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-I- INTRODUCTION '

Two main approaches in structural optimization:

1) Geometric optimization by boundary variations
Hadamard method of shape sensitivity.
Very general: any model or objective function.
Very costly because of remeshing.
Many local minima, no topology changes.
2) Topology optimization (the homogenization method)
[0 Developed by Murat-Tartar, Lurie-Cherkaev, Kohn-Strang, Bendsoe-Kikuchi...

Limited to linear models and simple objective functions.

[]
[0 Very cheap because it captures shapes on a fixed mesh.
[]

Global minima, topology changes.
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GOAL OF THIS WORK: combine some advantages of the two approaches.
[0 Fixed mesh (shape capturing method): low computational cost.

[1 General method: based on shape differentiation.

Main tool: the level set method of Osher and Sethian.

[1 Some references: Sethian and Wiegmann (JCP 2000), Osher and Santosa
(JCP 2001), Allaire, Jouve and Toader (CRAS 2002), Wang, Wang and Guo
(CMAME 2003).

[0 Similar (but different) from the phase field approach of Bourdin and
Chambolle (COCV 2003).

[1 Some drawbacks remain: reduction of topology rather than variation (mainly

in 2-d), many local minima.
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-II- SETTING OF THE PROBLEM'

Structural optimization in linearized elasticity (to begin with).

Shape () with boundary
0N=TuUl'yulp,

with Dirichlet condition on I'p, Neumann condition on I' UT'x. Only IT' is

optimized.
)

—div (Ae(u)) =0 in Q
u=~0 on I'p
(Ae(u))n =g on 'y
\ (Ae(u))n =0 on I’

% (Vu + V'u), and A an homogeneous isotropic elasticity tensor.
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OBJECTIVE FUNCTIONS

Two examples:

Compliance or work done by the load

J(Q)—/FNg-uds:/QAe(u)-e(u)d:U,

A least square criteria (useful for designing mechanisms)

(/Q () [ — uoyada;) o

with a target displacement ug, o > 2 and k a given weighting factor.
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EXISTENCE THEORY

The “minimal” set of admissible shapes

Upg = {Q c D, vol(Q)=Vy, TpUDly C aﬂ}

with D a bounded open set R". Usually, the minimization problem has no

solution in U, 4.

There exists an optimal shape if further conditions are required:
1. a uniform cone condition (D. Chenais).
2. a perimeter constraint (L. Ambrosio, G. Buttazzo).

3. a bound on the number of connected components of D \ €2 in two space
dimensions (A. Chambolle).
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PROPOSED NUMERICAL METHOD

First step: we compute shape derivatives of the objective functions in a

continuous framework.

Second step: we model a shape by a level-set function ; the shape is varied by

advecting the level-set function following the flow of the shape gradient (the

transport equation is of Hamilton-Jacobi type).
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‘-III- SHAPE DIFFERENTIATION'

Framework of Murat-Simon:

Let 29 be a reference domain. Consider its variations

Q= (Id+6)Q with e WhHRY;RY).

Lemma. For any § € W5 (RY;R") such that 10|l wr.oe mymryy < 1, (Id+0) is

a diffeomorphism in R .

Definition: the shape derivative of J({2) at )y is the Fréchet differential of
0 — J((Id+6)Q) at 0.
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The set Q = (Id+ 0)(£) is defined by

Q={x+0(x)|xeQ}.

The vector field 0(x) is the displacement of €.
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Examples of shape derivative I

Let © be a smooth bounded open set and f(z) a smooth function on R".

Jl(ﬂ):/Qf(a:)d:L‘

7(00)0) = |

Qo

div (6(z) f(z)) dz = / 0(x) - n(x) f(x)ds

02

J2(Q) = . f(x)ds

0-n<g—|—Hf)ds,
Qo 67’11

where H is the mean curvature of 9{)y defined by H = div n.

1(90)0) = |

o
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SHAPE DERIVATIVE OF THE COMPLIANCE

7(00)6) = [

r

where u is the state variable in ().

Remark: self-adjoint problem (no adjoint state is required).
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(SHAPE DERIVATIVE OF THE LEAST-SQUARE CRITERIA |

J(Q) = ( /Q k(z)|ug — u0|0‘daz> Ua,

(—Ae( ) -e(u) + %k!u — uglo‘) 6 -nds,

J'(£20)(0) :/

r
with the state u and the adjoint state p defined by

y

—div (Ae(p)) = Cok(x)|u — up|* ?(u —ug) in Qg
p = 0 on FD
| (Ae(p))n =0 on 'y UT,

and G = ( [, b(a)u(z) - uo(x)|o‘dx>1/ )
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SHAPE DERIVATIVES OF CONSTRAINTS

Volume constraint:

Perimeter constraint:
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-IV- FRONT PROPAGATION BY LEVEL SET'

Shape capturing method on a fixed mesh of a “large” box D.

