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Collective motion: Examples in nature

Sperm patterns,

- B —_— AT
Swam water, Pacific raost near Kendalin Cumbria, UK. Creppy et al. Turbulence of swarming sperm.
French Polynesia, Oceania Credit: Ashley Cooper / The Image Bank / Getty Phys. ev. C.{2015)
Credit: Norbert Probst / ImageBROKER )

Pedestrian crowds, lanes

Bacteria collective swimmin,

management duing L H.Cisneros et a,Fuiddynamicsof et propelled
mkioorganisms from ind idualsto concentrated populatons.
Experments i Fids, 43737753, 2007.

owd
‘The Lancet Infectious diseases (2012)

@ Self-organization: Emergence of large-scale ordered structures from
local, small-scale interactions
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Mathematical modelling: Choosing the right scale

Macroscopic scale

Microscopic scale

_ Microscopicscale Macroscopicscale

Variables Agents positions, speed Mean variables (density, orientation etc)

Model type ODE systems (N equations) PDE equations/systems

Advantages - Modelling precision - Theoretical analysis
- Link with experimental data - Computational efficiency

Drawbacks - Lack of theoretical results - Loss of informations at the agent’s scale
- Computationally challenging

References [Vicsek et al, (1995)], [Cucker and Smale. (2007)], (1. A. Carillo, Y-P. Choi, S. Pérez (2017), . A. Carrillo, D. Kalise, F. Rossi, E. Trélat (2022)] (flocks)
[[S Bernardi, A Colombi, M Scianna (2018)] (swarms) [P. Degond, A. Manhart, and H. Yu (2018)] (alignment)
[A. Kamal and E. E. Keaveny (2018)] [P. Degond, S. Merino-Aceituno, F. Vergnet, and H. Yu (2019)]

[B. Maury, A. Roudneff-Chupin, and F. Santambrogio (2010)] (crowds)
[M Burger, S Hittmeir, H Ranetbauer, MT Wolfram (2016)] (lane formation)
K.J. Painter (2009)] (chemotaxis)

ean-field: [Boley, Canizo, Carrillo (2011)], [1. A. Carrillo, Y-P. Chol, M. Hauray (2014]

Hydrodynamic limits: [Helbling (2001)], [AwKlar, Rascle, Materne (2002)], [Jiang, Xiong, Zhang (2016)], [Degond, Motsch (2008}], [Degond, Frouvelle, Liu (2012)],
[Aceves-Sanchez, Bostan, Carillo, Degond (2019)], [1A Carrillo, M. Fornasier, J. Rosado, G. Toscani (2010))

Diffusion limits: [HG Othmer, T Hillen (2000}]

Kinetic models:, [Calvez, V., Gosse, L. and Twarogowska, (2017)], [Peruani and Markus Bar 2013 New J. Phys. (2013)],

[carrillo, D'Orsogna, Panferov (2009)]

Large-scale dynamics of self-propelled particles in obstacles



Mathematical modelling: Choosing the right scale

Macroscopic scale

Microscopic scale

Variables Agents positions, speed Mean variables (density, orientation etc)
Model type ODE systems (N equations) PDE equations/systems
Advantages - Modelling precision - Theoretical analysis
- Link with experimental data - Computational efficiency
Drawbacks - Lack of theoretical results - Loss of informations at the agent’s scale
- Computationally challenging
References [Vicsek et al, (1995)],[Cucker and Smale. (2007)], U Carrllo, -P.Chol, 5, érez (2017), ). A CamHo,D Kalise, F. Rossi, E. Trélat (2022)] {flocks)
(S Bernar Scianna (2018)] (swarms) sin viscous fluid
Kamal and eaveny (201 0;
- [B. Maury, A" Roudnet antambrogio (2010)] (crowds)
Swimmersin obstacles [M Burger, S Hittmeir, H Ranetbauer, MT Wolfram (2016)] (lane formation)

, KJ. Painter (2009)] (chemotaxis)

lean-field: [Boley, Canizo, Carrillo (2011} ], [J. A. Carrillo, Y.-P. Choi, M. Hauray (2014)]

Hydrodynamic limits: [Helbling (2001)], [Aw,Klar, Rascle, Materne (2002)], [Jiang, Xiong, Zhang (2016)], [Degond, Motsch (2008)], [Degond, Frouvelle, Liu (2012)],
[Aceves-Sanchez, Bostan, Carrillo, Degond (2019)], [1.A Carrillo, M. Fornasier, J. Rosado, G. Toscani (2010)]

