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Real-world Motivations
How contagions/memes spread on contact/social networks?

Media in the Age of Algorithms

Model
The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Some experiments in the twitterverse
Tweet Transmission Tree
Trump-Clinton Retweet Networks

Open Discussions
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Meme Evolution in the Twitterverse

Real-world Motivations

How contagions/memes spread on contact/social networks?

Extremist Networks

ISIS’ Twitter Strategy http://bit.ly/2gdls4K

social media is being used by groups such as ISIS to:
I spread their message of hate,
I recruit susceptible youth, and
I project power all over the world.
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How contagions/memes spread on contact/social networks?

Extremist Networks

ISIS’ Twitter Strategy http://bit.ly/2gdls4K

I There are an estimated 21,000 English-language followers alone.
I Most content comes from 2,000 over-performers that tweet in bursts of 50 or more tweets per day
I with each of these over-performers having an average of 1,004 followers.
I The result is an astonishing estimated 200,000 tweets per day.

https://www.brookings.edu/wp-content/uploads/
2016/06/isis_twitter_census_berger_morgan.pdf
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Extremist Networks

ISIS’ Twitter Strategy http://bit.ly/2gdls4K

Conclusions of the study by www.fifthtribe.com:
I ISIS is essentially crowdsourcing its digital strategy.
I A similar massive operation needs to be developed in order to effectively blunt its outreach efforts.
I Members of the big data community, technologists, creatives, and digital strategists need to come together

and coordinate with religious leaders, social media companies, and government agencies to develop an
effective counter-messaging effort.
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How contagions/memes spread on contact/social networks?

Extremist Networks

US Extremist Groups by SPLC
https://www.splcenter.org/fighting-hate/extremist-files

I https://www.splcenter.org/fighting-hate/extremist-files/ideology
I https://www.splcenter.org/fighting-hate/extremist-files/individual
I https://www.splcenter.org/fighting-hate/extremist-files/groups
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Real-world Motivations

How contagions/memes spread on contact/social networks?

US Presidential Election 2016 - Twitter Streams

Twitter Data — 3rd US Presidential Debate

I User time-line of @realDonaldTrump, @HillaryClinton and splc-extremists with twitter accounts
I collected data includes all mentions, replies, retweets, etc of these twitter accounts of interest
I Goal: to gain insights into how people are communicating within and across party lines or ideologies
I Such twitter data was collected every day for about a month around the US Presidential Election
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How contagions/memes spread on contact/social networks?

US Presidential Election 2016 - Twitter Streams

Twitter Data — Last 2 Days Around the End of Election

I User time-line of @realDonaldTrump, @HillaryClinton and splc-extremists with twitter accounts
I collected data includes all mentions, replies, retweets, etc of these twitter accounts of interest
I Goal: to gain insights into how people are communicating within and across party lines or ideologies
I Such twitter data was collected every day for about a month around the US Presidential Election
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Media in the Age of Algorithms

Micro-propaganda network of 117 fake news, viral, anti-science, hoax, and misinformation websites by Jonathan Albright

http://bit.ly/2gidlBW
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Media in the Age of Algorithms

Micro-propaganda network of 117 fake news, viral, anti-science, hoax, and misinformation websites by Jonathan Albright

http://bit.ly/2gidlBW

The Targets: Mainstream Media, Social Networks and Wikipedia:
I the sites with the most inbound hyperlinks (the largest circles on the graph) in this ‘fake news’ propaganda

network are Google, YouTube, the NYTimes.com, Wikipedia, and Amazon.com.
I The larger the circle, the more links are coming in from the 117 #MCM network ‘fake news’ sites.
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Media in the Age of Algorithms

