

Crossing a fitness valley in a stochastic population model

Anton Bovier, Loren Coquille and Charline Smadi

October 4th, 2019

1 / 35

イロト 不得下 イヨト イヨト 二日

- Fixation probability and fixation time of new mutations widely studied from the work of the 'Great Trinity' (Fisher 1922, 1931, Wright 1931, Haldane 1927)
- Fundamental questions to understand how and how fast a population can adapt to a changing environment, the dynamics of genetic diversity, the long term behaviour of ecological systems...

Three basic mechanisms

- Heredity: offsprings acquire the genetic information of their parents
- Mutation: permanent alteration of DNA
- Natural selection: differential survival and reproduction of individuals due to differences in phenotype

Eco-Evolutionary framework: take into account the underlying environment

- Varying size populations
- Interactions with other individuals (competition for resource)
- Quantity of available resources
- In the context of stochastic individual based models: Fournier and Méléard 2004, Champagnat 2006, Tran 2008,...

M	ot	iv	at	io	ns	

Fate of an initially monomorphic population:

- On a fast (ecological) time scale, population size reaches ecological equilibrium
- If mutations to types of positive invasion fitness are possible, population is replaced by a fitter type, if fixation
- If coexistence with this mutant is possible, a branching occurs

Figure : Champagnat and Méléard 2011 - (E) E 201

What happens if several counterselected mutations are necessary to produce a fit mutant?

- Evolution to self-incompatibility in hermaphroditic plants: "Recognition of pollen by pistils expressing cognate specificities at two linked genes leads to rejection of self pollen and pollen from close relatives, i.e., to avoidance of self-fertilization and inbred matings." (Gervais et al. 2011)
- Mutations from normal to cancer cells: oncogene (promotes differentiation and proliferation), antioncogene (produces tumor suppressor proteins), caretaker (prevents the accumulation of DNA damage)
- More generally, positive epistasis between counterselected mutations

Motivations	Model and fate of a fit mutant	Fitness valley	Results 000000000000000000000000000000000000

Model and fate of a fit mutant

Fitness valley

Results

Haploid asexual population

Ecological parameters

- β_i and δ_i birth rate and intrinsic death rate
- $C_{i,j}$ competitive pressure $j \rightarrow i$.
- K ∈ ℕ rescales the competition ≈ carrying capacity.

Birth and death rate

$$b_i(X) = \beta_i X_i$$
 and $d_i(X) = \left[\delta_i + \sum_{j \in I} \frac{C_{i,j}}{K} X_j\right] X_i$

Motivations	Model and fate of a fit mutant	Fitness valley	Results 000000000000000000000000000000000000

Monomorphic population

When population size of order K, rescaled population process $n_i = N_i/K$ evolves as a competitive Lotka-Volterra equation (Ethier and Kurtz 1986):

$$\dot{n}_i = (\beta_i - \delta_i - C_{i,i}n_i)n_i$$

Positive equilibrium for a monomorphic population if $\beta_i > \delta_i$

$$\beta_i - \delta_i - C_{i,i} n_i = 0 \iff n_i = \overline{n}_i = \frac{\beta_i - \delta_i}{C_{i,i}}$$

イロト 不得下 イヨト イヨト

1\/I	ot	117	at	10	nc
1.4.1	U.	10	u u	10	11.3

Invasion of a positively selected mutant

Invasion fitness

$$S_{ji} = \beta_j - \delta_j - \frac{C_{j,i}}{K} K \bar{n}_i = \beta_j - \delta_j - C_{j,i} \bar{n}_i$$

= per capita growth rate of a mutant j appearing in an i-population at its equilibrium size $\bar{n}_i K$

j is said:

- positively selected in a *j*-population if $S_{ji} > 0$
- counterselected in a *j*-population if $S_{ji} < 0$

