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One-dimensional Wave Models

Nonlinear and dispersive waves are modeled by Korteweg
and de Vries (KdV) equation

ut + Uz + uuy + Ugzr = 0 (1)

Peregrine & Benjamin, Bona & Mahoney (PBBM)
equation (obtained from KdV by using u; ~ —uz)

ut + Uz + Uy — Uggt = 0 (2)

Camassa and Holm (CH) equation (has the soliton
property like KdV; PBBM does not!)

Ut + Uz + Uz — Uzt (3)



The CH equation (3) has a suggestive form
vt + ur + uve + 2vuy = 0

82 \—1 (4)
u = (1 — a@) v
o -
Means u solves (1 — aW)u = v with v — 0 at .

CH equation (3/4) is a nonlinear perturbation of PBBM
and so also of KdV and can be viewed as a nonlinear
advection equation for a variable v which has a simple
relation to the advection velocity wu.

(4) forms the template for a three-dimensional fluid flow
model including dispersion.



3-D dispersive fluid models

The 3-D analog of the Camassa-Holm equation is

vi —vAu—+ (curlv) xu+Vp=0 (5)
where (1 —aA)u=v, a>0and V- u=0.

a = 0 implies u = v; (5) becomes Navier-Stokes

u; — vAu—+ (curlu) xu+Vp=20 (6)

where pressure f =p — 2u - u.

Nonlinear term (curlu) x u differs from usual one u- Vu
via this transformation involving a re-definition of the
“pressure” variable.



a model history

The a-model equation (5) first appeared as a model of
Rivlin and Ericksen: a continuum of material with
velocity u described by

d

—u=V-T, 7
” (7)
where T = T(u) is the stress and we define

d

—W = u-V 3

ar wt + w (8)

for any w (either scalar, vector or tensor valued).



Rivlin-Ericksen grade n model

Assume that the stress tensor T has the form (for the
grade n model)

T = _ﬁI—l_Sn(alaaQa'")an) (9)

where p = pressure and a; are Rivlin-Ericksen tensors
defined recursively by (recall the notation (8))

ai;=L+L" ., L=Vu,

d
= a j—1 —+ aj_lL + LTaj_l 5

S"™=37_1S; and each S; is a polynomial in the a;:

a;

2
S1 =mna; , So = ajap + araj, etc.



Grade 2 Model

d
aj =Vu—I—VuT, an =aal—|—a1L—|—LTa1,
T = T? = -5l + na; + a1az + azaf, (10)

where the parameters n, «; are material constants.
Physical arguments show that

n>0 a1 >0 and a1 +a,=0.

Setting a = a1 (and a» = —a) and substituting (10)
into (7) yields the dispersive fluid equations (5).



Geometry of maps

When v =0 in (5), we get a grade-two variant of the
Euler equations. Consider the class V° of vector fields u
satisfying (@) ue H5(2) (b) V.u=0and (¢c) u-n=0
on 92. Given u(-,t) € V*, consider the flow fy = fu(x,t)
generated by u, that is,

d

&fu(x, t) = u(fu(x,1),t) (11)
where fu(x,0) = x for all x € 2. For each ¢,
fu(-,t) € Do = the space of volume preserving
diffeomorphisms of 2. Thus the map ¢t — fu(-,¢t) is a
curve in Dq.



Geometry of Dq

Do has a natural group structure: composition. The
tangent space Tp,(Z) to Dy at T can be identified with
the space V* of divergence-free vector fields. Putting an
inner-product on V° puts a metric on the tangent space
to Do at Z. For example,

<70 > = /Q (x) - o(x) dx (12)
<70 > = /Q (%) - 0(x) + aVr(x) : Vo(x)dx. (13)

Using the group structure allows us to translate this
metric to the entire tangent bundle invariantly.



OT

Geodesics come from solutions

Remarkably u solves the Euler equations if and only if
the curve with metric
(12) given by the L? inner-product on Vs,

Even more remarkably, u solves a-model (5) if and only
if the curve with metric
(13) given by the Hl inner-product on V5.

This structural property of the a-model (5) exhibits a
key property of a good model and makes it clear that it
does not appear by chance.



T

Turbulence models

Statistical properties of ensembles of solutions of the
Navier-Stokes equations satisfy averaged equations. If u
denotes an ensemble average of solutions, it may satisfy
a Rivlin-Erkicksen model, as was observed in the 1950’s
by Rivlin.

A modified Grade-two model has been used by Chen,
Foias, Holm, Olson and Titi (1998) to provide an
accurate model of turbulence experiments done in a
channel.