Micro-propaganda network of 117 fake news, viral, anti-science, hoax, and misinformation websites by Jonathan Albright

http://bit.ly/2gidlBW

Mainstream Media Are Mostly “Surrounded”:
I right-wing, fake news, conspiracy, anti-science, hoax, pseudoscience, and right-leaning misinformation sites

surround most of the mainstream media
I sites in the fake news and hyper-biased #MCM network have a very small node size — this means they are

linking out heavily to mainstream media, social networks, and informational resources
I every incoming link is not a vote for the popularity of a site as in Google’s page-rank principle — the

goal now is to maximize user engagement
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Micro-propaganda network of 117 fake news, viral, anti-science, hoax, and misinformation websites by Jonathan Albright

http://bit.ly/2gidlBW

Fact Checking and Knowledge Editing:
I #MCM network links heavily to a major poll site, Gallup, and crowdsourced fact-checking and reference

resources — most notably Wikipedia, Reddit, and Wikimedia
I Snopes and other fake news verification sites are in the “liberal” side of the network at the top-middle right
I From fantastical falsehoods to outright vandalism, Wikipedians are warring over Trump’s inner circle.

http://ow.ly/8e4y306hVUn
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Media in the Age of Algorithms

Social Media Realities

I Anyone can be a broadcaster and target/recruit anyone

I Social Media Platforms emphasize engagement via clicks
I Unlike, Google’s page rank, where every link is a vote,

there is no equivalent of truth rank in social media
I Question is: “whose truth? when ‘knowledge’ is editable”
I facebook’s curating the newsfeed as opposed to treating it

as a timeline makes them medaite what users will see
I Tim O’Reilly’s http://bit.ly/2fpclfZ:

.... Unfortunately, unlike search, where the desires of the users to find an answer and get on with their lives

are generally aligned with “give them the best results”, Facebook’s prioritization of “engagement” may be

leading them in the wrong direction. What is best for Facebook’s revenue may not be best for users.

I .... The bright side: searching through the possibility space for the intersection of truth AND engagement

could lead Facebook to some remarkable discoveries.
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The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Susceptible-Infected Contact Network (SICN) & Transmission Tree (TT)

36 / 84
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Model

The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Susceptible-Infected Contact Network (SICN) & Transmission Tree (TT)

Question: How does the geometry or structure of the SICN afftect the distribution (shape and timing) of the TT?

Answer: It is involved...
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Meme Evolution in the Twitterverse

Model

The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Markov chain on SI Contact Networks × Transmission Trees

I A growing transmission tree on a complete SICN in a population of size n = 3

I A growing transmission tree on a star SICN in a population of size n = 3

I A growing transmission tree on a path SICN in a population of size n = 3
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Model

The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

State Space

I Let In = {ı1, ı2, . . . , ın} be the label set of a pop. of size n

I Let wn be the weighted edges of a complete weighted
directed graph (network) kn

I Let the Markov chain have state space Tn × Cn

I where c := (w , s) ∈ Cn := 2wn × {0,1}In , SICNs
I where τ ∈ {rooted planar ranked leaf-labelled binary trees}
I Note the poset on 2wn with unit weights given by ≺ := ⊆
I So the current state of the Markov chain at discrete time z

is (τ(z), c(z)) ∈ Tn × Cn
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I So the current state of the Markov chain at discrete time z

is (τ(z), c(z)) ∈ Tn × Cn
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Model

The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Transition Probabilities

I One-step transitions for the jump chain

Pr{(τ(z + 1), c(z + 1)) | (τ(z), c(z))} =

the edge-weight from (z + 1)-th infector to the (z + 1)-th infectee

Sum of edge-weights from every potential infector to every potential infectee within its susceptible out-neighborhood

I By letting the time for each infection event to be distributed
as iid∼ Exponential(λ) random variables we can get the
continuous time Markov chain’s generator in the usual way
(ignored here).