イロト 不得下 イヨト イヨト 二日

Motivations	Model and fate of a fit mutant	Fitness valley	Results 000000000000000000000000000000000000

$$n_i = N_i/K, \quad n_j = N_j/K$$

Two-dimensional Lotka-Volterra system

$$\begin{cases} \dot{n}_i = (\beta_i - \delta_i - C_{i,i}n_i - C_{i,i}n_j)n_i \\ \dot{n}_j = (\beta_j - \delta_j - C_{j,i}n_i - C_{j,j}n_j)n_j \end{cases}$$

If $\bar{n}_i > 0$, $\bar{n}_j > 0$, and $S_{ji} > 0$ and $S_{ij} < 0$. \Rightarrow Unique attracting stable equilibrium $(0, \bar{n}_j)$

$$\text{If} \quad \bar{n}_i > 0, \quad \bar{n}_j > 0, \quad S_{ji} > 0 \quad \text{and} \quad S_{ij} > 0.$$

 \Rightarrow Unique attracting stable equilibrium $(\bar{n}_i^{(ij)}, \bar{n}_i^{(ij)})$

イロト イロト イヨト イヨト 二日

Motivations	Model and fate of a fit mutant	Fitness valley	Results

Model and fate of a fit mutant

Fitness valley

Results

<ロト <部ト < Eト < Eト E のQで 13 / 35

Motivations	Model and fate of a fit mutant	Fitness valley

We are interested in the case where several successive counterselected mutants are necessary to produce a positively selected mutant

Assumptions

- Trait i := i mutations
- All traits unfit with respect to 0 except *L*:

 $S_{i0} < 0$, $1 \leq i \leq L{-1}$ and $S_{L0} > 0$.

• All traits unfit with respect to *L*:

 $S_{iL} < 0, \ 0 \le i \le L - 1.$

Figure : In blue (resp. red), invasive fitness of the mutant in the 0-population (resp. *L*-population)

- ► L mutations necessary to produce a positively selected mutant
- $\mu_{K} :=$ mutation probability per reproductive event
- Mutation kernels:

$$m_{ij}^{(1)} = \mu_K \delta_{i+1,j}$$
 or $m_{ij}^{(2)} = \frac{\mu_K}{2} (\delta_{i+1,j} + \delta_{i-1,j}),$

where $\delta_{i,j}$ is the Kronecker delta (1 if i = j, 0 otherwise).

When the population is large (large K), does the mutant L get fixed, how the fixation time of the mutant L depends on L, the scaling of µ_K with respect to K, and the parameters?

Motivations	Model and fate of a fit mutant	Fitness valley	Results
			00000

Model and fate of a fit mutant

Fitness valley

Results

Deterministic limit $(K, \mu_K) \to (\infty, \mu)$, then $\mu \to 0$ Stochastic limit $(K, \mu_K) \to (\infty, 0)$ On the extinction of the population

3

イロト イロト イヨト イヨト

Motivations	Model and fate of a fit mutant	Fitness valley	Results ••••••
Deterministic limit			

Notation: rescaled population

$$X^{K}(t) = \left(rac{X_{0}(t)}{K}, rac{X_{1}(t)}{K}, ..., rac{X_{L}(t)}{K}
ight)$$

We will first consider the case of frequent mutations, when μ_K does not go to 0 when K goes to infinity.

Proposition (Ethier and Kurtz, 1986)

Suppose that $\lim_{K\to\infty} X^{K}(0) = x(0)$ in probability. Then, for each $T \in \mathbb{R}_+$, $(X^{K}(t), 0 \le t \le T)$ converges in probability, as $K \to \infty$, to the deterministic process $x^{\mu} = (x_0^{\mu}, \dots, x_L^{\mu})$ unique solution to:

$$\frac{dx_i^{\mu}}{dt} = \left((1-\mu)\beta_i - \delta_i - \sum_{i=0}^L C_{i,j}x_j^{\mu}\right)x_i^{\mu} + \mu\sum_j m_{ji}\beta_j x_j^{\mu}.$$

17 / 35

(日) (周) (王) (王) (王)

