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urfaces and volumes in 3D




lopics

* Direct integral solvers ...............(Bruno & Kunyansky, [2001])

— Regular-surface, singular-kernel integration
— Acceleration

— Singular surfaces and kernels

* High order surface representation...(Bruno & Pohlman, [2003])

* High-frequency, high-order, O(1) integral solvers
Convex obstacles...... ... ...(Bruno, Geuzaine and Monro, [2002])

Non-convex obstacles............ (Bruno and Reitich, [2002-03])
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These fast high-order solvers resulted from a number
of innovations, including:

1)  Use of smooth Partitions-of-Unity and Local
Smooth Parameterizations -which make the
trapezoidal rule a high-order integrator

2)  Analytic Resolution of Singularities - to avoid
costly refinement strategies

3) Use of Dual Grids and Equivalent Sources located
on a sparsely distributed Planar Grids - to reduce
convolutions to sparse three-dimensional FFT’s

4)  Convergent evaluation of oscillatory integrals, through
stationary phase and critical points



High-order Integration and the Trapezoidal Rule

[ f(x)dx =1.8009

jo” F(x)dx ~5.5084

N Rel. Error Ratio
1 4.77(-2)
2 1.19(-2) 4.03
4 2.95(-3) 4.02
8 7.36(-4) 4.01
8192 7.01(-10)
N Rel. Error Ratio
1 5.50(-1)
2 6.03(-2) 9.12
4 3.10(-4) 1.95(2)
8 7.17(-10) 4.32(5)
16 2.10(-23) 3.42(13)

fx) =", xe[0,7]



Fast, High-Order Direct Solver

Relation to other methods
Described towards the end of this presentation

Present Approach

High-Order, Fast, Stable, Accurate O(N*’log(N)) ---
O(N*3log(N)) operations
(Acceleration strategy does not lead to accuracy breakdowns)

Bruno and Kunyansky, [2001]



Partitions of Unity...

— Jocalize integration problem.:

/ ds = Z/ wj(ug, vi)dudv;




Resolution of singularities

(Basic, high-order solver,; adjacent interactions)

R .
cos k | R l;(r)

A polar-coordinate jacobian regularizes

the integration problem

L 0. 0) = [ Jilp.O) ik cosk|R]



Accuracy of the basic
non-accelerated solver

Scattering by a sphere of radius 2.7 A

Patches Unknowns | Discretization | Max Error | RMS
density

6 x 17 x 17 | 1350 3 per 1) 0.1 2.9 x 1072

6 x 33 x 33 5766 6 per 1\ 9.0 x10~* [1.8 x 10~*

6 x 65 x 65 | 23790 12 per 1A 3.6 x107°% [1.4x10°°

6 x 129 x 129 | 93726 24 per 1) 1.6 x107% [ 5.6 x 107?

Doubling the discretization density improves the

accuracy by 200 to 300 times!




Equivalent Sources

(Acceleration; Non-adjacent interactions)
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Previous Work

 Integral-equations, Fast Methods (low order)
* Finite-difference/finite-element methods

* None of the existing algorithms have been designed
to perform in a fast and high-order fashion

Present Approach

* High-Order, Fast, Stable, Accurate O(N*’log(N)) ---
O(N*3log(N)) operations

» Acceleration strategy does not lead to accuracy breakdowns

> FExamples...



Remark 5. The last theorem proves the convergence of the discretized ap-
proximated kernel which is used numerically. Unfortunately, because of roundoff
errors, this convergence i1s not numerically attained...
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The main difficulty we face in studying Rokhlin’s method lies in the fact that,
even if from a theoretical point of view (see Theorems 2, 4, 6 and 7) the greater
N the more accurate the approximation, N must (in numerical simulations)
belong to a fixed range of integers. If /V is too small, the overall accuracy 1s not
good, which 1s quite logical. But if NV is too large, then (6) is not numerically
accurate... Hopefully, there is a range of integer values N such that the accuracy
of Rokhlin’s formula (6) is quite good...

(6)

C./JLabreuche, “A convergence theorem for the
fast multipole method for 2-dimensional
scattering problems”, Math. /Comp./ /67,/1553-




Large ellipsoids

Size # 1t | T/it | RAM | Unknowns | Max Error | RMS Error

80N X 20\ x 20\ | 15 | 5h 22m | 600M 691206 1.4-10~% 2.9-10~°
100X x 25A x 25A°p 15 | 5h 29m | 600M 691206 1.1.40-° 2.4-107*

L One of the largest scattering problems ever solved!

Scattering from bodies of similar sizes has been evaluated using:
- 40 IBM SP2 nodes (AIM, E. Bleszynski et al, 1996);
- 256 IBM SP nodes (FVTD, J. S. Shang et al, 2000);
- SGI Origin 2000 (8 proc.) (FISC, J. M.Song et al, 1998).
The present results are obtained on 400 MHz 1G Pentium I1I PC.



