Modèles de croissance-fragmentation pour la dynamique des populations bactériennes

Pierre Gabriel

Université de Versailles (Université Paris Saclay)

Rencontre chaire MMB 24 novembre 2021 "Populations microbiennes et microbiote"

Structured population models

The individuals (cells) are characterized by one or more traits (age, size, size-increment, etc.).

<u>Model</u>: partial differential equation that prescribes the time evolution of a population density with respect to the trait.

<u>The unknown</u>: a function $u_t(x) = u(t, x)$

 $\triangleright t \ge 0$ is the time

 $\triangleright x$ is the trait

Ref. [Webb '85], [Metz, Diekmann '86], [Perthame '07], [Bansaye, Méléard '15], etc.

Age-structured model

Consider a population of cells that are characterized by their age $a \ge 0$.

The age pyramidal $u_t(a)$ of the population at time $t \ge 0$ evolves according to the renewal equation

$$\begin{cases} \partial_t u_t(a) + \partial_a u_t(a) + B(a)u_t(a) = 0, \\ u_t(0) = 2\int_0^\infty B(a)u_t(a) \, da. \end{cases}$$

B(a): division rate at age a, *i.e.*

the probability of not dividing by age *a* is: $\exp\left(-\int_{a}^{a} B(a') da'\right)$

Ref. [Sharpe & Lotka, 1911], [McKendrick, 1926], [Von Foerster, 1959], etc.

Numerical simulations

Blue: $u_0(a)$, Red: B(a)

Particular solutions with stable age distribution and time exponential growth:

 $\hat{u}_t(a) = \mathcal{U}(a)e^{\lambda t}.$

The Malthus parameter λ is the unique solution to

$$1 = 2 \int_0^\infty B(a) e^{-\int_0^a (\lambda + B(a')) da'} da$$

and the stable age pyramidal is given by

 $\mathcal{U}(a) = \mathcal{U}(0)e^{-\int_0^a (\lambda + B(a'))da'}.$

Particular solutions with stable age distribution and time exponential growth:

 $\hat{u}_t(a) = \mathcal{U}(a)e^{\lambda t}.$

The Malthus parameter λ is the unique solution to

$$1 = 2 \int_0^\infty B(a) e^{-\int_0^a (\lambda + B(a')) da'} da$$

and the stable age pyramidal is given by

 $\mathcal{U}(a) = \mathcal{U}(0)e^{-\int_0^a (\lambda + B(a'))da'}.$

Convergence: for all initial distribution u_0

 $u_t(a) \sim \langle u_0, \phi \rangle \mathcal{U}(a) e^{\lambda t}$ as $t \to +\infty$.

Particular solutions with stable age distribution and time exponential growth:

 $\hat{u}_t(a) = \mathcal{U}(a)e^{\lambda t}.$

The Malthus parameter λ is the unique solution to

$$1 = 2\int_0^\infty B(a)e^{-\int_0^a (\lambda + B(a'))da'}da$$

and the stable age pyramidal is given by

 $\mathcal{U}(a) = \mathcal{U}(0)e^{-\int_0^a (\lambda + B(a'))da'}.$

Convergence: exist $C, \alpha > 0$ s.t. for all initial distribution u_0 and all $t \ge 0$

 $\|e^{-\lambda t}u_t - \langle u_0, \phi \rangle \mathcal{U}\| \leq C e^{-\alpha t} \|u_0\|.$

Ref. [Sharpe & Lotka, 1911], [Feller, 1941], [Greiner, 1984], [Webb, 1984], [Michel, Mischler, Perthame, 2005], [Gwiazda & Perthame, 2006], [Bansaye, Cloez, G., 2020], etc.

Application to experimental data

©The Quaranta Lab, Vanderbilt University, Nashville (2011)

Exponential growth of the cell population

PC9 cancer cells with Erlotinib treatment

Estimating B(a)

- 1. Circles indicate mitotic event (metaphase)
- 2. Numbers indicate individual nuclei manually tracked in ImageJ
- 3. Subsequent letters and numbers indicate lineage relationships
- 4. Data obtained
 - A. Birth times
 - B. Intermitotic times (IMT)
 - C. Lineages

©The Quaranta Lab, Vanderbilt University, Nashville (2011)

$$\mathcal{U}(\textbf{a}) = e^{-\int_0^{\textbf{a}} (\lambda + B(\textbf{a}')) d\textbf{a}'} \ \leadsto \ B(\textbf{a})$$

Result

Ref. [G., Garbett, Quaranta, Tyson, Webb, 2012]

Size-structured model

Consider a population of cells that are characterized by their size x > 0.

The size distribution $u_t(x)$ of the population at time $t \ge 0$ evolves according to the growth-fragmentation equation

 $\partial_t u_t(x) + \partial_x \big(g(x) u_t(x) \big) + B(x) u_t(x) = 2 \int_0^1 B\left(\frac{x}{z}\right) u_t\left(\frac{x}{z}\right) \frac{\wp(dz)}{z}$

 $\begin{array}{l} g(x): \text{ growth rate at size } x\\ B(x): \text{ division rate at size } x\\ \text{ at division: } \quad x \ \rightarrow \ zx \ + \ (1-z)x\\ z \ \text{ distributed according to the kernel } \wp \ (\text{example: } \wp = \delta_{\frac{1}{2}}) \end{array}$

Ref. [Bell & Anderson, 1967], [Fredrickson, Ramkrishna, Tsuchiya, 1967], [Sinko & Streifer, 1967], etc.