Diffusion limits: [HG Othmer, T Hillen (2000)]

Kinetic models:, [Calvez, V., Gosse, L. and Twarogowska, (2017)], [Peruani and Markus B&r 2013 New J. Phys. (2013)],

[Carrillo, D'Orsogna, Panferov (2009)]

Diane Peurich; Large-scale dynamics of self-propelled particles in obstacles



Plan of the talk

Objectives: Investigate pattern emergence using ABM and PDE

micro meso
rescaling
Agent-Based Model Kinetic Model
N, M —> oo £—0
L; Model building l Mean-field limit L> Hydrodynamiclimit
L> Numerical simulations < > &9 Numerical simulations

ABM Macro comparison
Analysis of the PDE model
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Plan of the talk

Objectives: Investigate pattern emergence using ABM and PDE

micro

Agent-Based Model

L{) Model building

L:) Numerical simulations
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Agent-based model
Model building
Numerical simulations

Agent-based model

Obstacles Swimmers
X, @ Obstacles: Centers X;(t) € R?,
i ay i =1...N attached to anchor points
Hookean ;}9 Y; € R? via hookean springs
stg§ ) @ Swimmers: Centers Z,(t) € R?,
Tether self-propelled along orientation vectors
A a(t)est k=1...M
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Agent-based model
Model building
Numerical simulations

Agent-based model
Obstacles Swimmers
X @ Obstacles: Centers X;(t) € R?,
i ay i =1...N attached to anchor points
Hookean Y; € R? via hookean springs
P ) @ Swimmers: Centers Z(t) € R?,
Tether self-propelled along orientation vectors
Y ij ak(tyes'k=1...M

Equations of motion (Newton overdamped):

ax; = — %(Xi - Y,)dt— - ZW(X/ Z) dt + ++/2d, dB,
N 11
dZi :uonkdt—zﬁz:: t—gﬂng(zk—zl)dt

do :PQKL o {vo‘zkdt+ \/ﬂdéq
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Agent-based model
Model building
Numerical simulations

Agent-based model

Obstacles Swimmers
X, @ Obstacles: Centers X;(t) € R?,
i ay i =1...N attached to anchor points
Hookean Y; € R? via hookean springs
e ) @ Swimmers: Centers Z,(t) € R?,
Tether self-propelled along orientation vectors
AN a() €S k=1...M

Equations of motion (Newton overdamped):
Browman noise
dx,z—%(x,-—y, Zv¢()c—zk)dt+ \/2dodB,,
de —Uoockdf

N M
Z: i EM; Zk_Zld

day :P"‘? o I:VO_ékdt+ V 2ds dBf}

2 \
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Agent-based model
Model building
Numerical simulations

Agent-based model

Obstacle ~~ -Sv—vifhmers
\
\ Swimmer-Obstacle repulsion potential

i
Hookean \
. N 30¢ ‘X| 2
e '>\ Interéctlon ¢(x) = %(1 - 7)+

Tether N
v, N d|9tance T

S _——

Equations of motion (Newton overdamped):

Sw-Ob repulsion

M
]
ax; = — %(x,_ Y)dt — MZV@ (X — Z) dt + \/2d, dB,,
11 &
dzkzankdt—EN;w(Zk—m ngivw(zk—z,)

do :PQKL o {Vo'zkdt+ \/ﬂdéq
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Agent-based model
Model building
Numerical simulations

Agent-based model

Obstacle Swimmers
Xi - ka- ~ . . . .
/ Swimmer-Swimmer repulsion potential
Hookean \
G v/
\ . =—01-=
Tether « “k 1, Interaction TrR? rp’t
~ )
Y distance 1y

Equations of motion (Newton overdamped):

dxz_f(x Ydt—f—ZVqﬁ(X Z) dt + \/2d, dB},

Sw-Sw repulsion

N
0Z =toardt — 1 -3V (Z— X)at— L L Zvu Z - Z)at,
' /;.ék

dak =P, o {y&kdt+ V/2ds dBﬁ‘}
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Agent-based model
Model building
Numerical simulations

