg = 0,

ρf = 1 +
γ

η
∆ρ̄g −

γ2

η
∂t ∆ρ̄g +

γ2

η2N (ρ̄g) +O
(
γ3
)
,

Linearize around (ρ0,Ω0): ρg = ρ0 + ερ1 + O(ε2), Ω = Ω0 + εΩ1 + O(ε2)

∂tρ1 + d1Ω0 · ∇ρ1 + d1ρ0∇ · Ω1 = µ̄ρ0∆ρ1 + ρ0λ̄
(
∆2 ¯̄ρ1 − γ∆2∂t ¯̄ρ1

)
,

ρ0∂t Ω1 + ρ0d2 (Ω0 · ∇) Ω1 + d3PΩ⊥
0
∇ρ1 = 0,

Ω0 · Ω1 = 0, λ̄ =
ρA

κζ

Consider plane wave perturbations

ρ1(x , t) = ρ̃eik·x+αt , Ω1(x , t) = Ω̃eik·x+αt

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



Agent-based model
PDE model

Micro-Macro comparison
Conclusion/perspectives

Mean-field limit
Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Linear stability analysis

PDE system:

∂tρg +∇ ·
((

d1Ω− 1
ζ
∇ρ̄f −

µ

ζ
∇ρg

)
ρg
)

= 0,

ρg∂t Ω + ρg
((

d2Ω− 1
ζ
∇ρ̄f −

µ

ζ
∇ρg

)
· ∇
)
Ω + d3PΩ⊥∇ρg = 0,

ρf = 1 +
γ

η
∆ρ̄g −

γ2

η
∂t ∆ρ̄g +

γ2

η2N (ρ̄g) +O
(
γ3
)
,

Linearize around (ρ0,Ω0): ρg = ρ0 + ερ1 + O(ε2), Ω = Ω0 + εΩ1 + O(ε2)

∂tρ1 + d1Ω0 · ∇ρ1 + d1ρ0∇ · Ω1 = µ̄ρ0∆ρ1 + ρ0λ̄
(
∆2 ¯̄ρ1 − γ∆2∂t ¯̄ρ1

)
,

ρ0∂t Ω1 + ρ0d2 (Ω0 · ∇) Ω1 + d3PΩ⊥
0
∇ρ1 = 0,

Ω0 · Ω1 = 0, λ̄ =
ρA

κζ

Consider plane wave perturbations

ρ1(x , t) = ρ̃eik·x+αt , Ω1(x , t) = Ω̃eik·x+αt

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



Agent-based model
PDE model

Micro-Macro comparison
Conclusion/perspectives

Mean-field limit
Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Linear stability analysis

The linearized system around (ρ0,Ω0) is unstable iff

bp =
µκ

C2
φc′0

< 1.

Theorem (Bifurcation parameter)

Characterisation of the most unstable modes:
Maximally disturbed modes :

k th
‖ = argmax

k‖Ω0

Re(α̃(k)),

k th
⊥ = argmax

k‖Ω⊥
0

Re(α(k)),

Related to size of perturbations

Sth
1 =

2π
|k th
‖ |
, Sth

2 =
2π
|k th
⊥|
.
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Validation of the theoretical predictions (macro model)
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Method
Numerical simulations

Micro-macro comparison

Optimal Grid to compute the density of the ABM simulation (PIC method)
Must account for characteristic size of structures captured with finite
number of points

Distance independent of space translations
Wasserstein-type distance
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Conclusions/perspectives

Conclusions
Model for collective motion of active particles interacting in a viscoelastic
medium
Variety of patterns depending on the interactions with the environment
Attraction not required for swimmer aggregation
Obstacles can induce aggregation irrespective of whether they repel or
attract the particles => rethink cause of biological aggregation
Linear stability of PDE
Bifurcation parameter controling the appearance and shape of patterns
Micro-macro comparison
Quantitative agreement between ABM and PDE simulations

Perspectives
Coupling with fluid model
Different types of obstacles (elongated fibers)

[P. Aceves-Sanchez, P. Degond, E.E. Keaveny, A. Manhart, S. Merino-Aceituno, D. P., Large-scale dynamics of self-propelled particles
moving through obstacles: model derivation and pattern formation. Bull. Math. Bio. (2020) 82(129)]

[P. Degond, A. Manhart, S. Merino-Aceituno, D. P., L. Sala, How environment affects active particle swarms: a case study, R. Soc. open sci

(2022) 9:220791]
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Collective motion: The role of the environment
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Formally, as N,M → ∞, f N → f and gM → g where f (x , y , t) and g(x , α, t)
fulfil:

∂t f +∇x · (Wf ) = d0∆x f

∂t g +∇x · (Ug) +∇α ·
(
Pα⊥ [νᾱ]g

)
= ds∆αg,

where

ᾱ =
Jg(x , t)
|Jg(x , t)|

, Jg(x , t) =

∫
|x−z|≤rA

αg(z, α, t)dzdα.

