Modeling the evolution of ecological interaction networks

José Méndez-Vera iEES February 2, 2017

UPMC École Polytechnique • We want to understand changes in species distributions in a global change context.

- We want to understand changes in species distributions in a global change context.
- Popular used models are niche models which

- We want to understand changes in species distributions in a global change context.
- Popular used models are niche models which
 - Project present species niche into the future.

- We want to understand changes in species distributions in a global change context.
- Popular used models are niche models which
 - Project present species niche into the future.
 - Do not consider species interactions.

- We want to understand changes in species distributions in a global change context.
- Popular used models are niche models which
 - Project present species niche into the future.
 - Do not consider species interactions.
- We want a model capable of capturing these two phenomena.

Spotted knapweed (*Centaurea maculosa*) is an invasive species in North America introduced from Europe in the 1890s.

Motivation

Taken from Broennimann et al. 2007, "Evidence of climatic niche shift during biological invasion".

Motivation

Taken from Broennimann et al. 2007, "Evidence of climatic niche shift during biological invasion".

$$\frac{\partial N}{\partial t} = \frac{\partial^2 N}{\partial x^2} + N(1-N) - \frac{1}{2}N(Bx-z)^2$$
$$\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2} + 2\frac{\partial \log N}{\partial x}\frac{\partial z}{\partial x} + A(Bx-z).$$

• Kirpatrick and Barton proposed a system of equations which treats simultaneously adaptation and (intraspecific) interactions:

$$\frac{\partial N}{\partial t} = \frac{\partial^2 N}{\partial x^2} + N(1-N) - \frac{1}{2}N(Bx-z)^2$$
$$\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2} + 2\frac{\partial \log N}{\partial x}\frac{\partial z}{\partial x} + A(Bx-z).$$

• N = N(x, t) is the population density.

$$\frac{\partial N}{\partial t} = \frac{\partial^2 N}{\partial x^2} + N(1-N) - \frac{1}{2}N(Bx-z)^2$$
$$\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2} + 2\frac{\partial \log N}{\partial x}\frac{\partial z}{\partial x} + A(Bx-z).$$

- N = N(x, t) is the population density.
- z = z(x, t) is the mean value of a phenotypic trait.

$$\frac{\partial N}{\partial t} = \frac{\partial^2 N}{\partial x^2} + N(1-N) - \frac{1}{2}N(Bx-z)^2$$
$$\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2} + 2\frac{\partial \log N}{\partial x}\frac{\partial z}{\partial x} + A(Bx-z).$$

- N = N(x, t) is the population density.
- z = z(x, t) is the mean value of a phenotypic trait.
- $\theta(x) = Bx$ is the optimal phenotypic trait at location x.

$$\frac{\partial N}{\partial t} = \frac{\partial^2 N}{\partial x^2} + N(1-N) - \frac{1}{2}N(Bx-z)^2$$
$$\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2} + 2\frac{\partial \log N}{\partial x}\frac{\partial z}{\partial x} + A(Bx-z).$$

- N = N(x, t) is the population density.
- z = z(x, t) is the mean value of a phenotypic trait.
- $\theta(x) = Bx$ is the optimal phenotypic trait at location x.

$$\frac{\partial N}{\partial t} = \frac{\partial^2 N}{\partial x^2} + N(1-N) - \frac{1}{2}N(Bx-z)^2$$
$$\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2} + 2\frac{\partial \log N}{\partial x}\frac{\partial z}{\partial x} + A(Bx-z).$$

- N = N(x, t) is the population density.
- z = z(x, t) is the mean value of a phenotypic trait.
- $\theta(x) = Bx$ is the optimal phenotypic trait at location x.

KB's equations show three different qualitative behaviors.

KB's equations show three different qualitative behaviors.

We propose a similar model following theirs.

We propose a similar model following theirs.

• We denote population density by $N_i = N_i(x, t)$ and mean trait value by $\overline{Z}_i = \overline{Z}_i(x, t)$.

We propose a similar model following theirs.