Agent-based model

Obstacle Swimmers _ _
X, Swimmer-Swimmer alignment
i
Hook { "%k / R/ M
e N f T
. Zy /7 Alignment k =11Z—Z|<r
ether .
¥, f distance 1,
Equations of motion (Newton overdamped):
ax; = — f(x Y)dt — —— Zw (Xi — Z) dt + \/2d, dB;,
11 M
dZ =Upoudt — ZN;qu(Zk — X)) dt — ZW; V(Z — Z)) dt,

Sw-Sw alignment

—— ~
dOék :PakL o} |: I/(Szkdt + \/ngdBf},
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Agent-based model

Numerical simulations

Numerical simulations - patterns

im

0.0002,Time=0.40081

obstacles



Agent-based model

Numerical simulations

Numerical simulations - Weak obstacle spring stiffness

(A) Weak obstacle sprmg stlﬁness K= 10

0002 c2p=0m ¢=2.p=008 ca2.pm01

Increasing friction coefficient {

Increasing swimmer-swimmer repulsion jt
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Agent-based model

Numerical simulations

Numerical simulations - Mild obstacle spring stiffness

(B) Mild obstacle spring stiffness x = 100

C=2,5= 001

Increasing friction coefficient {

Increasing swimmer-swimmer repulsion i
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Agent-based model

Numerical simulations

Numerical simulations - Strong obstacle spring stiffness

(C) Strong obstacle spring stiffness k = 103

a2 pue2008 o2, u=00002 221200008

Increasing friction coefficient {

Increasing swimmer-swimmer repulsion i
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Mean-field limit
PDE model Hydrodynamic limit: macro model

Numerical simulations of the macro model
Linear stability analysis of the macro model

Derivation of a kinetic model in the limit N, M — oo

micro meso

Agent-Based Model Kinetic Model
N, M — oo

L) Mean-field limit

Distribution functions:

@ ¢"(x, a, t): density distribution of the M swimmers
o N(x,y,t): density distribution of the N obstacles
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Mean-field limit
PDE model Hydrodynamic limit: macro model
Numerical simulations of the macro model

Linear stability analysis of the macro model

Hydrodynamic model

micro meso

rescaling
Agent-Based Model Kinetic Model
N, M —> oo £—0

L> Hydrodynamiclimit
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Mean-field limit
PDE model Hydrodynamic limit: macro model
Numerical simulations of the macro model

Linear stability analysis of the macro model

Hydrodynamic model

micro meso

rescaling
Agent-Based Model Kinetic Model
N, M —> oo £—0

L> Hydrodynamiclimit

Scaling assumptions:
@ Scaling asumptions for the swimmers:
o Small swimmer-swimmer alignment radius : r4 = O(¢)
@ Small swimmer-swimmer repulsion distance: rg = O(¢)
e Swimmer alignment rate and orientational noise intensity large:

de,v = O(), % = O(1)
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Mean-field limit
PDE model Hydrodynamic limit: macro model
Numerical simulations of the macro model

Linear stability analysis of the macro model

Hydrodynamic model

micro meso

rescaling
Agent-Based Model Kinetic Model
N, M —> oo £—0

L> Hydrodynamiclimit

Scaling assumptions:

@ Scaling asumptions for the swimmers:
o Small swimmer-swimmer alignment radius : r4 = O(¢)
@ Small swimmer-swimmer repulsion distance: rg = O(¢)
e Swimmer alignment rate and orientational noise intensity large:

ds,v=0(1), % = 0(1)

@ Scaling assumptions for the obstacles:
e Uniform anchor density ps = 1
o Stiff springs: v = 1 <« 1
e Low obstacle noise: d = dpy < 1
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Mean-field limit
PDE model Hydrodynamic limit: macro model

Numerical simulations of the macro model
Linear stability analysis of the macro model

Observables:
@ py(x, t): local density of the swimmers
@ Q(x, t): local orientation of the swimmers
@ ps(x,t): local density of the obstacles

,—[Theorem (Macroscopic model)} N\

The macroscopic swimmer density pg and orientation € fulfil:

Otpg +V - (Upg) = 0,
pgotL+ pg (V- V)Q+ d3Py1 Vpg =0,

where ’
_p
U=diQ2— —-Vps— =Vpg,
¢ ¢
1 B
V=dQ— —Vp;— EVpg.
¢ ¢

Under assumptions v <« 1 and § < 1, the obstacle density p¢(x, t) is given by:

