Population persistence in the presence of climate change in variable environments - integrodifference model

Juliette Bouhours (École Polytechnique - CMAP)

Joint work with M. A. Lewis¹

Journée Chaire MMB, Novembre 2016

¹J. Bouhours and M. Lewis, in *Bulletin of Mathematical Biology*.

Climate change and integro-difference equations

$$u_{t+1}(\xi) = \int_{\mathbb{R}} K(\xi - \eta) g_0(\eta - s_t) f_{r_t}(u_t(\eta)) d\eta, \quad t \in \mathbb{N}, \ \xi \in \mathbb{R}.$$

with $(u_t)_t$ density of the population at generation t,

 ▶ Long time behaviour? Persistence of the population? Critical value for parameters?

- 1 Climate change in population dynamics
- 2 Integro-difference equations
- 3 The model
- 4 Persistence of the population
- Sumerical simulations

- 1 Climate change in population dynamics
- 2 Integro-difference equation
- 3 The mode
- 4 Persistence of the population
- 5 Numerical simulations

Climate change in population dynamics

•000

- Phenological changes
- Interaction across trophic levels
- Range shifts
- Evolution and plasticity

Consequences of climate change on range and distribution

²Review article, Ecological and Evolutionary responses to recent climate change, Parmesan C., Annu. Rev. Ecol. Evol. Syst. . 2006.

Climate change and population dynamics³

Required migration

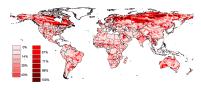


Figure 3. A map showing areas where species might have to achieve unusually high migration rates (≥1,000 metres per year) in order to keep up with 2 × CO₂ global warming in 100 years. Shades of red indicate the percent of 14 models that exhibited unusually high rates.

Habitat Loss

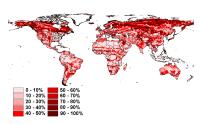


Figure 10. Loss of existing habitat that could occur under a doubling of atmospheric COconcentrations. Shades of red indicate the percent of vegetation models that predicted a change in biome type of the underlying map grid cell.

0000

Environmental variability

Climate change in population dynamics

0000

Uncertainty in climate change scenario



The model

 Environmental variability caused by increasing extreme climatic events: temperature extremes, sea levels, precipitation events

⁴IPCC: Climate change, 2007.

Impact on population persistence

Persistence of the population facing habitat migration and environmental variability?

- Model describing population dynamics
- Account for climate change and habitat migration
- Include environmental variability
- Characterise persistence

- 1 Climate change in population dynamic
- 2 Integro-difference equations
- 3 The mode
- 4 Persistence of the population
- 5 Numerical simulations

Growth and dispersal modelling at a population scale

Spatial structure and temporal evolution

Simultaneous growth and dispersal: reaction-diffusion equations

$$\partial_t u - \partial_{xx} u = f(u), \quad t \in \mathbb{R}^+, \ x \in \mathbb{R}$$

Impact of climate change: reaction-diffusion equations with forced speed (Berestycki et al, Bouhours and Nadin, Bouhours and Giletti...)

Successive growth and dispersal: integro-difference equations

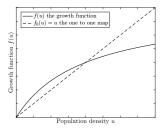
$$u_{t+1}(x) = \int_{\mathbb{R}} K(x, y) f(u_t(y)) dy, \quad t \in \mathbb{N}, \ x \in \mathbb{R}$$

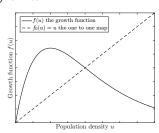
K dispersal kernel, f growth map (Kot and Schaffer '86)

Integro-difference equations - growth map

$$u_{t+1}(\xi) = \int_{\mathbb{R}} K(\xi, \eta) \underbrace{f(u_t(\eta))}_{\text{growth of the population at location } y} d\eta, \quad t \in \mathbb{N}, \ \eta \in \mathbb{R}$$

- $\triangleright f(u) > u$: growth of the population
 - Self-regulating population: $f(u) \le u$ for all u > C,
 - No Allee effect (Fisher-KPP): f(u)/u maximum at 0,
 - Compensatory or overcompensatory dynamics





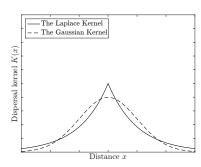
Numerical simulations

Integro-difference equations - dispersal kernels

$$u_{t+1}(\xi) = \int_{\mathbb{R}} \underbrace{K(\xi, \eta)}_{\text{dispersion of the grown population}} f(u_t(\eta)) d\eta, \quad t \in \mathbb{N}, \; \xi \in \mathbb{R}$$