Cl

Grade two and the blob

Oliver and Shkoller (2000) observed that the vortex-blob
method of Chorin

8t—l—u-Vq=O

14
u=K%xgq (14)

more closely represents the Grade-2/«a equation than it
does the Euler equation.

Here K¢ is the integral kernal inverse of (1 — aA)curl.

The (point) vortex method corresponds to o = 0.
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Lubrication model solutions
How does the a term affect the flow?

Lubrication theory provides flow patterns in a long
channel with slowly varying width.

The shape depends on the parameter r := t'R where R is
the Reynolds number and t is the width of the channel.

When a > 0 the effect of R is diminished.
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plots of W for r between —8 and 3 with increments of 2 for negative r and 1 for positive r
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plots of W for r between —8 and 3 with increments of 2 for negative r and 1 for positive r
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Stability of the grade-two model

Taking the curl of (5) and introducing the variable

z = curlv = curl (u — aAu) (15)

This leads to a transport equation for z:

azi + vz + au-Vz —az-Vu =vcurlu (16)
The steady versions of (5) and (16) in 2-D read
—vAu—+ z(up —uq) + Vp =0
V-u=0 (17)
vz+ au-Vz =vcurlu

where we now u denotes a 2-vector valued function and
curlu:=wujo—un1-



L1

Dependence of u on z

The first two equations in (17) are well posed with
uc H! as long as z € L™ for r > 1: given such a z we
can find a unique u € H! (and p € L?) to the modified
Stokes equation

—vAu+ z(up —uy) + Vp =0
V.-u=0

with appropriate bounds for u and p in terms of ||z||;r.

(18)

However, the third (transport) equation in (17) is more
problematic.



81

Transport equation

Let us write the general form of the transport equation
in (17), after dividing by v, as

z+Wu-Vz={. (19)

If all we know is that u € H1, then f € L? is the best we
can hope for in (17). But then we could not hope for
more than z € L? either, as (19) provides no smoothing.
And for z € L? (and u € H1), the term u-Vz is a
concern.

Certainly, u-Vz will not in general be in L2 for unrelated
z and u.
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Transport equation solution
Miraculously, it is possible to show that (provided
u-n =0 on 0L2), the problem (17), i.e.,

z4+Wu-Vz=f

has a unique solution z € L? for any f € L? .

In fact, you can say more, in that z lies in the space
Xy = {wEL2 ; u-V'wGLQ}

and 1zl ;2 < I fll 2.

(20)
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Stability of numerical discretizations

A standard complication is the divergence zero condition
in (17).

The major new ingredient in the system (17) is the
transport equation (19):

vz+ au-Vz =vcurlu (21)

Suppose that uy, = uy(z) and p;, = pp(z) denote finite
element functions defined in appropriate spaces for
solving the modified Stokes equation (18) for a given

z € L?2. Let W), denote a subspace of H1 for simplicity in
which we will seek approximations z; to the solutions of
(21).
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Numerical discretization of transport equation

We define a “master’ variational problem for
approximating (21) (vz+ au-Vz = vcurlu) as:

Find z; € W, such that
v (zp, w) + a(uy, - Vzp, w)
+%04 ((V - U—h)zha w) = v (curl uy,, w)

for all w € Wy. Here, the forms (v, w) denote the L2()
inner-product.

(22)

Note that we have allowed for the possibility that
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convergence

Coupled system for uy, p;, and z; has solutions which
converge to the system (17) if approximation scheme
for Stokes-like equation (18) satisfies either

e V - uy identically zero (true for high-degree
polynomials on triangles), or

e V. uy is orthogonal to products z,w; for any
zp, wy, € Wy, (e.q. zpwy, € My, Y2y, wy, € Wy, holds if
M = quadratics and W} = linears).
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Improved Convergence for :z

If we modify the transport approximation with a
standard upwinding technique (streamline diffusion), we
again prove stability of the corresponding numerical
approximation and prove quasi-optimal rates of
convergence for u — uy, p — p;, and suffer only the usual
half-order degradation of approximation for z — z;,
common for streamline diffusion schemes.

Unfortunately, our estimates involve constants
proportional to 1/a and would not be uniform as a — 0.
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Convergence for general 1, Wy

With no assumption about the approximation scheme
for (18) with regard to V- uy, if

e (2 iS a convex polygon
e and u and z satisfy some extra smoothness,

we again get convergence rates for the discrete
approximation. However, these results require us to

make a strong restriction on the domain €2 and so do
not seem to be ideal.
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Sign of a7
Rheologists tell us that often a < 0.
Grade-two model is unstable for o < O!

Slemrod (1999) has suggested that truncation of the
Rivlin-Ericksen expansion is at fault and a rational
approximation should be used.

