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(Absorbing Boundary Conditionsj

[Absorbing Layersj

e Absorbing boundary conditions (ABC): add a boundary
condition on X, artificial boundary

™

A U=0 al'interieur

BU=0sur Z

e Absorbing Layers : surround the computational domain
by a layer in which the wave is damped.

A U=0 al'interieur

M U =0 danslacouche




(Perfectly Matched Layersj

[The general principle (Bérenger)]

1- Juxtapose the propagation medium and an absorbing medium
which generates no reflection at the interface : the restriction of
the solution to the “propagative domain” coincides with the exact
solution exacte and the transmitted wave decays exponentially

during its propagation.

2- Bound the absorbing layer with some quasi-arbitrary boundary

condition.




(The formal construction)

This is the direct extension of the original work by for
Maxwell’s equations.

The propagation model
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It is an anisotropic absorption .




[The formal construction (I)J

Go to the frequency domain (U(z,y,t) — U(x,y,w))

in—I—Ama—U + A ou

o0x Y oy =0,

One can remark that the solution can be extended to the complex
plane x € C (analytically) and one looks at the solution along
another path of the complex plane:

Im(x)

r— x+iF(x).

Re(x)

To find the new equation, one applies then the (complex) change
of variable :

1 [7 0 o, 0
x—>m—|—500(§)d§ = %_)(14_@)%

which lets invariant the half-space x < 0 and one studies:

Ulz)=U (x+ i /Oma(ﬁ) d§>




[The formal construction (II)J

Remarking that:

O () — 2O (a4 [ o@ac).

w+ o Ox

one obtains the equation:

oU e, )A(S’_U:07

ZWU+Ay8y (iw—l—a Ox

that can be rewritten as:

~ 1 oU 1 oU
U = (— Ar— ——)A, —
( w + a) ox + iw) Y oy
- U + U’
where by construction
(iw+ o) U + A, Z—Z—O, szy—i—Ang 0.

One gets the “Bérenger’ system by going back to the time

variable.




(The case of acoustic waves)

One writes the acoustic wave equation

o*u |
52 —div (1Vu) =0

as a first order system
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One realizes that one can avoid the “splitting” of the variables v,
et v, and one gets:
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(A numerical experiment)




[Comparison PML / ABCJ

The PML technique seems to have scored a lot of points in the
competition.

Among the advantages of PML’s sont:
e Their systematic derivation.
e Their easy implementation.

e The treatment of corners simple.

Very good performances.

Work in practice in complex situations ( heterogeneous
media, surface waves,...)

However

e Their mathematical analysis is not completely understood.

e There are examples of instabilities.




[Mathematical Background (1)]

We wish to study the Cauchy problem associated to the PML
system. This system appears as a zero order perturbation of a
first order system (for our application, V' = (U*,UY)):

( OV oV 1%
— +A,—+A,— +BV = 2
ot T gy T, T V=0,(z,y) € R*,t >0,

(P)S V(z,y,0) =Volz,y), (z,y) € R?

| V eR™, (A, A,, B) € LIR™)3.

For all k = (ky, k,) € IR?, one sets:

A(E) = ko Ay + k, A, € L(R™)

Definition 1: The unperturbed system (Py) (B = 0) is
hyperbolic if and only if:

o Vk € IR*, the eigenvalues of A(k) are real

It is strongly hyperbolic if moreover:

o Vk € IR?, A(k) est diagonalizable
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[Mathematical Background (2)]

Theorem 2: (The perturbed case)

e If (Pg) is strongly hyperbolic, the problem (P) is strongly well
posed and

(1) V>0, ||V < CeXt||Volre

o If (Pg) is weakly hyperbolic, for some matrices B, the
problem (P) is strongly ill posed.

( Imw(k) = —co ([k| = +o0) as|k['P, p=s+1).

The well-posedness concept is not satisfactory. In particular, it
does not prevent from exponentially growing solutions.

Definition 3: The problem (P) is strongly (resp. weakly) stable
if and only if,

V>0, (U@ <C 1+t) ||Uollm

with s = 0 (resp. s > 0).

Remark: In the unperturbed case, the stability estimate holds
where s + 1 is the maximal size of the Jordan blocks of A(k).
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[Mathematical Background (3)]

The basic tool is the Fourier analysis, i.e. the study of particular
solutions of the form:

V(x,y,t) =V (k) expi(ker + kyz) e®)",
k= (kzy ky) € R, w(k) €C

The analysis is reduced to study of the branches of solutions
w = w(k) of the dispersion equation:

det (A(k) —iB — wl) =0,

[ well-posedness < Im w(k) bounded from below.

q stability < Imuw(k)>0.

| ill-posedness <= ZImuw(k) > —occ as [k|V/P, p=s+1

Geometry of the curves : |k| — w(|k|- K) € C, |K| = 1.

Im(w)

Re(w)
([

-K
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[Well-posedness theoryj

For the PML model, it is easy to show that one is in the
unconfortable situation corresponding to the fact that the
unperturbed system is only weakly hyperbolic. This was first
pointed out for Maxwell’s equations by

For the Maxwell system, it has been shown

( : : ,...) that the PML
system could be rewritten in an equivalent form (with
another choice of unknowns) as a first order perturbation of
a weakly hyperbolic system, which ensures well-posedness.

For general systems, under general assumptions (including
acoustics, electromagnetism, elasticity,...) that the PML
perturbation does not generate strong ill-posedness: the PML
model remains weakly well-posed ( ).