Motivations	Model and fate of a fit mutant	Fitness valley	Results
Deterministic limit $({\cal K},\mu_{m K}) o (\infty,\mu)$, then $\mu o 0$			

Theorem

Take as initial condition $x^{\mu}(0) = (\bar{x}_0, 0, ..., 0)$. Then for $i \in \mathcal{X}$, as $\mu \to 0$, uniformly on bounded time intervals,

$$rac{\log\left[x_i^\mu\left(t\cdot\log\left(1/\mu
ight)
ight)
ight]}{\log(1/\mu)} o x_i(t), \quad \left(x_i^\mu(t\lograc{1}{\mu})symp \left(rac{1}{\mu}
ight)^{x_i(t)}
ight)$$

where $x_i(t)$ is piece-wise linear.

Motivations	Model and fate of a fit mutant	Fitness valley	Results 000000000000000000000000000000000000
D			

Deterministic limit $(K, \mu_{\boldsymbol{K}})
ightarrow (\infty, \mu)$, then $\mu
ightarrow 0$

- *i*-population stabilizes around $O(\mu_K^i)$ in a time of order one
- L-population grows exponentially with a rate S_{L0}
- Swap between populations 0 and L (Lotka-Volterra system)

Motivations	Model and fate of a fit mutant	Fitness valley	Results
Deterministic limit (1			

- ▶ *i*-population ($i \neq L$) decays exponentially with a rate given by the lowest fitness of its left neighbours min_{0≤j≤i} $|S_{jL}|$
- When a *i*-population decreasing more slowly than the *i* + 1-population reaches a size higher than 1/µ_K* the (*i* + 1)-population size, the (*i* + 1)-population starts decreasing exponentially with the same rate as the *i*-population

5.0						
1//1	ot	11/	a1	10	n n	C .
1.4.1	U.	10				9

Model and fate of a fit mutant

Fitness valley

Results

Deterministic limit $(K, \mu_{\mathbf{K}}) \to (\infty, \mu)$, then $\mu \to 0$

First phase: when the (i + 1)-population reaches a size higher than 1/µ_K* the *i*-population size, the *i*-population starts growing exponentially with a rate S_{L0}

Motivations	Model and fate of a fit mutant	Fitness valley	Results 000000000000000000000000000000000000
Deterministic limit	$(K, \mu_{\mathbf{K}}) \rightarrow (\infty, \mu)$, then $\mu \rightarrow 0$		

Second phase: when the i + 1-population reaches a size higher than 1/µ_K* the i-population size, the i-population starts decreasing with a slower rate (the same as the one of the (i + 1)-population)

(日) (同) (目) (日)

Model and fate of a fit mutant	Fitness valley	Results
$(x, 0) \rightarrow (\infty, 0)$		
	Model and fate of a fit mutant $(z) ightarrow (\infty, 0)$	Model and fate of a fit mutant Fitness valley $(z) ightarrow (\infty, 0)$

- Dynamics and time scale of the invasion process depend on the scaling of µ_K with respect to K.
- For simplicity, no more back mutations
- ► We consider a mutation probability of the form:

 $\mu_{\mathsf{K}} = c_{\mu} \mathsf{K}^{-1/\alpha}, \quad c_{\mu}, \alpha > 0.$

- (Durrett and Mayberry 2011): constant population size or Yule process models, with directional mutations and increasing fitness, and (Champagnat, Méléard and Tran 2019+): horizontal transfer; case with a trade-off between larger birth rates for small trait values and transfer to higher traits.
- ► In a time of order one, there will be of order $K\mu^i = c^i_\mu K^{1-i/\alpha}$ mutants of type *i*
 - If $L < \alpha$, large mutation regime, type L mutants appear rapidly.
 - ► If $L > \alpha$, slow mutation regime, first type L mutants appear after a long and stochastic time.

