Biodiversity and Agriculture: Towards a Systemic Approach

ILARIA BRUNETTI ilaria.brunetti@polytechnique.edu

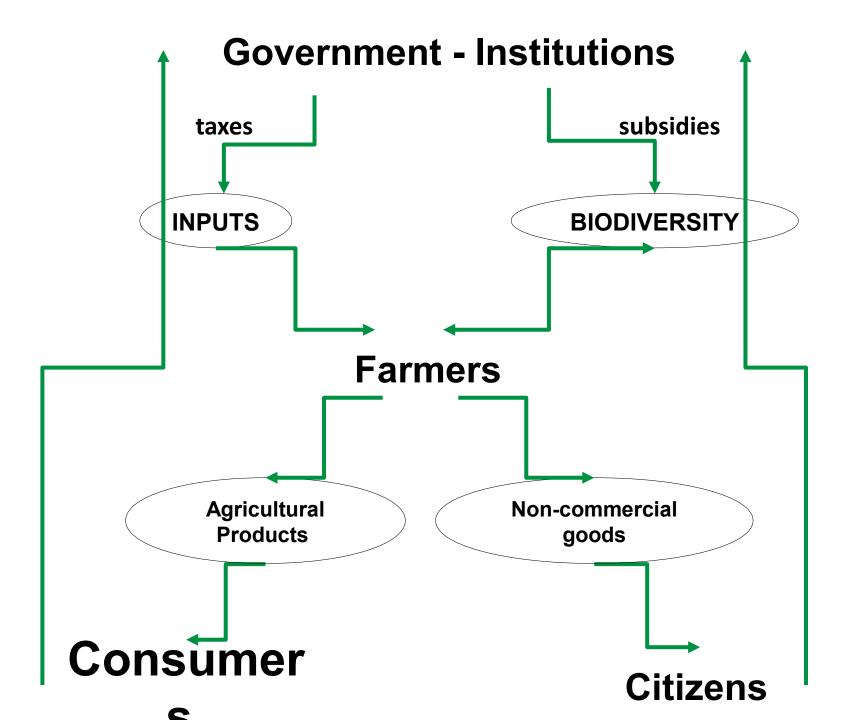
JOURNÉE DE LA CHAIRE MMB – VEOLIA JEUDI 2 FEVIER 2017, AUBERVILLIERS

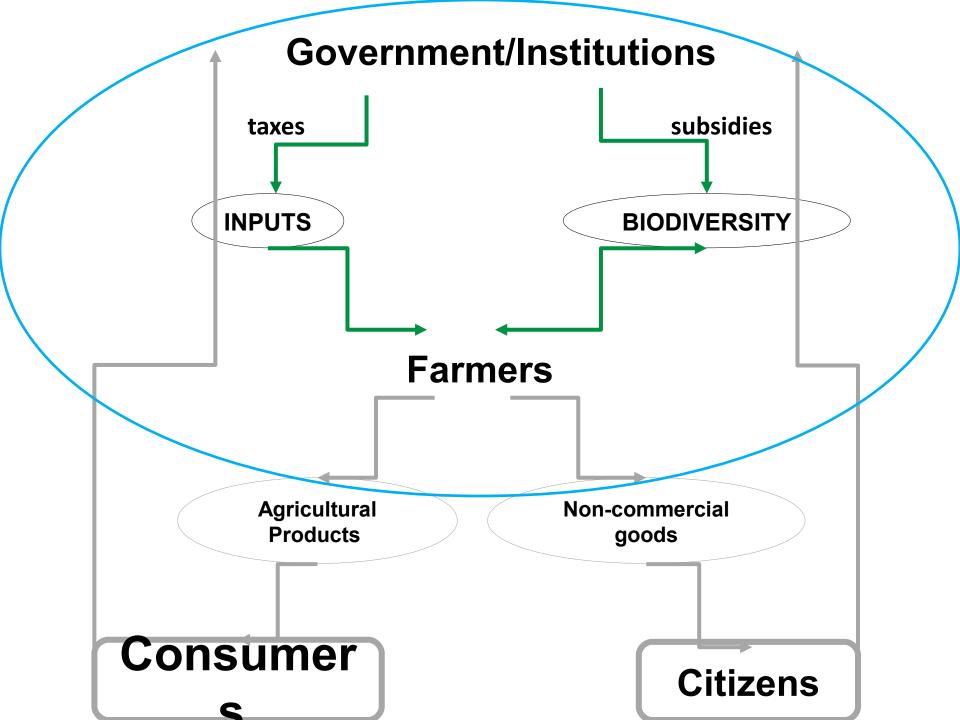
"The word "model" sounds more scientific than "fable" or "fairy tale" although I do not see much difference between them. [. . .]