- $\vartriangleright K(\xi,\eta)$: probability to disperse from η to ξ
 - Difference kernel: dependence on the distance between 2 points only

$$K(\xi, \eta) = K(\xi - \eta)$$



Integro-difference equations in heterogeneous environments

Growth and dispersal in heterogeneous environments

$$u_{t+1}(\xi) = \int_{\mathbb{R}} \underbrace{K(\xi, \eta)}_{\text{dispersion suitability}} \underbrace{g_t(\eta)}_{\text{growth}} \underbrace{f(u_t(\eta))}_{\text{growth}} d\eta, \quad t \in \mathbb{N}, \; \xi \in \mathbb{R}$$

Suitability: habitat migration due to climate change

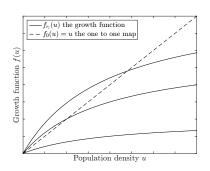
$$g_t(\eta) = g_0(\eta - s_t)$$

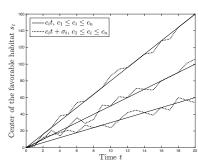
 $s_t \in \mathbb{R}$ reference point at time t

• Example: $g_0 \equiv \mathbb{1}_{(-L/2:L/2)}$

Variability of the environment

- · Variable growth: $f(u) = f_{r_t}(u)$, $(f_{r_t})_t$ sequence of random functions $(r_t)_t$ random per capita growth rate at 0
- · Variable reference point: $s_t = ct + \sigma_t$,
 - $\triangleright c$ uncertain asymptotic migration speed $(c \in \{c_1, \ldots, c_n\})$, fixed, $(\sigma_t)_t$ stochastic process, variability of the migration speed





- 1 Climate change in population dynamic
- 2 Integro-difference equation
- 3 The model
- 4 Persistence of the population
- 5 Numerical simulations

Our model

General problem:

Climate change in population dynamics

$$u_{t+1}(\xi) = \int_{\mathbb{R}} K(\xi - \eta) g_0(\eta - s_t) f_{r_t}(u_t(\eta)) d\eta, \quad t \in \mathbb{N}, \ \xi \in \mathbb{R}.$$

- $x \mapsto K(x)$ continuous, uniformly bounded and positive in \mathbb{R} ,
- $x \mapsto g_0(x)$ compactly supported in Ω_0 , nonnegative, bounded by 1,
- \circ $s_t = ct + \sigma_t$.
- \bullet $(\sigma_t, r_t)_t$ bounded, independent, identically distributed random variables,
- $f_r: \mathbb{R}^+ \to \mathbb{R}^+$, continuous, increasing with $f_r(u) = 0$ for all u < 0,
- $0 < f_r(u) \le m$ for all positive continuous function u and $r = f'_r(0)$
- if u, v constants such that 0 < v < u then $f_r(u)v < f_r(v)u$

0

Changing the reference frame

Problem in the non moving frame:

$$u_{t+1}(\xi) = \int_{\mathbb{D}} K(\xi - \eta) g_0(\eta - s_t) f_{r_t}(u_t(\eta)) d\eta, \quad t \in \mathbb{N}, \ \xi \in \mathbb{R}.$$

•
$$x = \xi - c(t+1), y = \eta - ct \text{ and } \bar{u}_t(y) := u_t(y+ct)$$

$$\bar{u}_{t+1}(x) = \int K(x-y+c)g_0(y-\sigma_t)f_{r_t}(\bar{u}_t(y))dy.$$

$$\bullet \ \sigma_t \in (\underline{\sigma}, \overline{\sigma}) \implies \Omega := (\inf \Omega_0 + \underline{\sigma}, \sup \Omega_0 + \overline{\sigma}), \text{ "support" of the problem}$$

Dropping the bar

$$u_{t+1}(x) = \int_{\Omega} K(x - y + c)g_0(y - \sigma_t)f_{r_t}(u_t(y))dy, \quad t \in \mathbb{N}, \ x \in \Omega,$$

Previous work:

- · Zhou-Kot ('11): $u_{t+1}(\xi) = \int_{\Omega+ct} K(\xi-\eta) f(u_t(\eta)) d\eta$, c fixed, Ω compact.
- · Hardin et al ('88), Jacobsen et al ('14): Integro-difference equations in variable environments

- 1 Climate change in population dynamic
- 2 Integro-difference equation
- 3 The mode
- 4 Persistence of the population
- 5 Numerical simulations

Large time behaviour

Climate change in population dynamics

$$u_{t+1}(x) = \int_{\Omega} K(x - y + c)g_0(y - \sigma_t) f_{r_t}(u_t(y)) dy, \quad t \in \mathbb{N}, \ x \in \Omega,$$

Theorem

Assumptions:

- · u_0 non negative, non trivial, bounded,
- \cdot f_r KPP, increasing.

Then u_t converges in distribution to a random variable u^* as $t \to +\infty$, independently of the initial condition u_0 , and u^* such that

$$u^*(x) = \int_{\Omega} K(x - y + c)g_0(y - \sigma^*) f_{r^*}(u^*(y)) dy.$$

Denoting by μ^* the distribution associated with u^* :

$$\mu^*(\{0\}) = 0 \text{ or } \mu^*(\{0\}) = 1.$$

=> extinction of the population with probability 0 or 1 only, independently of the initial condition.

