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Surfaces and volumes in 3D



Topics
• Direct integral solvers ……………(Bruno & Kunyansky, [2001])

– Regular-surface, singular-kernel integration 

– Acceleration

– Singular surfaces and kernels

• High order surface representation…(Bruno & Pohlman, [2003])

• High-frequency, high-order, O(1) integral solvers 

Convex obstacles…………(Bruno, Geuzaine and Monro, [2002])

Non-convex obstacles…………   (Bruno and Reitich, [2002-03])



Governing Equations



These fast high-order solvers resulted from a number
of innovations, including: 

1) Use of smooth Partitions-of-Unity and Local 
Smooth Parameterizations -which make the 
trapezoidal rule a high-order integrator

2) Analytic Resolution of Singularities - to avoid 
costly refinement strategies

3) Use of Dual Grids and Equivalent Sources located
on a sparsely distributed Planar Grids - to reduce
convolutions to sparse three-dimensional FFT’s

4) Convergent evaluation of oscillatory integrals, through 
stationary phase and critical points



High-order Integration and the Trapezoidal Rule
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Fast, High-Order Direct Solver

Described towards the end of this presentation
Relation to other methods

High-Order, Fast, Stable, Accurate O(N6/5log(N)) ---
O(N4/3log(N)) operations     

(Acceleration strategy does not lead to accuracy breakdowns)

Present Approach

Bruno and Kunyansky, [2001]



Partitions of Unity...

localize integration problem:



Resolution of singularities
(Basic, high-order solver; adjacent interactions)

3

A polar-coordinate jacobian regularizes 
the integration problem



Accuracy of the basic
non-accelerated solver

Scattering by a sphere of radius 2.7 λ

Doubling the discretization density improves the 
accuracy by 200 to 300 times!



Equivalent Sources
(Acceleration; Non-adjacent interactions)

Bruno and Kunyansky, [2001]



Previous Work
• Integral-equations; Fast Methods (low order)

• Finite-difference/finite-element methods

• None of the existing algorithms have been designed 
to perform in a fast and high-order fashion

Present Approach
• High-Order, Fast, Stable, Accurate O(N6/5log(N)) ---

O(N4/3log(N)) operations    

• Acceleration strategy does not lead to accuracy breakdowns

Examples...



C.�Labreuche, “A convergence theorem for the 
fast multipole method for 2-dimensional 
scattering problems”, Math.�Comp.�67,�553-

[ ]



Large ellipsoids



Large spheres
(comparison w/ O(N log(N)) FISC)

Singular Scatterers



Electromagnetic Cube; 1.0 e-4

ka = 3.4



High-Order Surface Representation

Bruno and Pohlman, [2003]



Generation of Smooth Surfaces
A problem of present interest in the computer science literature



Present Approach
Interpolation via Fourier series, using

– Unequally spaced FFTs (USFFT), and

– A “Continuation Method” for trigonometric 
representation  of non-periodic functions with 
spectral accuracy (thus, overcoming the Gibbs 
phenomenon)



Fourier Representation 1:
Patches

Difficult Patches     Intrinsic Parameterizations



Intrinsic Parameterizations

Desbrun, Meyer and Alliez, [2002]



Direct FFT: 
Gibbs phenomenon

Double-period continuation:
oscillations

Continuation and 
smoothing!

POUs for boundary regions (Gibbs resolution)
Fourier Representation 2

Given data



Generalizes to any number of dimensions!

Fourier Representation 2 (Continued):

Also useful for coarse inner discretizations.
Does not require domain to be a square!!!!



Comparison w/other methods:
Gegenbauer-polynomial approach

• Do not use information about discontinuity location (+)
• Require much finer discretizations for given error tolerance (-)
• Only applies to square domains (-)
• Require use of data at (generally unavailable) data points (-)

Function Error
Gottlieb and Shu [1992]-…



Comparison w/other methods (contd.):
Singular Padè-Fourier approach

Fourier sum

Padè-Fourier sum Singular Padè-Fourier sum

Function

Driscoll and Fornberg [2001]



“The proposed approach exhibits the 

significant advantage of  being able to deal 

with arbitrary data sets (non-square 

domains, non-uniformly-spaced data, 

arbitrary dimensionality), and yet, it yields 

more accurate results than other available 

methods”



Wing Patch



Surface Interpolation of Wing

Wing represented by eleven overlapping 
patches, each patch given explicitly by three 
coordinate functions (Fourier Series!)



Wing Edges

A change of variables in 
parameter space gives 
an unevenly sampled 
surface for accurate 
resolution of edge-
scattering



Wing Normals

Differentiation of Fourier Series 
representation!

Fine array of surface 
normals plotted on 
interpolated wing 
surface



F-15 Aircraft

Oscar P. Bruno and Matthew M. Pohlman, [2003]



Z
S

H1

0
(k|x à x0|)ö(x0)dx0 = fslow(x)e

ikx

High Frequencies:
Phase extraction

Ansatz: ö(x) = öslow(x)e
ikx

Z
S

H1

0
(k|x à x0|)eik(x0àx)

h i
öslow(x

0)dx0 = fslow(x)

Highly oscillatory



Previous Work
(Convex scatterers)

• Melrose & Taylor, [1985]

• Abboud, Nédélec & Zhou, [1994], O(k2/3) operations

• Lagreuche and Bettess, [2000], O(k2/3) operations

Present Approach
• O(1) operations

• Convex and non-convex scatterers 

Convex obstacles…………………………  (Bruno, Geuzaine and Monro, 
[2002])

Non-convex obstacles (work in progress)………(Bruno and Reitich, [2002-03])



O(1)-methods for high-frequency scattering
Integration exerciseZ

S

H1

0
(ô|x à x0|)eiôx0

h i
cos(x0)dx0

Critical points
(phase gradient = 0)

Target Point

Highly oscillatory

• Critical points?
• Asymptotically? Want convergence!!
• Idea: Why compute integral at other points?



Thus our proposed approach:
Localized Integration

àA Aà ε ε

Z
àA

A

fA(x)e
ikx2 =

Z
àε

ε

fε(x)e
ikx2 +O((kε2)àn)

for all n!



Integration exerciseZ
S

H1

0
(ô|x à x0|)eiôx0

h i
cos(x0)dx0

Target Point

Critical points
(phase gradient = 0)



Is           actually slow?

Key: Physical Density!



Multiple reflections: three-d, full Maxwell

Bleszinsky, Bleszinsky and Jaroszewicz  [2002]



Cubic root ratios in the slow-density slopes
around shadow boundaries

# of Fourier modes needed to represent              with a fixed accuracy



Classical 
changes of 
variables

ö(x) = ö0

slow
(x)eikx + ö1

slow
(x)eik

1áx + ö2

slow
(x)eik

2áx

ö(x) = öslow(x)e
ikáx

Overall high-frequency algorithm



DROP: Far Field; ka = 1000



Example: Combined Field IE



Convergence (Combined Field IE)



Recap
1) Direct integral solvers

2) High-Order Surface Representation

à A Aà ε ε

3) Convergent O(1) High-Frequency Integral Method



Conclusions

• General solvers

• Fast: O(N6/5 log(N)-O(N4/3 log(N)) operations +
O(1) HF solver

• Very High Order (Spectrally accurate), no
accuracy breakdowns of any kind 

• Orders of magnitude higher accuracy than
leading solvers (in fast runs on 400 MHz PCs!)

• Innovative solution for high-order geometry     
representation – based on use of partitions of unity and non-
uniform FFT
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