Large spheres
(comparison w/ O(N log(N)) FISC)

Algorithm | Diameter Time RAM | Unknowns | RMS Error Computer
FISC 120\ 32 x 145h | 26.7Gb | 9,633,792 4.6% SGI Origin 2000
(32 proc.)
Present 80\ 55h 2.5Gb | 1,500,000 0.005% AMD 1.4GHz
(1 proc.)
Present 100X 68h 2.5Gb | 1,500,000 0.03% AMD 1.4GHz
(1 proc.)

Singular Scatterers

Geometry Diameters Time | Unknowns | RMS Error Computer
Cube 10\ x 10X x 10X\ | 21h 96,774 0.049% AMD 1.4GHz
(Present work) (1 proc.)

Flying Saucer | 42X x 42X x 17\ | 53h 290,874 0.0045% | AMD 1.4GHz
(Present work) (1 proc.)




Electromagnetic Cube, 1.0 e-




High-Order Surface Representation
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Bruno and Pohlman, [2003]



Generation of Smooth Surfaces

A problem of present interest in the computer science literature

For general irregular triangulations, previous
methods produce (at best) C! surfaces only

Al
G

Figure 4. Two-dimensional loop subdivision is used to generate smooth surfaces
from a coarse description.

Daubechies, Guskov, Schroder and Sweldens, [1999]



Present Approach

Interpolation via Fourier series, using

— Unequally spaced FFTs (USFFT), and

— A “Continuation Method” for trigonometric
representation of non-periodic functions with
spectral accuracy (thus, overcoming the Gibbs
phenomenon)



Fourier Representation 1:
Patches

Difficult Patches——Intrinsic Parameterizations



Intrinsic Parameterizations
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Fourier Representation 2
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POUs for boundary regions (Gibbs resolution)

Given data
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Fourier Representation 2 (Continued):

054

0.5

N f(x) ratio df /dx ratio | d”f/dx? | ratio
8 | 3.3e-03 1.3e-01 3.3e-00

16 | 1.1e-05 | 3.0e+2 | 1.3e-03 | 9.9e+1 | 1.0e-01 | 3.2e+1
32 | 5.1e-10 | 2.2e+4 | 1.5e-07 | 8.6e+3 | 3.1e-05 | 3.3e+3
64 | 2.8e-13 | 1.8e+3 | 1.he-10 | 9.7e+2 | 6.0e-08 | 5.3e+2

128 | 8.8e-15 | 3.2e+1 | 8.4e-12 | 1.9e+1 | 4.6e-09 | 1.3e+1

I I
02 0.4 06

N | flz,y) | ratio | Of/0x | ratio | &?f/0x? | ratio
82 | 2.9e-02 8.2e-01 1.4e+1

162 | 3.5e-03 | 8.4et1 | 2.7¢-01 | 3.0e 10 1.4e+1 1.0e+0
322 | 1.2e-07 | 2.8¢4+4 | 3.0e-05 | 9.0e+3 | 4.8¢-03 | 2.9e+3
642 | 2.8e-12 | 4.4e+4 | 1.4e-09 | 2.1e4+4 | 4.2e-07 | 1.1e+4

Also useful for coarse inner discretizations.
Does not require domain to be a square!!!!




Comparison w/other methods:
Gegenbauer-polynomial approach

* Do not use information about discontinuity location (+)

* Require much finer discretizations for given error tolerance (-)
» Only applies to square domains (-)

* Require use of data at (generally unavailable) data points (-)
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Gottlieb and Shu [1992]-...



Comparison w/other methods (contd.):
Singular Pade-Fourier approach

1 - - - [ — . ——
107" -
0.5} E 107
)]
107 %}
° - — 107° - - -
Function Fourier sum
N =16,32,48,064
10° - 10° - - - '
107" | 107" |
% 107 | 2107 |
)]
107 %} 1072}
10_16 . : \ . . ‘ ‘ 10_1.6 . == .\ N J"‘h—h. .
Pade-Fourier sum Singular Pade-Fourier sum

Driscoll and Fornberg [2001]



“The proposed approach exhibits the
significant advantage of being able to deal
with arbitrary data sets (non-square
domains, non-uniformly-spaced data,
arbitrary dimensionality), and yet, it yields
more accurate results than other available

methods”
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Surface Interpolat

Wing represented by eleven overlapping
patches, each patch given explicitly by three

coordinate functions (Fourier Series!)



Wing Edges

A change of variables in
parameter space gives
an unevenly sampled

surface for accurate
resolution of edge-
scattering
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Wing Normals

Fine array of surface
normals plotted on
interpolated wing
surface

Differentiation of Fourier Series
representation!