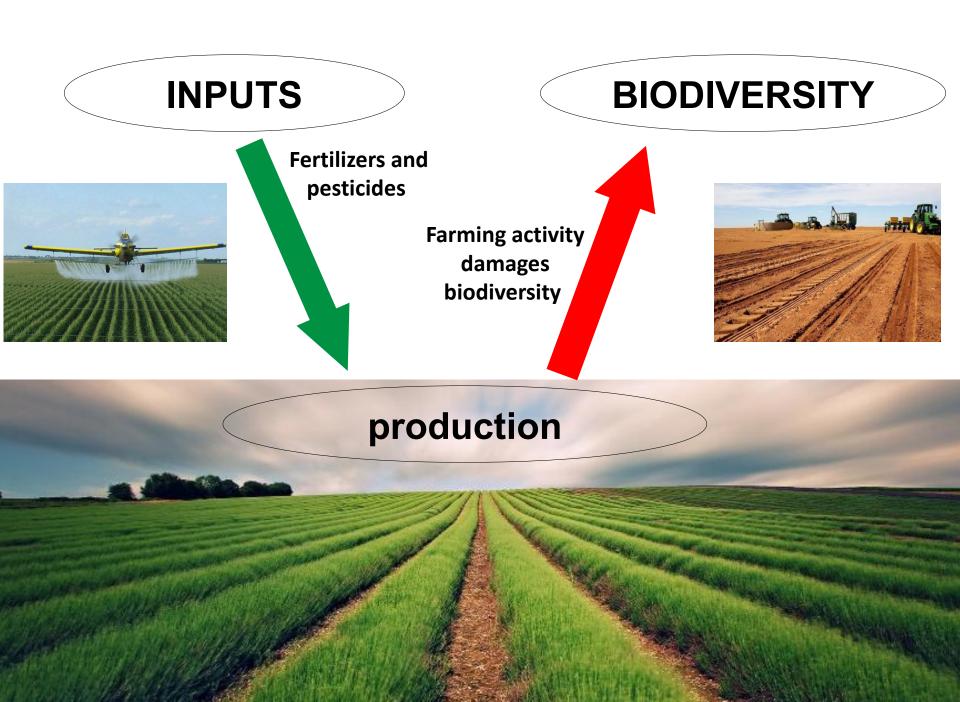
In this unencumbered state, we can **clearly discern** what cannot always be seen in the real world.

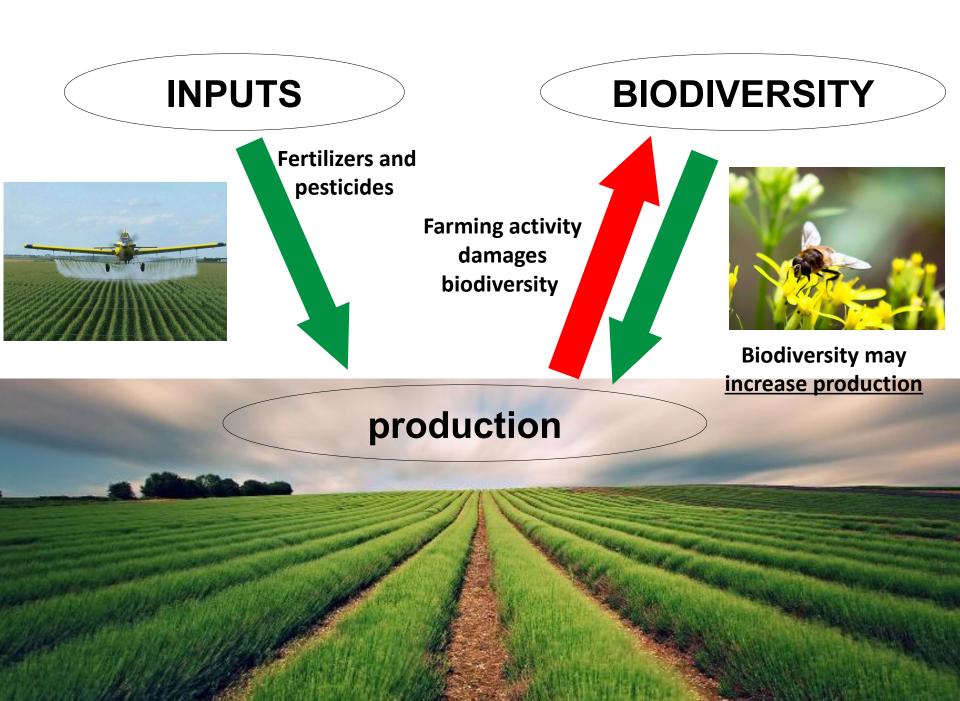
On our **return to reality**, we are in possession of some sound advice or a **relevant argument** that can be used in the **real world**. We do exactly the same thing in economic theory."