The velocities are given by

W = −
κ

η
(x − y)−

1
η
∇x ρ̄g(x , t)

U = α−
1
ζ
∇x ρ̄f (x , t)−

1
ζ
∇x ρ̂g(x , t),

with
ρg(x , t) =

∫
g(x , α, t)dα, ρf (x , t) =

∫
f (x , y , t)dy

and
ρ̄(x , t) = φ ∗ ρ(x , t), ρ̂(x , t) = ψ ∗ ρ(x , t)

Lemma 1 (Kinetic model)
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Elements of proof for the hydrodynamic limit:

Swimmer equation: Self-Organized Hydrodynamics:
Collision operator Q(g) = −∇α · (Pα⊥ [νᾱ]g) + d∆αg
[Degond, Motsch, 2008] (SOH)
[Degond, Dimarco, Mac, Wang, 2015] (SOHR)

Obstacle equation:

∂t f +∇x · (Wf ) = d0∆x f , W = −κ
η

(x − y)− 1
η
∇ρ̄g(x , t)

Rewrite & rescale: γ = η/κ, δ = d0γ

∂t f +
1
η
∇x · (−∇x ρ̄g f ) =

1
γ

Fokker-Planck Operator︷ ︸︸ ︷
[∇x · ((x − y)f + δ∇x f ]

Expand f (x , y , t)

f (x , y , t) = f0(x , y , t) + γf1(x , y , t) + γ2f2(x , y , t) + O(γ3)

Strong spring limit γ → 0, small noise limit δ → 0 => use Fokker-Planck
Operator properties
Gives ρf (x , t) expanded in terms of γ and δ, ρf (x , t) =

∫
f (x , y , t)dy
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Collision operator Q(g) = −∇α · (Pα⊥ [νᾱ]g) + d∆αg
[Degond, Motsch, 2008] (SOH)
[Degond, Dimarco, Mac, Wang, 2015] (SOHR)

Obstacle equation:

∂t f +∇x · (Wf ) = d0∆x f , W = −κ
η

(x − y)− 1
η
∇ρ̄g(x , t)

Rewrite & rescale: γ = η/κ, δ = d0γ

∂t f +
1
η
∇x · (−∇x ρ̄g f ) =

1
γ

Fokker-Planck Operator︷ ︸︸ ︷
[∇x · ((x − y)f + δ∇x f ]

Expand f (x , y , t)

f (x , y , t) = f0(x , y , t) + γf1(x , y , t) + γ2f2(x , y , t) + O(γ3)

Strong spring limit γ → 0, small noise limit δ → 0 => use Fokker-Planck
Operator properties
Gives ρf (x , t) expanded in terms of γ and δ, ρf (x , t) =

∫
f (x , y , t)dy
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Substituting the plane wave ansatz into the equation yields

ρ̃α + i ρ̃d1 (Ω0 · k) + iρ0d1

(
Ω̃ · k

)
= −|k |2µ̄ρ0ρ̃+ |k |4λ̄ρ0ρ̃(φ̂k )2 (1− γα) ,

(1a)

ρ0αΩ̃ + iρ0d2Ω̃ (Ω0 · k) + i ρ̃d3PΩ⊥
0

k = 0, (1b)

Ω0 · Ω̃ = 0. (1c)

or (if Ω̃ = ωΩ⊥0 )

(G(|k |)α− F (|k |) + id1k0)ρ̃+ iρ0d1k1ω = 0,

id3k1ρ̃+ ρ0(α + id2k0)ω = 0.

This is a homogeneous linear system in (ρ̃, ω) which has a non-trivial solution
if and only if the determinant of the system is 0, i.e.:

(G(|k |)α− F (|k |) + id1k0) (α + id2k0) + d1d3k2
1 = 0. (2)
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Linear stability analysis

Consider fixed constant values ρ0 > 0 and Ω0 ∈ S1. Then, the lin-
earized system around (ρ0,Ω0) is unstable if and only if

there exists z > 0 such that z2(φ̂)2 > µκ.

Theorem (Bifurcation parameter)

Obstacle interaction function:
φ(x) =

3Cφ

2πτ

(
1− |x|

τ

)2
+

Real part of α(z):
Re(α(z)) = ρ0

ζ
z2[ z2

κ
φ̂z

2 − µ]

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



Micro-macro comparison
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Micro-macro comparison

Optimal Grid to compute the density of the ABM simulation (PIC method)
Must account for characteristic size of structures captured with finite
number of points

Distance independent of space translations
Wasserstein-type distance
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Micro-macro comparison
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