F-15 Aircraft
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Oscar P. Bruno and Matthew M. Pohlman, [2003]



High Frequencies: i
Phase extraction —

/SHé(Hx —a')u(x")dz" = faow(z)e™

vk

Ansatz: L (T) = fgow(T)E

- Highly oscillatory

[ 5 i~ i
S




Previous Work
(Convex scatterers)

* Melrose & Taylor, [1985]
» Abboud, Nédélec & Zhou, [1994], O(k?3) operations

 Lagreuche and Bettess, [2000], O(k’7) operations

Present Approach

* O(l) operations

» Convex and non-convex scatterers

Convex obstacles... ........................... (Bruno, Geuzaine and Monro,
[2002])
Non-convex obstacles (work in progress)... ... ... (Bruno and Reitich, [2002-03])



O(1)-methods for high-frequency scattering

Integration exercise

«— Highly oscillatory
1 Y A RN 7 / /
/S H (k| QDCOS(ZE )dx

* Target Point

* Critical points
(phase gradient = ()

* Critical points?
» Asymptotically? Want convergence!!
» Idea: Why compute integral at other points?




Thus our proposed approach:
Localized Integration

N

for all n!



Integration exercise

1 Y Stk / /
/S{HO(/QM r'])e }cos(x )dax

* Target Point
g Critical points
(phase gradient = ()
K N ¢ ¢ | Error
1000 | 2100 1.0 0.5 | 1.5e-6
2000 | 2100 0.5 0.0 | 4.8e-8
4000 | 2100 | 0.25 | 0.5 | 1.2e-7
8000 | 2100 | 0.125 | 0.5 | 9.8e-7
16000 | 2100 | 0.0625 | 0.5 | 1.5e-6




Is 144, actually slow?

o(r) 8CD(I' r’)
2 u'(r)= /

p(r') ds(r')+iv / & (r, 1) p(r') ds(r)

s = (Jem + i) + [P sty i / (e ) 2 () ds(x)
r g /

231’ 81‘ aV

Key: Physical Density!



Multiple reflections: three-d, full Maxwell

= Re Jy, (exact) = ReJy (ansatz)

Fig. 20 Distribution of the y-component of the current on a dihedral congigting of two 10 A x 10 A
perfectly conducting plates for a horizontally polarized plane wave incident at the angles # = 707

and ¢ = 30°.

Bleszinsky, Bleszinsky and Jaroszewicz [2002]



Cubic root ratios in the slow-density slopes
_around shadow boundaries

22

21

ka = 100,...,1,000,000 . \ ka = 100,...,1,000,000 |

f[l‘?':- 24 1 .- 4

(ko k)"

#

# of Fourier modes needed to represent |[tg]oqy With a fixed accuracy

k w/out chg. of vars. w/ chg. of vars.
100 110 110
1000 230 220
10000 310 280
100000 350 280

1000000 > 500 280




Overall high-frequency algorithm

Shadow boundary
oc X 1/3

- () = prsiow(T)e

- / Classical
<4—— changes of

variables
= Target 1)&*

X A

ik-x

ple) = pg,, (@)™ +p (@)e+

slow slow

Unknowns | Max. Err. in p/,
512 5.0 e(-3)
768 2.0 e(-4)
925 3.0 e(-6)




DROP: Far Field; ka = 1000
uinc




Example: Combined Field IE

Prescribed error in
bounded time

from
A= 6.28m
to
A= 0.68mm
J
O(1)!

ka Unknowns Iter. Max. Error Mean Square Err. CPU (s)
1 100 9 1.8e—12 8.8e—12 <l1
10 100 17 2.0e—12 9.2e—12 <l1
100 100 31 5.0e-5 2.5e—-5 8
1000 100 30 7.8e—4 2.1le—4 84
10000 100 33 2.6e-3 6.6e—4 83




Convergence (Combined Field IE)

ka = 150
Unknowns GMRES Iterations Max. Error
25 13 4.4e—3
50 23 1.2e—3
100 31 1.2e—4
200 34 4.4e—6
400 39 1.0e—9

800 45 /56 1.0e—12/1.3e—13




Recap
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0(l1) High-Frequency Integral Method

3) Convergent




Conclusions

» General solvers

« Fast: O(N%” log(N)-O(N*? log(N)) operations +
O(1) HF solver

» Very High Order (Spectrally accurate), no
accuracy breakdowns of any kind

e Orders of magnitude higher accuracy than
leading solvers (in fast runs on 400 MHz PCs!)

 Innovative solution for high-order geometry

representation — based on use of partitions of unity and non-
uniform FFT



	Present Approach
	Fourier Representation 1:
	Wing Patch
	Surface Interpolation of Wing
	Wing Edges
	Wing Normals
	F-15 Aircraft