A shape () is parametrized by a level set function

y

Y(r)=0 <xeddnD
Y(r) <0 < xel
| Y(r) >0 & xze(D\Q)

The normal n to € is given by V¢ /|V| and the curvature H is the divergence of
n. These formulas make sense everywhere in D on not only on the boundary 0.
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(Hamilton Jacobi equation]

Assume that the shape () evolves in time ¢ with a normal velocity V (¢, x).
Then

?,b(t,a:(t)) =0 for any x(t) € 09)t).

Deriving in t yields

oy oY _

Since n = V19 /|V 1| we obtain

O B

This Hamilton Jacobi equation is posed in the whole box DD, and not only on the

boundary 0f2, if the velocity V is known everywhere.
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Idea of the method

Shape derivative
7(@0)(0) = [ i(upn)6-nds
o
Gradient algorithm for the shape:

Qk—i—l — (Id - j(ukapka nk)nk)Qk

since the normal nj is “automatically” defined everywhere in D. In other words,
the normal advection velocity of the shape is —j. Introducing a “pseudo-time” (a

descent parameter), we solve the Hamilton-Jacobi equation

%—‘f —JIVe| =0 in D
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‘—V- NUMERICAL ALGORITHM'

1. Initialization of the level set function g (including holes).

2. Iteration until convergence for k£ > 1:

(a) Computation of up and pi by solving linearized elasticity problem with
the shape ;. Evaluation of the shape gradient = normal velocity V

(b) Transport of the shape by Vj, (Hamilton Jacobi equation) to obtain a new
shape g1,

(¢) (Occasionally, re-initialization of the level set function ;.1 as the signed

distance to the interface).

For each elasticity analysis, we perform several time steps of transport (as long as

the objective function decreases).
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(Algorithmic issues]

[ Quadrangular mesh.

[ Finite difference scheme, upwind of order 1 or 2, for the Hamilton Jacobi
equation (1) is discretized at the mesh nodes).

[ Q1 finite elements for the elasticity problems in the box D

y

—div (A*e(u)) =0 in D

u=20 on FD

(A*e(u))n =g on I'y

\ (A*e(u))n =10 on 0D\ (I'yUTp).

[I Elasticity tensor A* defined as a “mixture” of A and a weak material
mimicking holes
A*=0A with 107°<60<1
and # = volume of the shape ¢ < 0 in each cell (piecewise constant
proportion).
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NUMERICAL EXAMPLES

See the web page

http://www.cmap.polytechnique.fr/ optopo/level en.html
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Short cantilever

G. Allaire
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(Medium cantilever: iterations 0, 10 and 50]
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(Convergence history]
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Re-initialization

In order to regularize the level set function (which may become too flat or too

steep), we reinitialize it periodically by solving

%—f + Sign(¢0)<|vx¢| - 1) =0 forxeD,t>0

Zb(t =0, ZC) — %(fﬂ)

which admits as a stationary solution the signed distance to the initial interface

{to(z) = 0}.
[1 Classical idea in fluid mechanics.

[ A few iterations are enough.

[0 Improve the convergence of the optimization process (for fine meshes).
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Influence of re-initialization

G. Allaire
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(Inﬂuenee of perimeter constraint]
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Design dependent loads - 1 I

Force g applied to the free boundary

2

—div (Ae(u)) =0 in

u=~0 onl'p

Ae(u))n =g on 'y UT
| (Ae(w))

Compliance minimization
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(Optimal mast under a uniform WindJ
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Design dependent loads - 2 I

Pressure py applied to the free boundary

i

—div (Ae(u)) =0 in
u=~0 onl'p

_ (Ae(u))n=pon on 'y UT

Compliance minimization

J(Q)_/FUFNpOn-uds:/QAe(u)-e(u)da;,

/F 6 - n<2div (pou) — Ae(u) - e(u))ds
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(Sea star under a uniform pressure loadj
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‘ Non-linear elasticity I

in €

on FD

—div (T'(F)) f
U 0

T(F)n g on 'y,

with the deformation gradient F' = (I + Vu) and the stress tensor

G. Allaire

T(F) = F()\Tr(E)I + QME) with E = %(FTF )y
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Conclusion

Efficient method.
With a good initialization, comparable to the homogenization method.
No nucleation mechanism.

Can be pre-processed by the homogenization method.

Can handle non-linear models, design dependent loads and any smooth

objective function.