§i g o 3
pr=1+ ;Aﬁg - ;atAﬁg + ?N(ﬁg) +0 (“/ ) » N(pg) = det(pg),
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Mean-field limit

PDE model Hydrodynamic limit: macro model

Numerical simulations of the macro model
Linear stability analysis of the macro model

Numerical simulations of the macroscopic model

micro meso

rescaling
Agent-Based Model Kinetic Model
N, M —> oo £—0

L> Hydrodynamiclimit

&;} Numerical simulations

Numerical scheme adapted from [Motsch, Navoret, Mult. Mod. Simul., 2011],
[Carrillo, Chertock, Huang. Comm. in Comp. Phys., 2015]
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PDE model
Numerical simulations of the macro model

Numerical simulations - Weak obstacle spring stiffness

(A) Weak obstacle sprlng stlf'fness k=10

(=2 =008

Increasing friction coefficient {

Increasmg SW|mmer SW|mmer repuIS|on ‘LL
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PDE model
Numerical simulations of the macro model

Numerical simulations - Mild obstacle spring stiffness

(B) Mild obstacle spring stiffness K = 100

¢=2, = 0002 ¢z,
Qe o 1

Increasing friction coefficient {



PDE model
Numerical simulations of the macro model

Numerical simulations - Strong obstacle spring stiffness

(C) Strong obstacle spring stiffness k =

(2, jim 2005 ¢2,1% 00002 ¢

= 05, = 2005 (= 0.5, 1= 00002
i 1

Increasing friction coefficient {

Increasing swimmer-swimmer repulsion y

ropelled particles in obstacles




Mean-field limit

PDE model Hydrodynamic limit: macro model

Numerical simulations of the macro model
Linear stability analysis of the macro model

Numerical simulations - Mild obstacle spring stiffness

micro meso

rescaling
Agent-Based Model Kinetic Model
N, M —> oo £—0

L> Hydrodynamiclimit

&;} Numerical simulations

&3 Analysis of the PDE model
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Mean-field limit

PDE model Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Linear stability analysis

@ PDE system:

1
Opg + V- ((dhQ2 — Zvﬁf - %Vﬂg)ﬂg) =0,

;
po0h + pa (R = V51 - %vpg) - V)Q + &sPo. Vg =0,

2 2
_ RN s 2 X A(5 3
pr=1+ nA/)g 7 OtApg + 772N(pg)+0 (’y ) ,
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Mean-field limit

PDE model Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Linear stability analysis

@ PDE system:

1
Otpg +V - ((d1Q — —Vps — EVpg)/)g) =0,

¢ ¢
1o n
PgOi + /)g((de — Zfo — ZVpg) : V)Q + d3Pq1Vpg =0,

2 2
_ IA5 — L ans + L N(5 3
pr=1+ nA,r)g 7 0D pg + nzN([)g) +0 (’y ) ,
@ Linearize around (po, Q0): pg = po + ep1 + O(e2), Q = Qo + Q4 + O(€%)

Otp1 + i - Vo1 + dipoV - Qi = fipoApr + POS\(AZ,’ZH - ’YAzat,’:h),
000t + podh (Qo . V) Q4 + d3PQOL Vpi =0,

Q-0 =01=24
K¢
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Mean-field limit

PDE model Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Linear stability analysis

@ PDE system:

1
Otpg +V - ((d1Q — —Vps — EVpg)/)g) =0,

¢ ¢
1o n
PgOi + /)g((de — Zfo — ZVpg) : V)Q + d3Pq1Vpg =0,

2 2
_ IA5 — L ans + L N(5 3
pr=1+ nA,r)g 7 0D pg + nzN([)g) +0 (’y ) ,
@ Linearize around (po, Q0): pg = po + ep1 + O(e2), Q = Qo + Q4 + O(€%)

Otp1 + i - Vo1 + dipoV - Qi = fipoApr + POS\(AZ,’ZH - ’YAzat,’:h),
p08;Q1 + /)odg (Qo . V) Q1 + d3PQOL Vpi = 0,
Q-0 =01=24

K¢

@ Consider plane wave perturbations

p1 ()(7 t) _ ﬁeik'XJrOLf’ Q1 (X, t) — Qeik~x+&[
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Mean-field limit