Particular solutions with stable size distribution and time exponential growth:

 $\hat{u}_t(x) = \mathcal{U}(x)e^{\lambda t}.$

Under biologically relevant assumptions, such solutions exist but λ and \mathcal{U} are not given explicitly in terms of g, B and \wp .

Particular solutions with stable size distribution and time exponential growth:

 $\hat{u}_t(x) = \mathcal{U}(x)e^{\lambda t}.$

Under biologically relevant assumptions, such solutions exist but λ and \mathcal{U} are not given explicitly in terms of g, B and \wp .

Except in critical cases, we have convergence: for all initial distribution u_0

 $u_t(x) \sim \langle u_0, \phi \rangle \mathcal{U}(x) e^{\lambda t}$ as $t \to +\infty$.

Particular solutions with stable size distribution and time exponential growth:

 $\hat{u}_t(x) = \mathcal{U}(x)e^{\lambda t}.$

Under biologically relevant assumptions, such solutions exist but λ and \mathcal{U} are not given explicitly in terms of g, B and \wp .

Except in critical cases, we have convergence: $\exists C, \alpha > 0, \forall u_0, \forall t \ge 0$

 $\|e^{-\lambda t}u_t - \langle u_0, \phi \rangle \mathcal{U}\| \leq C e^{-\alpha t} \|u_0\|.$

Ref. [Diekmann, Heijmans, Thieme '84], [Perthame, Ryhzik '05], [Michel, Mischler, Perthame '05], [Doumic, G. '10], [Cáceres, Cañizo, Mischler '11], [Balagué, Cañizo, G. '15], [Zaidi, van Brunt, Wake '15], [Mischler, Scher '16], [Bertoin, Watson '18], [Bernard, G. '20], [Bansaye, Cloez, G., Marguet '20], [Banasiak, Mokhtar-Kharroubi '21], etc.

Inverse problem

Can we recover g, B, \wp from λ, \mathcal{U} ?

Inverse problem

Can we recover g, B, \wp from λ, \mathcal{U} ?

In the case of bacteria, we can assume that g(x) = x and $\wp = \delta_{\frac{1}{2}}$ so that the inverse problem reduces to estimating the division rate B.

Inverse problem

Can we recover g, B, \wp from λ, \mathcal{U} ?

In the case of bacteria, we can assume that g(x) = x and $\wp = \delta_{\frac{1}{2}}$ so that the inverse problem reduces to estimating the division rate B.

Yet, it is still a challenging issue.

Ref. [Perthame, Zubelli, 2007], [Doumic, Perthame, Zubelli, 2009], [Doumic, Hoffmann, Reynaud-Bouret, Rivoirard, 2012], [Doumic, Tine, 2013], [Bourgeron, Doumic, Escobedo, 2014], [Doumic, Hoffmann, Krell, Robert, 2015], [Doumic, Escobedo, Tournus, 2018], [Doumic, Olivier, Robert, 2020], etc. The case g(x) = x and $\wp = \delta_{\frac{1}{2}}$

 $\partial_t u_t(x) + \partial_x (x u_t(x)) + B(x) u_t(x) = 4B(2x) u_t(2x)$

For any initial size x > 0 and any $n \in \mathbb{N}$, the size at time $t = n \log 2$ belongs to the set

$$X_x = \{y > 0 : \exists k \in \mathbb{Z}, y = 2^k x\}.$$

Numerical simulations

Boundary spectrum and oscillating behavior

There is a family of complex dominant eigenvalues

$$\lambda_k = 1 + \frac{2ik\pi}{\log 2}, \quad \mathcal{U}_k(x) = x^{1-\lambda_k} \mathcal{U}(x), \quad \phi_k(x) = x^{\lambda_k}, \quad k \in \mathbb{Z}.$$

Convergence: for all initial distribution u_0 we have

$$u_t(x) \sim \sum_{k=-\infty}^{+\infty} \langle u_0, \phi_k
angle e^{\lambda_k t} \mathcal{U}_k(x) \qquad ext{as } t o +\infty.$$

Ref. [Diekmann, Heijmans, Thieme, 1984], [Greiner, Nagel, 1988], [van Brunt, Almalki, Lynch, Zaidi, 2018], [Bernard, Doumic, G., 2019], [Martin, G., 2021]

Boundary spectrum and oscillating behavior

There is a family of complex dominant eigenvalues

$$\lambda_k = 1 + \frac{2ik\pi}{\log 2}, \quad \mathcal{U}_k(x) = x^{1-\lambda_k} \mathcal{U}(x), \quad \phi_k(x) = x^{\lambda_k}, \quad k \in \mathbb{Z}.$$

