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- We want to understand changes in species distributions in
a global change context.
- Popular used models are niche models which

- Project present species niche into the future.
- Do not consider species interactions.

- We want a model capable of capturing these two
phenomena.



Motivation

Spotted knapweed (Centaurea maculosa) is an invasive species
in North America introduced from Europe in the 1890s




Motivation

Calibration in Europe (EU)

Occurrences of + Predicted climatic E, !..:DI;
& s

Centaurea maculosa : suitability : @ g @
= b <+

Taken from Broennimann et al. 2007, “Evidence of climatic niche shift during biological invasion”.
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Density and trait evolution
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Density and trait evolution
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Taken from Kirkpatrick and Barton 1997, “Evolution of a Species’ Range”.
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We propose a similar model following theirs.

- We denote population density by N; = Nj(x,t) and mean
trait value by Z; = Zi(x, t).
- Density evolution is given by
ON;  a? &N,
ot 2 ox

And | = 2 denotes the predator population:

1

Ve (Za(x, t) — 6(x))* — d

I’Q(X, t) = /z(X, t) =

and
lh(x,t) = BaNa(x,t) — aaNa(x, 1),

we choose 327 = Cf1s. 8
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- The traits Z; = Zi(x, t) follow the same dynamics given by
population genetics:
82[ B Ui2 82, 26logN,- 82, G; =
o202 T o ox w4

- Where 6(x) is the optimal phenotypic value at location x.

6(x) = bx.
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Solution example

Density and trait evolution
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- £, where ny =1,z = B1X, n, = 0 and z, is undefined.

+ 5, given by ny = n$9, ny = nS%, z; = BiX and z, = ByX, with

eq  1+pB*d* o 1-d"
M ==1p ™M™= .
1+ 8 1+ 8

We want to study propagation speeds these states.
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Propagation dynamics

Density and trait evolution
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Density and trait evolution
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) Predator front speed
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2Predator front speed (joint system)
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) Predator front speed (joint system)
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Conclusions

- The bigger the dispersal, the more important the effect of
adaptation on front speed.

- Advancing predator fronts can be of one out of two types,
implying different geographical distributions.

- The studied parameters do not seem to allow predators to
control the prey's geographical range.
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Further questions

- How do the other parameters affect propagation
dynamics?

- Does this model allow predators to control prey range?
- How does global change affect the dynamics of the model?
9(X7 t) = qu + b2t.

- How can we generalize the model to other kinds of
interaction?



Questions?



Thank you!
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