PDE model Hydrodynamic limit: macro model
Numerical simulations of the macro model
Linear stability analysis of the macro model

Linear stability analysis

Theorem (Bifurcation parameter) |
The linearized system around (po, Qo) is unstable iff

UK

= < 1.
P Cic

Characterisation of the most unstable modes:
Maximally disturbed modes :

ki = argmax Re(a(k)),
k110

Kk = argmax Re(a(k)),

K195
Related to size of perturbations
1th _ 2r éh _ 2m .
K[ K
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Mean-field limit
PDE model Hydrodynamic limit: macro model

Numerical simulations of the macro model
Linear stability analysis of the macro model

Validation of the theoretical predictions (macro model)

——r, = 0.15, theoretical x =100
-« -1, =0.15, macro s,
3 012 !
—=—1, = 0.2, theoretical :
-« -1, =0.2, macro 01
r, = 0.3, theoretical 0.08
r, = 0.3, macro
0.02
0
0 0.02
”

obstacles



Micro-Macro comparison

Micro-macro comparison

Method
Numerical simulations

PDE model

N

ABM, N=2000

@ Optimal Grid to compute the density of the ABM simulation (PIC method)
Must account for characteristic size of structures captured with finite

number of points

@ Distance independent of space translations

Wasserstein-type distance

Diane Peurichard

Large-scale dynamics of self-propelled particles in obstacles



Method
Micro-Macro comparison Numerical simulations

macro comparison
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Conclusion/perspectives

Conclusions/perspectives

Conclusions
@ Model for collective motion of active particles interacting in a viscoelastic
medium
Variety of patterns depending on the interactions with the environment
@ Attraction not required for swimmer aggregation
Obstacles can induce aggregation irrespective of whether they repel or
attract the particles => rethink cause of biological aggregation
@ Linear stability of PDE
Bifurcation parameter controling the appearance and shape of patterns
@ Micro-macro comparison
Quantitative agreement between ABM and PDE simulations
Perspectives
@ Coupling with fluid model
@ Different types of obstacles (elongated fibers)

[P. Aceves-Sanchez, P. Degond, E.E. Keaveny, A. Manhart, S. Merino-Aceituno, D. P., Large-scale dynamics of self-propelled particles
moving through obstacles: model derivation and pattern formation. Bull. Math. Bio. (2020) 82(129)]

[P. Degond, A. Manhart, S. Merino-Aceituno, D. P, L. Sala, How environment affects active particle swarms: a case study, R. Soc. open sci

(2022) 9:220791]
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Conclusion/perspectives

Thank you !
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Collective motion: The role of the environment

% of cells clustered
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Lemma 1 (Kinetic model) ) N

Formally, as N,M — oo, fN — f and g — g where f(x,y,t) and g(x, a, t)
fulfil:

Al + Vx - OWF) = doAxf
019+ Vx - (U9) + Va - (P,1L[va]g) = dsAag,

where
— Jg(X7 t)
o= —-,
[Jg(x; B)]

The velocities are given by

Jg(x, 1) = / ag(z, o, t)dzda.
[x=2|<ra

]
W= —Z(x = y) = ~Vxpg(x, 1)
n n

1 1
U=oa— ZVXﬁf(X> ) = ZVXﬁg(Xa 1),
with
polx,) = [ g(x.antida piix.t) = [ 10y, Dy

and
p(x, ) = ¢ xp(x,t), p(x,t) =P *p(x,1)

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



Elements of proof for the hydrodynamic limit:

@ Swimmer equation: Self-Organized Hydrodynamics:
Collision operator Q(g) = —Va - (P, [v&]g) + dA.g
[Degond, Motsch, 2008] (SOH)

[Degond, Dimarco, Mac, Wang, 2015] (SOHR)

@ Obstacle equation:

Of + Vx - WF) = doAxf, W= f%(x —-y)- %Vpg(x, f)

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



Elements of proof for the hydrodynamic limit:

@ Swimmer equation: Self-Organized Hydrodynamics:
Collision operator Q(g) = —Va - (P, [v&]g) + dA.g
[Degond, Motsch, 2008] (SOH)

[Degond, Dimarco, Mac, Wang, 2015] (SOHR)

@ Obstacle equation:

Of + Vx - WF) = doAxf, W= f%(x —-y)- %Vpg(x, f)

e Rewrite & rescale: v = n/k, § = dpy Fokker-Planck Operator

1 1
Orf + ;Vx - (=Vxpgf) = 5 [Vx - ((x = y)f + 6Vxf]
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Elements of proof for the hydrodynamic limit:

@ Swimmer equation: Self-Organized Hydrodynamics:
Collision operator Q(g) = —Va - (P, [v&]g) + dA.g
[Degond, Motsch, 2008] (SOH)

[Degond, Dimarco, Mac, Wang, 2015] (SOHR)

@ Obstacle equation:

Of + Vx - WF) = doAxf, W= f%(x —-y)- %Vpg(x, f)

e Rewrite & rescale: v = n/k, § = dpy Fokker-Planck Operator

1 1
Orf + ;Vx - (=Vxpgf) = 5 [Vx - ((x = y)f + 6Vxf]

e Expand f(x,y,t)
f(X7Y7 t) = fO(XJ’» t) +'Yf1 (vav t) +72f2(X7y7 t) + o(,yS)
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Elements of proof for the hydrodynamic limit:

@ Swimmer equation: Self-Organized Hydrodynamics:

Collision operator Q(g) = —Va - (P, [v&]g) + dA.g
[Degond, Motsch, 2008] (SOH)
[Degond, Dimarco, Mac, Wang, 2015] (SOHR)

@ Obstacle equation:

Of + Vx - WF) = doAxf, W= f%(x —-y)- %Vpg(x, f)

e Rewrite & rescale: v = n/k, § = dpy Fokker-Planck Operator
1 1
Orf + ;Vx - (=Vxpgf) = 5 [Vx - ((x = y)f + 6Vxf]
e Expand f(x,y,t)

f(X7Y7 t) = fO(XJ’» t) +'Yf1 (vav t) +72f2(X7y7 t) + o(,yS)

@ Strong spring limit v — 0, small noise limit § — 0 => use Fokker-Planck
Operator properties
Gives pf(x, t) expanded in terms of v and 8, ps(x, t) = [ f(x, y, t)dy

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



Substituting the plane wave ansatz into the equation yields

o+ 50 (0 - k) + ipodh (2 k) = = kP fipos + K*Xpoi(d)* (1 = 7a),

(1a)
poa + ipodhQ (o - k) + ipdsPqy k =0, (1b)
Q-Q=0. (1¢)

or (if @ = wQg)
(GIKl)ox — F(IK|) + ich ko) + ipodi ke = O,
/d3k1ﬁ + po(Oé =+ idzko)w =0.

This is a homogeneous linear system in (5, w) which has a non-trivial solution
if and only if the determinant of the systemis 0, i.e.:

(G(k|)a — F(|K|) + ich ko) (o + ickko) + ch dsk? = 0. 7
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Linear stability analysis

Theorem (Bifurcation parameter) |

Consider fixed constant values po > 0 and Qo € S'. Then, the lin-
earized system around (po, Qo) is unstable if and only if

there exists z > 0 such that Z*($)? > k.

at+izx

Perturbations of the form p, (x,t) = e

1 Local obstacle interaction z*

4
. . 7
Non-local obstacle interactions—— P2

Obstaclgcinteract‘ioln function:
0 X
¢(X) = ﬁ(‘l - T)+

Re(a(2))

Realpartofa(z): 5| /-~
Re(a(2)) = 22°1%4:" — /1]

Large-scale dynamics of self-propelled particles in obstacles
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Micro-macro comparison

o1 u = 0.0002 065 = 0,004
06 |——N=500 p
sl |7—N=1000 _
1 N=3000 [
05| |—=N=5000
oas| |

cale dynamics of self-propelled particle: obstacles



Micro-macro comparison

PDE model

ABM, N=2000

@ Optimal Grid to compute the density of the ABM simulation (PIC method)
Must account for characteristic size of structures captured with finite
number of points

@ Distance independent of space translations
Wasserstein-type distance

Diane Peurichard Large-scale dynamics of self-propelled particles in obstacles



PDE model

ﬁ:hoose the best grid for macro simulation

\
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PDE model ABM, N=2000

Diane Peu scale dynamics of self-propelled particles in obstacles



PDE model ABM, N=2000

3. Compute EMD distance

Rubner et al, LICV (2000)
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