Convergence: $\exists C, \alpha > 0, \forall u_0, \forall t \ge 0$

$$\left\|e^{-t}u_t-\sum_{k=-\infty}^{+\infty}\langle u_0,\phi_k\rangle e^{(\lambda_k-1)t}\mathcal{U}_k\right\|\leqslant Ce^{-\alpha t}\|u_0\|.$$

Ref. [Diekmann, Heijmans, Thieme, 1984], [Greiner, Nagel, 1988], [van Brunt, Almalki, Lynch, Zaidi, 2018], [Bernard, Doumic, G., 2019], [Martin, G., 2021]

Boundary spectrum and oscillating behavior

There is a family of complex dominant eigenvalues

$$\lambda_k = 1 + \frac{2ik\pi}{\log 2}, \quad \mathcal{U}_k(x) = x^{1-\lambda_k} \mathcal{U}(x), \quad \phi_k(x) = x^{\lambda_k}, \quad k \in \mathbb{Z}.$$

Convergence: $\exists C, \alpha > 0, \forall u_0, \forall t \ge 0$

$$\left\|e^{-t}u_t-\sum_{k=-\infty}^{+\infty}\langle u_0,\phi_k\rangle e^{(\lambda_k-1)t}\mathcal{U}_k\right\|\leqslant Ce^{-\alpha t}\|u_0\|.$$

Mean convergence: $\exists C, \alpha > 0, \forall u_0, \forall t \ge 0$

$$\left\|\frac{1}{\log 2}\int_t^{t+\log 2} e^{-s}u_s - \langle u_0, \phi_0 \rangle \mathcal{U}\right\| \leq C e^{-\alpha t} \|u_0\|.$$

Ref. [Diekmann, Heijmans, Thieme, 1984], [Greiner, Nagel, 1988], [van Brunt, Almalki, Lynch, Zaidi, 2018], [Bernard, Doumic, G., 2019], [Martin, G., 2021]

Age or size?

Size structure is more relevant than age structure for *E. coli*, see [Robert, Hoffmann, Krell, Aymerich, Robert, Doumic, 2014].

Age or size? \rightarrow size-increment

Size structure is more relevant than age structure for *E. coli*, see [Robert, Hoffmann, Krell, Aymerich, Robert, Doumic, 2014].

An even more relevant structure is the increment of size since division $y \ge 0$, leading to the *adder* or *incremental* model:

$$\begin{cases} \partial_t u_t(x,y) + \partial_x (xu_t(x,y)) + \partial_y (xu_t(x,y)) + xB(y)u_t(x,y) = 0, \\ xu_t(x,0) = 4 \int_0^\infty 2xB(y)u_t(2x,y) \, dy. \end{cases}$$

Ref. [Hall, Wake, Gandar '91], [Amir '14], [Taheri-Araghi, Bradde, Sauls, Hill, Levin, Paulsson, Vergassola, Sun '15], [Sauls, Li, Sun '16], [Martin, G. '19], [Doumic, Olivier, Robert '19], [Xia, Greenman, Chou '20], [Doumic, Hoffman '21], [Fermanian, Doucet, Hoffmann, Robert, Doumic: Celldivision plateform] etc.

Age or size? \rightarrow size-increment

Size structure is more relevant than age structure for *E. coli*, see [Robert, Hoffmann, Krell, Aymerich, Robert, Doumic, 2014].

An even more relevant structure is the increment of size since division $y \ge 0$, leading to the *adder* or *incremental* model:

$$\partial_t u_t(x,y) + \partial_x \big(g(x)u_t(x,y) \big) + \partial_y \big(g(x)u_t(x,y) \big) + g(x)B(x,y)u_t(x,y) = 0,$$

$$g(x)u_t(x,0) = 2 \int_0^\infty \int_0^1 g\left(\frac{x}{z}\right) B\left(\frac{x}{z},y\right) u_t\left(\frac{x}{z},y\right) \frac{\wp(dz)}{z} dy.$$

Ref. [Hall, Wake, Gandar '91], [Amir '14], [Taheri-Araghi, Bradde, Sauls, Hill, Levin, Paulsson, Vergassola, Sun '15], [Sauls, Li, Sun '16], [Martin, G. '19], [Doumic, Olivier, Robert '19], [Xia, Greenman, Chou '20], [Doumic, Hoffman '21], [Fermanian, Doucet, Hoffmann, Robert, Doumic: Celldivision plateform] etc.

Future work

There remain open questions about the convergence for models with two (or more) variables.

Future work

There remain open questions about the convergence for models with two (or more) variables.

 \rightarrow part of the objectives of the ANR project NOLO

- B. Cloez (PI)
- V. Bansaye
- M. Baragatti
- J. Coville
- B. de Saporta
- P. G.
- A. Marguet
- C. Smadi

Future work

There remain open questions about the convergence for models with two (or more) variables.

 \rightarrow part of the objectives of the ANR project NOLO

- B. Cloez (PI)
- V. Bansaye
- M. Baragatti
- J. Coville
- B. de Saporta
- P. G.
- A. Marguet
- C. Smadi

Thank you for your attention!