What does determine whether $\mu^*(\{0\}) = 0$ or $\mu^*(\{0\}) = 1$?

Define

$$\Lambda_t := \left(\int_{\Omega} \tilde{u}_t(x) dx \right)^{1/t},$$

where $(\tilde{u}_t)_t$ the solution of the linearised problem around 0:

$$\tilde{u}_{t+1}(x) = \mathcal{L}_{\alpha_t} \tilde{u}_t(x) := \int_{\Omega} K(x - y + c) g_0(y - \sigma_t) r_t \tilde{u}_t(y) dy.$$

Theorem

$$\lim_{t\to +\infty} \Lambda_t = \Lambda \in [0,+\infty)$$
, with probability 1.

And,

- If $\Lambda < 1$, the population will go extinct, in the sense that $\mu^*(\{0\}) = 1$,
- If $\Lambda > 1$, the population will persist, in the sense that $\mu^*(\{0\}) = 0$.

Characterisation of Λ

t+1 terms

$$\Lambda = e^{E[\ln(r_0)]} \cdot \lim_{t \to +\infty} K_t^{1/t}$$

$$K_{t} = \int_{\Omega} \dots \int_{\Omega} K(x - y_{1} + c)g_{0}(y_{1} - \sigma_{t-1}) \dots K(y_{t-1} - y_{t} + c)g_{0}(y_{t} - \sigma_{0})u_{0}(y_{t})dy_{t} \dots dx$$

• No variability for the shifting speed: $\sigma_t \equiv 0$

$$\Longrightarrow \Lambda = e^{E[\ln(r_0)]} \cdot \lambda_c$$

with λ_c principal eigenvalue of

$$\mathcal{K}_c[u](x) := \int_{\Omega_0} K(x - y + c)g_0(y)u(y)dy,$$

The particular case of Gaussian Kernel

$$\lambda_{-} = e^{-\frac{c^2}{2(\sigma^K)^2}} \lambda_{0}$$

 Λ decreasing with $c \implies$ existence of a critical speed for persistence:

$$c^* = \sqrt{2(\sigma^K)^2 (\ln(\lambda_0) + E[\ln(r_0)])} > 0$$

- 1 Climate change in population dynamic
- 2 Integro-difference equation
- 3 The mode
- 4 Persistence of the population
- Sumerical simulations

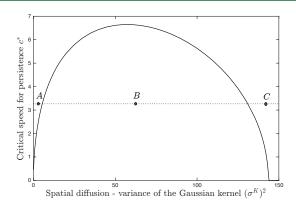
Critical speed for Gaussian kernel

Climate change in population dynamics

2 possible environments: bad $(\overline{\sigma},\underline{r})$ or good $(\underline{\sigma},\overline{r}),$ with

$$P(\mathsf{Good}) = P(\mathsf{bad}) = 0.5, \quad \underline{\sigma} \leq 0 \leq \overline{\sigma}, \quad 0 < \underline{r} \leq \overline{r}$$

Critical speed as a function of the variance of the dispersal kernel

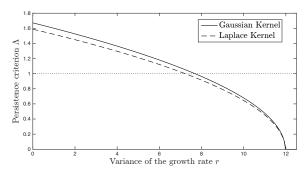


3 different regimes when c = 3.25 km/year

Consequence of the variability

Persistence criterion as a function of the variance of the growth rate \boldsymbol{r}

Fixed expectation, increasing the variance

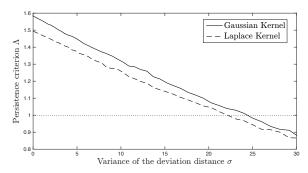


▷ Negative effect of variability on persistence

Consequence of the variability

Persistence criterion as a function of the variance of the deviation speed $\boldsymbol{\sigma}$

Fixed expectation, increasing the variance



▷ Negative effect of variability on persistence

Conclusion

- => Long time behaviour of the solution and characterisation of persistence
- => Critical migration speed for Gaussian Kernel
- => Consequences of variability on population persistence

Future investigations:

- ullet Approximation of λ_c (principal eigenvalue)
- ullet Critical migration speed ($\sigma \equiv 0$) for other kernel
- ullet effect of variability on Λ (analysis)

Conclusion

- => Long time behaviour of the solution and characterisation of persistence
- => Critical migration speed for Gaussian Kernel
- => Consequences of variability on population persistence

Future investigations:

- Approximation of λ_c (principal eigenvalue)
- Critical migration speed ($\sigma \equiv 0$) for other kernel
- ullet effect of variability on Λ (analysis)

THANK YOU FOR YOUR ATTENTION!