Dunn (1982) observed that if « is a function of
|Vu + Vut||?, stability is recovered for a < O.

One objective is to demonstrate the possibility of shear
thinning without resorting to n dependence on
strain-rate.
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Energy estimates

If we take the dot-product of u and integrate over the
flow domain €2, we obtain an energy balance equation of
the form

d
(L Il + 3831Vu + vul|2) de )
2 (23)
+ "/Q IVu+ vut||2de = 0
where 3/ = «. Stability requires 8 > 0, or

/Oroz(s) ds > —-B(0) Vr>0. (24)

Stability of the rest state follows from S5(0) = 0, but is
this necessary?

B(r) ='r/(1-|—7°2) has a« < O for r > 1.
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Rheological properties

The viscometric functions commonly measured include
the first normal stress difference N1 which Dunn
computes to be

N1 = —2v%a(27?) (25)

where ~ is the shear rate. This can clearly be either
positive or negative depending on the sign of «.

Nj is typically positive, esp. for small v, but Ny /k? is
not constant. In fact, it would appear that Ni(k) ~ 14
for g < 2 leading to a singularity in «.
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Stability of the rest state

Let {¢;} be a complete set of eigenfunctions for the
Stokes equations, which we write in variational form as

<¢i7 ’U> — Az(¢zav) Vo eV (26)

where V is the set of divergence zero functions in
H1(Q) which vanish on the boundary. Assume that
(¢i, ¢;) = d;;. Then if o is constant, we can write the
grade-two equations as

(ug,v) + a{u,v) +v{u,v) =0. (27)
We can expand the solution as
u=>» c(t)e;. (28)

1
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Using (28) in (27), we obtain ordinary differential
equations for the coefficients ¢; of the form

() (1 + aX;) + vici(t) =0, (29)
which can be re-written as
14
;) + —g——<i(t) =0 (30)
A o

i
where ¢;(0) = (ug, ¢;). Clearly if @ < 0 then A1 4+a <0
for ¢ sufficiently large, and we get exponential increase
of these modes. On the other hand, if

—1
A, +a>0 (31)

then the 2-th mode is stable.
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However, if a depends on Vu 4+ Vu! then the picture is
more complicated. We have

Ai =Xi(@is &)
= (9, $i) (32)
= [ 19+ Vil da.
That is, A;/|2| is the mean of ||[V¢; + V¢i||? over ,

where |Q2| denotes the volume of 2. Thus we can think
that

a(||[Vei + Vi) ~ a(N/IQ) - (33)

Combining this with the stability condition (31), we find
that we have a stable mode if

A4 a(N/IR20) > 0. (34)
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Since we are interested in the case a < 0, let us set

& = —«. Then (34) becomes

a(n/192) < A7t (35)
which would be satisfied if we knew that

1
Notice that
br
— . 37
a(n) =1 (37)

satisfies this condition for suitable a and b. Also, if « is
monotone for large r, then the integrability of —a(r)
implies that —a(r) < §/r for r > rg for any 6 > 0.
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Oldroyd-B model

The upper-convected Maxwellian derivative is defined by
V D
Vit Dt

for any tensor f. The Oldroyd-B fluid has the following

constitutive equation for the extra stess tensor T':

V
AT+ T =nay , 39
o7 + nai (39)

in its simplest form, where a; := Vu 4+ Vul.

f — (Vu)f — fvul . (38)
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Suppose that a1 = —An and ap = 2An. Then the
grade-two model becomes

A
T =na; — M——ay + 2X\nai
—=naj — )\nzal

This is to be contrasted with the Oldroyd-B model (39),
which we can write as

V

T=77a1—)\—T
N (41)
~nai{ — A\n—ai ,
nai th 1

provided M is very small. Thus we expect that the
Oldroyd-B model will be very similar to the grade-2
model with the choice a1 = —Anp and ay = 2An.
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Note that this would imply that a1 < 0 if A > 0, and
a1 + ao = Anp > 0. This would imply that the model is
not shear thinning.

We can understand the relationship of the two models
by letting the symbol z denote the operator

V
2= \—. 42
Vi (42)
Then the two models can be written as
(1 + 2)T =na;

T =n(1 - 2)ay (43)

Thus the two models are related simply by the
approximation

(142)"1x1-2. (44)
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Conclusions

Reviewed model for dispersive flow in 2 & 3 D.

Lubrication models illustrate laminar flows.

Stability was described in the 2-D case. Numerical
schemes for approximating the equations and their
corresponding stability and convergence properties have
been proved.

The sign of o provides open questions.

Oldroyd-B and Grade-2 may be similar.