Motivations	Model and fate of a fit mutant	Fitness valley	Results ○○○○○○ ○●○○○○ ○○○○○○○
Stochastic limit (K, μ_{I}	$(\kappa,0) ightarrow (\infty,0)$		

Remark

Reminiscent of the deterministic limit.

- When $\alpha > L$, small fluctuations around deterministic evolution.
- \blacktriangleright One "just needs" to replace μ by ${\cal K}^{-1/lpha}$

Notation

$$t(L,\alpha) := \frac{L}{\alpha S_{L0}} + \sup\left\{\left(1 - \frac{i}{\alpha}\right)\frac{1}{|S_{iL}|}, 0 \le i \le L - 1\right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Motivations	Model and fate of a fit mutant	Fitness valley	Results
Stochastic limit (K, μ_{F}	$(\mathbf{x},0) \to (\infty,0)$		

Theorem

Assume that $L < \alpha < \infty$.

 It takes a time of order t(L, α) log K for the L-population to outcompete the other populations and enter in a neighbourhood of its monomorphic equilibrium size n
_LK.

Then stays close to this equilibrium for at least a time e^{KV}, where V is a positive constant.

Motivations	Model and fate of a fit mutant	Fitness valley	Results
Stochastic limit (K, μ_{I}	$(\mathbf{x}) o (\infty, 0)$		

 $\mathsf{Case} \ \mathbf{0} < \alpha < \mathbf{L}$

$$\mathcal{K}\mu_{\mathcal{K}}^{\lfloor lpha
floor} = c_{\mu}\mathcal{K}^{1-rac{\lfloor lpha
floor}{lpha}} \gg 1, \qquad \mathcal{K}\mu_{\mathcal{K}}^{\lfloor lpha
floor+1} = c_{\mu}\mathcal{K}^{1-rac{\lfloor lpha
floor+1}{lpha}} \ll 1$$

(ロ)、(部)、(主)、(主)、(三)の(で 26 / 35

Motivations	Model and fate of a fit mutant	Fitness valley	Results
Stochastic limit (K, μ	$(\infty, 0) \rightarrow (\infty, 0)$		

Notation

$$\lambda(\rho) := \sum_{k=0}^{\infty} \frac{(2k)!}{(k!)^2} \rho^k \left(1-\rho\right)^{k+1},$$

= Expected number of individuals in an excursion of a subcritical branching process of birth and death rates b and d such that $b/(b+d) = \rho$ (Van Der Hofstad 2016, Britton and Pardoux 2018+)

For $\lfloor \alpha \rfloor + 1 \leq i \leq L - 1$, set

$$\rho_i := \beta_i / (\beta_i + \delta_i + C_{i,0} \bar{x}_0).$$

Motivations	Model and fate of a fit mutant	Fitness valley	Results
Stochastic limit (K, μ_{I}	κ $(\infty, 0)$		

Typical trajectories:

- *i*-populations (1 ≤ *i* ≤ ⌊α⌋) reach a size of order Kµⁱ ≫ 1 in a time of order one
- Last 'large' population: [α]-population, which reaches a size of order Kµ^[α] ≅ K^{1−[α]/α} after a time of order one
- *i*-populations ([α] + 1 ≤ *i* ≤ *L*), describe a.s. finite excursions, whose a proportion of order µ_K produces a mutant of type *i* + 1
- ► The term $\lambda(\rho_i)$ is the expected number of individuals in an excursion of an *i*-population ($\rightarrow \mu_K \lambda(\rho_i)$).
- Every L-mutant has a probability S_{L0}/β_L to produce a population which outcompetes all the other populations

Stochastic limit $(K, \mu_{\mathbf{K}}) \rightarrow (\infty, 0)$

Theorem

Assume that $0 < \alpha < L$.

$$\textit{Fixation time} \sim \mathcal{E}\textit{xp}\left(\frac{\bar{n}_0\beta_0...\beta_{\lfloor \alpha \rfloor - 1}}{|S_{10}|...|S_{\lfloor \alpha \rfloor 0}|} \mathcal{K}\mu_{\mathcal{K}}^{\lfloor \alpha \rfloor}\left(\prod_{i = \lfloor \alpha \rfloor + 1}^{L-1}\lambda(\rho_i)\mu_{\mathcal{K}}\right)\frac{S_{L0}}{\beta_L}\right)$$

Then stays close to this equilibrium for at least a time e^{KV}, where V is a positive constant.