Ariel Rubinstein, "Dilemmas of an Economic Theorist"









Biodiversity Dynamics

- We suppose that **biodiversity** evolves in time according to a dynamic process which depends on the intrinsic growth of biodiversity and on the **farming activity**.
 - Inspired by, "Bio economic modeling for a sustainable management of biodiversity in agricultural Lands" by Mouysset et al., we define a **Beverton-Holt** kind of model, which is a discrete time analogue of the <u>logistic equation</u>.

•

$$B_{t+1} = \frac{RB_t}{1 + B_t/M_t} = \frac{RB_tM_t}{M_t + B_t}$$

- **R** is the **intrinsic growth** factor of biodiversity;
- **Mt** represents the ability of the environment to host biodiversity;

•

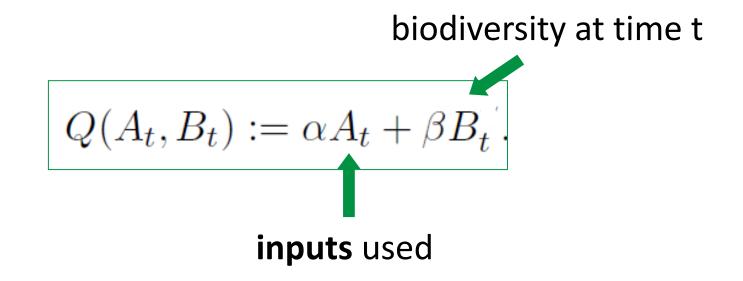
- Kt:=(R-1)Mt is the carrying capacity of the environment;
- We define Mt as a negative linear function of inputs and production:

$$M_t := M(A_t, Q_t) = a - (bA_t + Q_t)$$

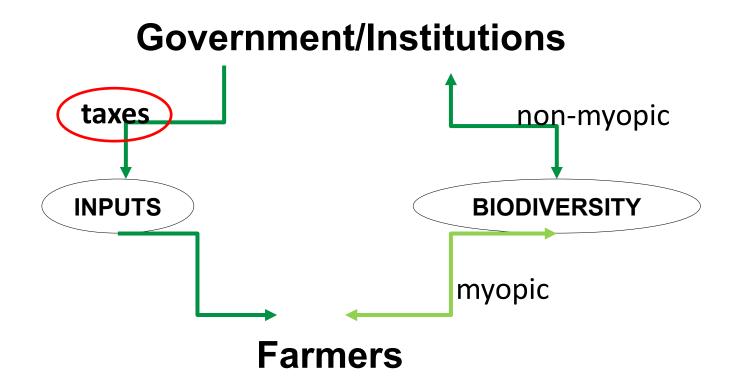
At ε[0,1] representsQt represents the quantitythe amount of inputs usedproduced

Production function

We define production as a **separable** function of At and Bt as follows:

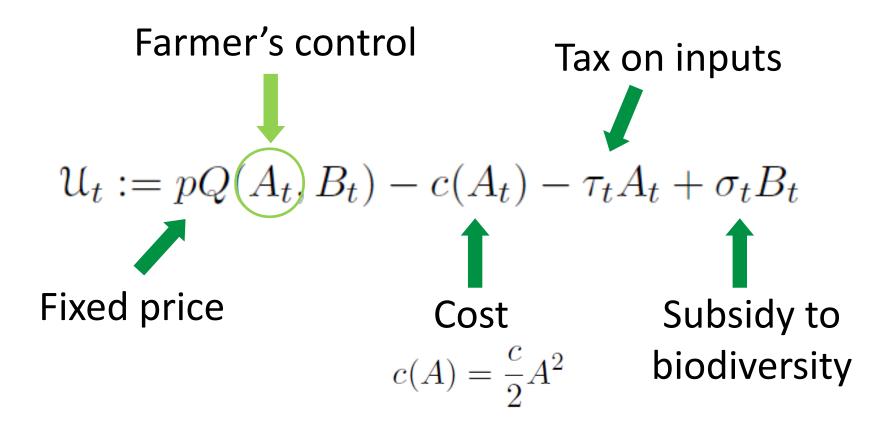


The regulator is supposed consider biodiversity and he maximizes a certain utility function in order to determine the tax to impose



The farmer is supposed to maximize his own profit without considering biodiversity

The Farmer's Utility



Farmer's optimal strategy

By maximizing farmer's utility, we obtain the optimal A*:

$$\frac{\partial \mathcal{U}}{\partial A} = \alpha p - cA - \tau = 0 \implies A^* = \frac{\alpha p - \tau}{c}$$

We determine the corresponding optimal Qt and Bt:

$$Q_t^* = Q(A^*) = \alpha \frac{\alpha p - \tau}{c} + \beta B_t$$

$$B_{t+1}^* = \frac{RB_t[a - (\alpha + b)A^* + \beta B_t]}{a - (\alpha + b)A^* + (1 + \beta)B_t}$$

Steady state $B^* = \frac{(R-1)[a - (\alpha + b)A^*]}{1 + (R-1)\beta}$

NON Myopic regulator

We introduce a non-myopic regulator maximizing:

$$\max_{A_t,B_t} \sum_{t=0} \rho^t \left(p(\alpha A_t + \beta B_t) - c/2A_t^2 \right)$$

Subject to:

$$B_{t+1} = \frac{RB_t[a - (\alpha + b)A_t + \beta B_t]}{a - (\alpha + b)A_t + (1 + \beta)B_t}$$

This **constrained optimization** problem can be solved as:

$$\max_{A_t,B_t} \sum_{t=0}^{\infty} \rho^t \left(p(\alpha A_t + \beta B_t) - c/2A_t^2 + \lambda_{t+1} \left(\frac{RB_t[a - (\alpha + b)A_t + \beta B_t]}{a - (\alpha + b)A_t + (1 + \beta)B_t} - B_{t+1} \right) \right)$$

Lagrange multiplier

By imposing the first order conditions (i.e. derivatives wrt At and Bt=0), we obtain the optimal solutions.

At the **steady state**

$$B^{op} = \frac{(R-1)[a - (\alpha + b)A^{op}]}{1 + (R-1)\beta} \lambda^{op} = \frac{\rho p \beta R}{(R-1)^2 \rho \beta - \rho + R}$$

$$A^{op} = -\frac{p}{c} \frac{\alpha (\rho - R) + b(R-1)^2 \rho \beta}{(R-1)^2 \rho \beta - \rho + R}.$$
By imposing that
$$Prime P = -\frac{p}{c} \frac{A^{op} - R}{(R-1)^2 \rho \beta - \rho + R}.$$
By imposing that
$$A^{op} = -\frac{A^{op} - A^*}{c} = 0$$
Farmer's optimal solution
$$A^* = \frac{\alpha p - \tau}{c}$$
the regulator determines the **optimal tax**
Steady state
$$\tau^{\infty} = \frac{p\beta \rho (R-1)^2 (\alpha + b)}{(R-1)^2 \rho \beta - \rho + R}$$

An alternative method: a Stackelberg game In game theory, is a two stages competition among two players, a leader – moving first - and a follower, each one maximizing its own utility function .