I NOTE: We limit to connected networks with unit weights
and undirected edges here
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The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Continuous Time Transmission Process

Two Transmission Trees (TTs) Grown on a Complete
Susceptible-Infected Contact Network (SICN) with n = 50 individuals
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The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Beta-splitting Model

I IDEA: induce distributions on TTs without the SICN

I Consider Generating Sequences:

I U1,U2, . . .
iid∼ Uniform(0,1)

I B1,B2, . . .
iid∼ Beta(α+ 1, β + 1), (α, β) ∈ (−1,∞)2

I Beta-splitting construction:
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Model

The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Theorems

Integrating out the interval-valued realizations at the leaf nodes
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The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

Theorems

Beta-splitting model matches distrn on TTs for three example SICNs
I (α, β) = (0,0) ≡ complete SICN,
I (α,beta)→ (∞,−1) ≡ star SICN
I (α,beta)→ (−1,∞) ≡ path SICN
I Theorem 2 on MLE expressions
I Theorem 3 on Equivalence class of initialized SICNs with

the same (α, β)-specified TT distribution
I Will present a chalk talk in X later...
I 50 other model parameters simulated...
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The Transmission Process. Sainudiin and Welch, Jnl. of Theor. Biol., 2016.

MLE of α and β from TTs under various SICNs
mean MLEs based on transmission trees simulated from various contact networks indexed by their ID from Table 1.

Beta-projections of various models
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So what? — We can do Bayesian non-parametrics by Beta-splitting mixtures over empirical SICNs/TINs
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References: Paper and Codes from Live Notebooks

I The Transmission Process: A Combinatorial Stochastic Process for the Evolution of Transmission Trees

over Networks, Raazesh Sainudiin and David Welch, Journal of Theoretical Biology, Volume 410, Pages

137–170, 2016 10.1016/j.jtbi.2016.07.038

I http://lamastex.org/lmse/mep
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Some experiments in the twitterverse
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Some experiments in the twitterverse

Tweet Transmission Tree

Twitter Interactions
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Some experiments in the twitterverse

Tweet Transmission Tree

Twitter Interaction Capture

With a few tens of lines of code we can determine the
‘TweetType’ of each status we can capture from twitter.
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Some experiments in the twitterverse

Tweet Transmission Tree

Frequency of Twitter Interaction Types

On the day of the 3rd US Presidential Debate (as in most days)
‘ReTweets‘ were the most frequent type of interaction.
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Some experiments in the twitterverse

Tweet Transmission Tree

ReTweeted Frequency

Retweets are a direct and simplistic affirmation of the tweet and
thus help understand the structure without getting into NLP
tasks.
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Statistics of Trump-Clinton-SPLC_Extremists Data
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton Retweet Network — a few samples
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton Retweet Network weighted by Retweet counts

75 / 84



Meme Evolution in the Twitterverse

Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton Retweet Ideological Network
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton TIN or (Re)Tweet Ideological Network –
Outdegree
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton TIN or (Re)Tweet Ideological Network
(3% sample #V = 1205,#E = 29856) – Indegree

So, the loudest vessel wins the “being heard match” in the twitterverse! — Whether the vessel is “empty” is less

irrelevant than how many can hear it with their specific “emotional needs/fears/etc. soothed”...
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton TIN or (Re)Tweet Ideological Network –
Community Detection

Clear presence of “echo chambers” in the twitterverse! ...(these are well-documented phenomena)
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton TIN or (Re)Tweet Ideological Network –
Community Detection

#(“echo chamber of Clinton”)=3996 & #(“echo chamber of Trump”)=4234
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Some experiments in the twitterverse

Trump-Clinton Retweet Networks

Retweet Network — (3% sample #V = 1205,#E = 29856)

Trump-Clinton TIN or (Re)Tweet Ideological Network –
Community Detection ∩ SPLC-extremists

This is just 3% of the data for just a few hours surrounding the3rd US Presidential Debate
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Open Discussions
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Open Discussions

Let’s do it...

I Can there be a “truth rank” in some acceptable sense?
I Is it too much to expect fellow citizens to be reasonably

rational agents?
I Any solution must take the market forces into account?
I Law may need to interfere with market — UN human right

violations (when does free-speech become incitement to
genocide)?

I Is Putin reasonable in having blocked linked-In in Russia 4
days ago?

I ? ? ? (memetic notions of self in “trans-traditional life” experiments... — NOT a mathematical problem

but a philosophical - political - economic - social - psychological - legal problem)

I Our own mathematical research→ Markov control
processes on TIN/SICN where we want to allow the
Networks themselves to coevolve with transmission trees
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Open Discussions

Thank you!
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