Motivations	Model and fate of a fit mutant	Fitness valley	Results 000000000000000000000000000000000000
On the extinction of th	ne population		

- Key advantage of stochastic logistic birth and death processes on constant size processes: we can compare time scales of mutation processes and population lifetime.
- Quantification of the lifetime of populations with interacting individuals is a tricky question (Chazottes, Collet, Méléard 2016, 2017).
- Not able to determine necessary and sufficient conditions for the *L*-mutants to succeed in invading before the population extinction. However we managed to provide some bounds.

5.4				
1//1	ot	1/2	110	ne
1.4.1	ou	v u	C I C	/11.3

On the extinction of the population

Notation

$$ho_0(\kappa) := \sqrt{\kappa} \exp\left(-\kappa \left(eta_0 - \delta_0 + \delta_0 \ln\left(rac{\delta_0}{eta_0}
ight)
ight)
ight)$$

Chazottes, Collet, Méléard 2016 If x > 0, $t \gg 1/\rho_0(K)$ and X_0 monomorphic population

$$d_{TV}\left(\mathbb{P}_{\mathsf{xK}}(X_0(t)\in .), \delta_0(.)\right) = o(1).$$

Motivations	Model	and	fate	of	а	${\rm fit}$	mutant

On the extinction of the population

$$T_0 := \inf\{t \ge 0, \sum_{i=0}^{L} X_i(t) = 0\}$$
 $B_L := \inf\{t \ge 0, X_L(t) > 0\}.$

Theorem If $K\mu \ll \rho_0(K)$, then $\mathbb{P}(T_0 < B_L) \xrightarrow[K \to \infty]{} 1$.

Proof

- 1. Coupling of the 0-population size with a larger population
- 2. First type 1 mutant has no time to appear

Motivations	Model and fate of a fit mutant	Fitness valley	Results
On the extinction of t	he population		

Assumption

 $\beta_i < \delta_i, \quad 1 \le i \le L - 1.$

Theorem If $K\mu^L \ll \rho_0(K)$, then

$$\mathbb{P}(T_0 < B_L) \xrightarrow[K \to \infty]{} 1.$$

Proof

- Coupling of the 0-population size with a larger population
- Bounding of the probability that a type 1 individual has a L-mutant in its line of descent

Motivations	Model and fate of a fit mutant	Fitness valley	Results 000000000000000000000000000000000000
On the extinction of t	he population		

Possible generalizations

- If coexistence possible between 0 and L (S_{L0}, S_{0L} > 0), same invasion phase, but X^K₀ and X^K_L stabilise around (n^(0L)₀, n^(0L)_L), positive fixed point of the 2-species Lotka-Volterra system. Moreover, unfit mutant populations stay microscopic if S_{i,{0,L}} := β_i − δ_i − C_{i,0}n^(0L)₀ − C_{i,L}n^(0L)_L < 0 ∀ 1 ≤ i ≤ L − 1. In the 1-sided case, those stay of order Kµⁱ, while in the 2-sided case, they stay of order Kµ^{min{i,L-i}}.
- Mutation probability could depend on the trait.
- ► If order of mutations not important, each individual bearing k mutations can be labeled by the trait k. ⇒ L! ways of reaching an individual of trait L with a sequence of L mutations. ⇒ invasion time of the population L divided by L!.

5.0							
1\/I	ot.		2	÷ 1	0	ne	
1 1 1	Οu	IV.	a		0		

On the extinction of the population

THANK YOU FOR YOUR ATTENTION!

・ロト ・ (型) ・ (目) ・ (目) ・ 目 ・ のへの

35 / 35