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Motivation

• We want to understand changes in species distributions in
a global change context.

• Popular used models are niche models which

• Project present species niche into the future.
• Do not consider species interactions.

• We want a model capable of capturing these two
phenomena.
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Motivation

Spotted knapweed (Centaurea maculosa) is an invasive species
in North America introduced from Europe in the 1890s.
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Motivation

Taken from Broennimann et al. 2007, “Evidence of climatic niche shift during biological invasion”.
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Introduction

• Kirpatrick and Barton proposed a system of equations
which treats simultaneously adaptation and (intraspecific)
interactions:

∂N
∂t =

∂2N
∂x2 + N(1− N)− 1

2N (Bx− z)2

∂z
∂t =

∂2z
∂x2 + 2∂ logN

∂x
∂z
∂x + A (Bx− z) .

• N = N(x, t) is the population density.
• z = z(x, t) is the mean value of a phenotypic trait.
• θ(x) = Bx is the optimal phenotypic trait at location x.
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Introduction

KB’s equations show three different qualitative behaviors.

Taken from Kirkpatrick and Barton 1997, “Evolution of a Species’ Range”.
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Predation model proposition

We propose a similar model following theirs.

• We denote population density by Ni = Ni(x, t) and mean
trait value by Z̄i = Z̄i(x, t).

• Density evolution is given by
∂Ni
∂t =

σ2i
2
∂2Ni
∂x2 + Niri.
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We propose a similar model following theirs.

• We denote population density by Ni = Ni(x, t) and mean
trait value by Z̄i = Z̄i(x, t).

• Density evolution is given by
∂Ni
∂t =

σ2i
2
∂2Ni
∂x2 + Niri.

Where i = 1 denotes the prey population:

r1(x, t) = rmax1 − 1
2Vs1

(
Z̄1(x, t)− θ(x)

)2
+ I1(x, t)

and
I1(x, t) = −α1rmax1

N1(x, t)
K − β12N2(x, t).
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Predation model proposition

We propose a similar model following theirs.

• We denote population density by Ni = Ni(x, t) and mean
trait value by Z̄i = Z̄i(x, t).

• Density evolution is given by
∂Ni
∂t =

σ2i
2
∂2Ni
∂x2 + Niri.

And i = 2 denotes the predator population:

r2(x, t) = I2(x, t)−
1
2Vs2

(
Z̄2(x, t)− θ(x)

)2 − d

and
I2(x, t) = β21N1(x, t)− α2N2(x, t),

we choose β21 = cβ12. 8



Predation model proposition

• The traits Z̄i = Z̄i(x, t) follow the same dynamics given by
population genetics:

∂Z̄i
∂t =

σ2i
2

∂Z̄i
∂x2 + σ2i

∂ logNi
∂x

∂Z̄i
∂x − Gi

Vsi

(
Z̄i − θ(x)

)

• Where θ(x) is the optimal phenotypic value at location x.

θ(x) = bx.
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Predation model proposition

The model can be written in a simplified way:
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The model can be written in a simplified way:

∂n1
∂T =

∂2n1
∂X2 + n1 (1− n1 − β∗n2)−

1
2n1 (B1X− z1)2

∂n2
∂T = δ

∂2n2
∂X2 + rn2 (n1 − n2 − d∗)− r

2n2 (B2X− z2)2

∂z1
∂T =

∂2z1
∂X2 + 2∂ lnn1

∂X
∂z1
∂X − A1 (z1 − B1X)

∂z2
∂T = δ

∂2z2
∂X2 + 2δ ∂ lnn2

∂X
∂z2
∂X − rA2 (z2 − B2X)

It depends on eight parameters.
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It is a generalization of Lotka and Volterra’s predation equations.
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Solution example
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Observations

There are three important stationary states:

• E1, where n1 = n2 = 0 and z1 and z2 are undefined.
• E2, where n1 = 1, z1 = B1X, n2 = 0 and z2 is undefined.
• E3, given by n1 = neq1 , n2 = neq2 , z1 = B1X and z2 = B2X, with

neq1 =
1+ β∗d∗
1+ β∗ neq2 =

1− d∗
1+ β∗ .

We want to study propagation speeds these states.
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Propagation dynamics
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Propagation dynamics
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Results
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Results

Predator invasion front. The zero speed line is thickened.
(Ar = A2/A1, δr = σ22/σ

2
1 )
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Results

Transition between extinction and coexistence.
(Ar = A2/A1, δr = σ22/σ

2
1 )
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Results

Three phases can be identified.
(Ar = A2/A1, δr = σ22/σ

2
1 )
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Conclusions

• The bigger the dispersal, the more important the effect of
adaptation on front speed.

• Advancing predator fronts can be of one out of two types,
implying different geographical distributions.

• The studied parameters do not seem to allow predators to
control the prey’s geographical range.
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Further questions

• How do the other parameters affect propagation
dynamics?

• Does this model allow predators to control prey range?
• How does global change affect the dynamics of the model?

θ(x, t) = b1x+ b2t.
• How can we generalize the model to other kinds of
interaction?
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Questions?
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Thank you!
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