However, this type of result is not sufficient (or not
pertinent) for practical applications as it can be shown on the

example of anisotropic elastic waves ( ).
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(Anisotropic elastic wavesj

1 K7 4 cs3K; (12 + c33) K. K,
A(K,, Ky) =
(c12 + c33) KoKy 33K, + oK.,

11 >0, c29>0, ¢33 >0, c11099 — 25 >0

Isotropic medium : c11 = oo = A 42/, 12 = A, 33 =

The dispersion relation is:
(1) F(w,k) (=det (A(kg, ky) — pw?l)) =0

Note that F' is homogeneous (of degree 4). The slowness curves
are the curves in the plane (k;/w, k,/w) of equation:

ke ky
F(1,22 ) =
(1, =, =) =0
From the solutions w(k) of (1) one defines the group velocity
V(k) =Viw (k) (=V(K), K=Fk/[kl)

which is orthogonal to the slowness curves:

V(k) = (gf (, k)) VL Fb),
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(Anisotropic elastic wavesj

(Slowness curves and wave fronts)
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[Anisotropic elastic wavesj

[Numerical experiment (1)]

Isotropic media and Rayleigh wave
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(Anisotropic elastic waves]

[Numerical experiment (2)]
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(Anisotropic elastic waves]

[Numerical experiment (3)]
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(Anisotropic elastic waves]

[Numerical experiment (4)]
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[Stability of PML’s for acoustic waves (1)]

To simplify we assume ¢ = 1. The acoustic PML dispersion
relation is:

(W = k) (iw + 0)* + Wkl =0
which becomes for the unperturbed system (o = 0):
w?(w? — kz —k3) =0
One easily shows that, if o > 0, for any solution w(k):
0<Imw(k) <o, VkelR?

and to establish (with additional work) the following stability
result (which is also valid for isotropic Maxwell’s equations):

Theorem ( )

The (u*,uY,v4,v,) of the Cauchy problem for the acoustic PML
model satisfies (we set u = u® + u¥)

[u(®)llzz + lve(@)l|z2 + llvy (B2 < C [Tl 22

[ua(t) = uy (@) |m-1+ < Ct[[Uo|z>

with Uy = ( (4%)o, (u¥)o, (V2)o, (Vy)o ) -
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[Stability of PML’s for acoustic waves (1)]

The previous result can be revisited with the help of an energy

analysis.

In the case o = 0, it is well known that:

1d _
3 | {1l 7 (sl + 10, ?) Ydo = o

In the case o > 0, one shows that ( ):

1d 0
5%{/ |8—TZ+O'U|2 d:I;—I—/UZ g2 da:}
2dt{/ (' g | gy Towl”) de

-|—2/a _1|8gtx|2 dr = 0.

+

which represents a dissipation result for o > 0..

e The proof relies on the Zhao-Cangellaris formulation.

e What about o variable 7 ()

(*) One easily gets estimates in exp{t||c(|co })
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[A general necessary stability condition (1)]

We consider a propagation model whose dispersion relation is:
F(w,kyz,ky) =0, (F homogeneous).
and defines physical modes:
w=wlk)=klw(K)>0, K=k/|k|

The group velocity only depends on K:

V(K)=Vw (k) = — (g—i(w, k))_ Vi F(w, k)

The dispersion relation of the corresponding PML model is
simply:

W

F(w, kg ( ), ky) = 0.

w+ o
One obtains a high frequency necessary stability conditions by

looking at the asymptotic behaviour of the modes which, for large
|k|, which is equivalent to small o, approach the physical modes:

w(o, k) =w(k)+i (K)o + O(ﬁ)
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[A general necessary stability condition (2)]

A necessary stability condition can thus easily be expressed with
the help of the group velocity (*):

VK = (Ku K,) [ |K| =1, K- Vy(K)>0.

which can be expressed geometrically on the slowness curves:

y+ V(K) y
V(K)

OK Not stable
In other words, high frequency instabilities are due to the
existence of “back propagating” waves in the original model.

For the elasticity system, this condition corresponds to:

(HF) (c12 + c33)? < sup {c11(c22 — 33), —casz(c2a — c33)}

(*) The role of group velocities has already been emphasized:

e by for the behaviour of numerical schemes

e by for the well-posedness of boundary conditions.
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[Back to the numerical experimentsj
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(Numerical illustration of instabilityj

PML suivant x

t=4s
PML suivant y
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(Numerical illustration of stabilityj
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(Anisotropic elastic waves]

[Numerical experiment (5)]
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[Anisotropic elastic wavesj

[A sufficient stability condition)

One obtains a sufficient stability condition by ensuring, that for
all modes:

1. w(o, k) is in the right complex half-space for large |k|.

2. w(o, k) never becomes real

Im Im

k Re Re

Theorem ( )

The x-PML model for anisotropic elastic waves is stable as soon
as (HF) holds as well as one of the following conditions :

((12-|- 33)2<(11—33)(22—33) or

( (c11 — c33) (ca2 — c33) < (c12 + 33)2

q (11— c33) (c11c22 — ¢33) < (c11 + c33) (c12 + 33)°

| | (c12+2 33)” < C11022
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(Other examples)

e Anisotropic waves (see ):

2
@ —div (AVu) =0, A not diagonal

ot?

e Linearized Euler equations (see
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