- We denote population density by $N_i = N_i(x, t)$ and mean trait value by $\overline{Z}_i = \overline{Z}_i(x, t)$.
- Density evolution is given by

$$\frac{\partial N_i}{\partial t} = \frac{\sigma_i^2}{2} \frac{\partial^2 N_i}{\partial x^2} + N_i r_i$$

We propose a similar model following theirs.

- We denote population density by $N_i = N_i(x, t)$ and mean trait value by $\overline{Z}_i = \overline{Z}_i(x, t)$.
- Density evolution is given by

$$\frac{\partial N_i}{\partial t} = \frac{\sigma_i^2}{2} \frac{\partial^2 N_i}{\partial x^2} + N_i r_i.$$

Where i = 1 denotes the prey population:

$$r_1(x,t) = r_1^{max} - \frac{1}{2V_1^s} \left(\bar{Z}_1(x,t) - \theta(x) \right)^2 + l_1(x,t)$$

and

$$I_1(x,t) = -\alpha_1 r_1^{max} \frac{N_1(x,t)}{K} - \beta_{12} N_2(x,t).$$

We propose a similar model following theirs.

- We denote population density by $N_i = N_i(x, t)$ and mean trait value by $\overline{Z}_i = \overline{Z}_i(x, t)$.
- Density evolution is given by

$$\frac{\partial N_i}{\partial t} = \frac{\sigma_i^2}{2} \frac{\partial^2 N_i}{\partial x^2} + N_i r_i.$$

And i = 2 denotes the predator population:

$$r_2(x,t) = l_2(x,t) - \frac{1}{2V_2^s} \left(\bar{Z}_2(x,t) - \theta(x) \right)^2 - d$$

and

$$I_2(x,t) = \beta_{21}N_1(x,t) - \alpha_2N_2(x,t),$$

we choose $\beta_{21} = c\beta_{12}$.

• The traits $\overline{Z}_i = \overline{Z}_i(x, t)$ follow the same dynamics given by population genetics:

$$\frac{\partial \bar{Z}_i}{\partial t} = \frac{\sigma_i^2}{2} \frac{\partial \bar{Z}_i}{\partial x^2} + \sigma_i^2 \frac{\partial \log N_i}{\partial x} \frac{\partial \bar{Z}_i}{\partial x} - \frac{G_i}{V_i^s} \left(\bar{Z}_i - \theta(x) \right)$$

• The traits $\overline{Z}_i = \overline{Z}_i(x, t)$ follow the same dynamics given by population genetics:

$$\frac{\partial \bar{Z}_i}{\partial t} = \frac{\sigma_i^2}{2} \frac{\partial \bar{Z}_i}{\partial x^2} + \sigma_i^2 \frac{\partial \log N_i}{\partial x} \frac{\partial \bar{Z}_i}{\partial x} - \frac{G_i}{V_i^s} \left(\bar{Z}_i - \theta(x) \right)$$

• Where $\theta(x)$ is the optimal phenotypic value at location x.

$$\theta(x)=bx.$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(\frac{B_1 X - z_1}{2}\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(\frac{B_2 X - z_2}{2}\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - \frac{B_1 X}{2}\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

It is a generalization of Lotka and Volterra's predation equations.

$$\frac{\partial n_1}{\partial T} = \frac{\partial^2 n_1}{\partial X^2} + n_1 \left(1 - n_1 - \beta^* n_2\right) - \frac{1}{2} n_1 \left(B_1 X - z_1\right)^2$$

$$\frac{\partial n_2}{\partial T} = \delta \frac{\partial^2 n_2}{\partial X^2} + r n_2 \left(n_1 - n_2 - d^*\right) - \frac{r}{2} n_2 \left(B_2 X - z_2\right)^2$$

$$\frac{\partial z_1}{\partial T} = \frac{\partial^2 z_1}{\partial X^2} + 2 \frac{\partial \ln n_1}{\partial X} \frac{\partial z_1}{\partial X} - A_1 \left(z_1 - B_1 X\right)$$

$$\frac{\partial z_2}{\partial T} = \delta \frac{\partial^2 z_2}{\partial X^2} + 2 \delta \frac{\partial \ln n_2}{\partial X} \frac{\partial z_2}{\partial X} - r A_2 \left(z_2 - B_2 X\right)$$

It is a generalization of Kirkpatrick and Barton's equations.