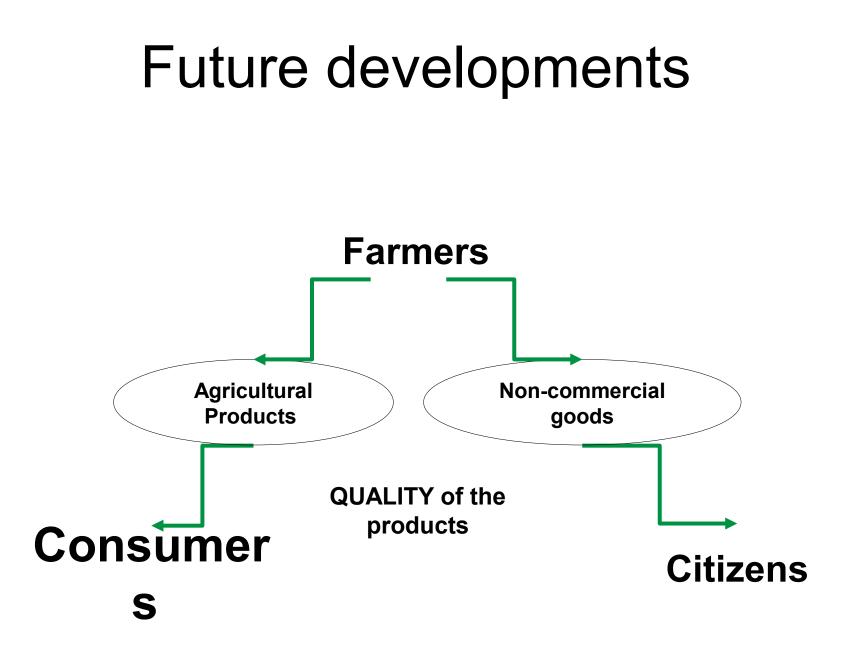
The game is solved by **backward induction**: one first compute the follower's best response to a given leader's action and then, one ca obtain the leader's optimal strategy.

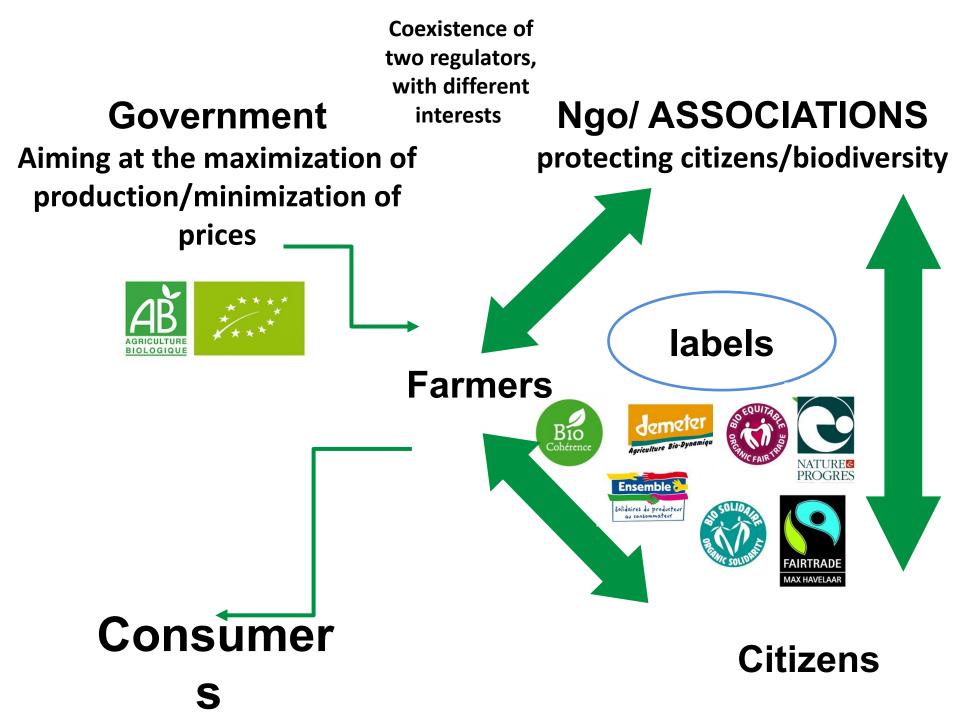
In our context:

- The **regulator** is the **leader**;
- The **farmer** is the **follower**;
- The farmer's find his best strategy A* (given a fixed τ);
- Given A*, we the regulator maximizes his utility function, whose control is τ;
- The regulator obtains τ *, which is the best response to A* (second best). The equilibrium is thus given by the couple (A*, τ *)

Next seps

- · Numerically solve the problem to obtain τt .
- Define a different utility for the regulator, who should not only consider the evolution of biodiversity, but aim at protecting it (define an amenity function for biodiversity).
- Consider a game between two asymmetric farmers and a regulator.





Thank you for your attention!

Questions and remarks are welcome!