Solution example

• E_1 , where $n_1 = n_2 = 0$ and z_1 and z_2 are undefined.

- E_1 , where $n_1 = n_2 = 0$ and z_1 and z_2 are undefined.
- E_2 , where $n_1 = 1$, $z_1 = B_1X$, $n_2 = 0$ and z_2 is undefined.

- E_1 , where $n_1 = n_2 = 0$ and z_1 and z_2 are undefined.
- E_2 , where $n_1 = 1$, $z_1 = B_1X$, $n_2 = 0$ and z_2 is undefined.
- E_3 , given by $n_1 = n_1^{eq}$, $n_2 = n_2^{eq}$, $z_1 = B_1 X$ and $z_2 = B_2 X$, with

$$n_1^{eq} = \frac{1 + \beta^* d^*}{1 + \beta^*}$$
 $n_2^{eq} = \frac{1 - d^*}{1 + \beta^*}$

- E_1 , where $n_1 = n_2 = 0$ and z_1 and z_2 are undefined.
- E_2 , where $n_1 = 1$, $z_1 = B_1X$, $n_2 = 0$ and z_2 is undefined.
- E_3 , given by $n_1 = n_1^{eq}$, $n_2 = n_2^{eq}$, $z_1 = B_1 X$ and $z_2 = B_2 X$, with

$$n_1^{eq} = \frac{1 + \beta^* d^*}{1 + \beta^*}$$
 $n_2^{eq} = \frac{1 - d^*}{1 + \beta^*}$

- E_1 , where $n_1 = n_2 = 0$ and z_1 and z_2 are undefined.
- E_2 , where $n_1 = 1$, $z_1 = B_1X$, $n_2 = 0$ and z_2 is undefined.
- E_3 , given by $n_1 = n_1^{eq}$, $n_2 = n_2^{eq}$, $z_1 = B_1 X$ and $z_2 = B_2 X$, with

$$n_1^{eq} = \frac{1 + \beta^* d^*}{1 + \beta^*} \quad n_2^{eq} = \frac{1 - d^*}{1 + \beta^*}$$

We want to study propagation speeds these states.

Propagation dynamics

Propagation dynamics

Predator invasion front. The zero speed line is thickened.

 $(\mathsf{A}_r = \mathsf{A}_2/\mathsf{A}_1, \, \delta_r = \sigma_2^2/\sigma_1^2)$

Transition between extinction and coexistence.

 $(\mathsf{A}_r = \mathsf{A}_2/\mathsf{A}_1, \, \delta_r = \sigma_2^2/\sigma_1^2)$

Three phases can be identified.

 $(\mathsf{A}_r = \mathsf{A}_2/\mathsf{A}_1,\,\delta_r = \sigma_2^2/\sigma_1^2)$

• The bigger the dispersal, the more important the effect of adaptation on front speed.

- The bigger the dispersal, the more important the effect of adaptation on front speed.
- Advancing predator fronts can be of one out of two types, implying different geographical distributions.

- The bigger the dispersal, the more important the effect of adaptation on front speed.
- Advancing predator fronts can be of one out of two types, implying different geographical distributions.
- The studied parameters do not seem to allow predators to control the prey's geographical range.

• How do the other parameters affect propagation dynamics?

- How do the other parameters affect propagation dynamics?
- Does this model allow predators to control prey range?

- How do the other parameters affect propagation dynamics?
- Does this model allow predators to control prey range?
- How does global change affect the dynamics of the model?

- How do the other parameters affect propagation dynamics?
- Does this model allow predators to control prey range?
- How does global change affect the dynamics of the model?

 $\theta(x,t)=b_1x+b_2t.$

- How do the other parameters affect propagation dynamics?
- Does this model allow predators to control prey range?
- How does global change affect the dynamics of the model?

$$\theta(x,t)=b_1x+b_2t.$$

• How can we generalize the model to other kinds of interaction?

Questions?

Thank you!