Model equations for dispersive fluid flow

V. Girault
Université Pierre et Marie Curie
and

L.R. Scott University of Chicago

One-dimensional Wave Models

Nonlinear and dispersive waves are modeled by Korteweg and de Vries (KdV) equation

$$u_t + u_x + uu_x + u_{xxx} = 0 (1)$$

Peregrine & Benjamin, Bona & Mahoney (PBBM) equation (obtained from KdV by using $u_t \approx -u_x$)

$$u_t + u_x + uu_x - u_{xxt} = 0 (2)$$

Camassa and Holm (CH) equation (has the soliton property like KdV; PBBM does not!)

$$u_t + u_x + uu_x - \alpha u_{xxt} = \frac{2}{3}\alpha u_x u_{xx} + \frac{1}{3}\alpha u u_{xxx}$$
 (3)

The CH equation (3) has a suggestive form

$$v_t + u_x + uv_x + 2vu_x = 0$$

$$u = \left(1 - \alpha \frac{\partial^2}{\partial x^2}\right)^{-1} v$$
(4)

Means u solves $\left(1 - \alpha \frac{\partial^2}{\partial x^2}\right)u = v$ with $u \to 0$ at ∞ .

CH equation (3/4) is a nonlinear perturbation of PBBM and so also of KdV and can be viewed as a nonlinear advection equation for a variable v which has a simple relation to the advection velocity u.

(4) forms the template for a three-dimensional fluid flow model including dispersion.

3-D dispersive fluid models

The 3-D analog of the Camassa-Holm equation is

$$\mathbf{v}_t - \nu \Delta \mathbf{u} + (\mathbf{curl} \, \mathbf{v}) \times \mathbf{u} + \nabla p = 0 \tag{5}$$

where $(1 - \alpha \Delta) \mathbf{u} = \mathbf{v}$, $\alpha > 0$ and $\nabla \cdot \mathbf{u} = 0$.

 $\alpha = 0$ implies $\mathbf{u} = \mathbf{v}$; (5) becomes Navier-Stokes

$$\mathbf{u}_t - \nu \Delta \mathbf{u} + (\operatorname{curl} \mathbf{u}) \times \mathbf{u} + \nabla p = 0 \tag{6}$$

where pressure $\tilde{p} = p - \frac{1}{2}\mathbf{u} \cdot \mathbf{u}$.

Nonlinear term $(\mathbf{curl}\,\mathbf{u}) \times \mathbf{u}$ differs from usual one $\mathbf{u} \cdot \nabla \mathbf{u}$ via this transformation involving a re-definition of the "pressure" variable.

α model history

The α -model equation (5) first appeared as a model of Rivlin and Ericksen: a continuum of material with velocity ${\bf u}$ described by

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{u} = \nabla \cdot \mathbf{T},\tag{7}$$

where T = T(u) is the stress and we define

$$\frac{\mathrm{d}}{\mathrm{d}t}w := w_t + \mathbf{u} \cdot \nabla w \tag{8}$$

for any w (either scalar, vector or tensor valued).

Rivlin-Ericksen grade n model

Assume that the stress tensor ${f T}$ has the form (for the grade n model)

$$T = -\tilde{p}I + \mathcal{S}^n(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$$
 (9)

where \tilde{p} = pressure and \mathbf{a}_j are Rivlin-Ericksen tensors defined recursively by (recall the notation (8))

$$\mathbf{a}_1 = \mathbf{L} + \mathbf{L}^T$$
 , $\mathbf{L} = \nabla \mathbf{u}$,

$$\mathbf{a}_j = \frac{d}{dt} \mathbf{a}_{j-1} + \mathbf{a}_{j-1} \mathbf{L} + \mathbf{L}^T \mathbf{a}_{j-1},$$

 $S^n = \sum_{i=1}^n \mathbf{S}_i$ and each \mathbf{S}_i is a polynomial in the \mathbf{a}_j :

$$S_1 = \eta a_1$$
, $S_2 = \alpha_1 a_2 + \alpha_2 a_1^2$, etc.

Grade 2 Model

$$\mathbf{a}_1 = \nabla \mathbf{u} + \nabla \mathbf{u}^T, \quad \mathbf{a}_2 = \frac{\mathsf{d}}{\mathsf{d}t} \mathbf{a}_1 + \mathbf{a}_1 \mathbf{L} + \mathbf{L}^T \mathbf{a}_1,$$
$$\mathbf{T} = \mathbf{T}^2 = -\tilde{p}\mathbf{I} + \eta \mathbf{a}_1 + \alpha_1 \mathbf{a}_2 + \alpha_2 \mathbf{a}_1^2, \tag{10}$$

where the parameters η , α_i are material constants. Physical arguments show that

$$\eta \ge 0$$
 , $\alpha_1 \ge 0$ and $\alpha_1 + \alpha_2 = 0$.

Setting $\alpha = \alpha_1$ (and $\alpha_2 = -\alpha$) and substituting (10) into (7) yields the dispersive fluid equations (5).

Geometry of maps

When $\nu=0$ in (5), we get a grade-two variant of the Euler equations. Consider the class \mathcal{V}^s of vector fields \mathbf{u} satisfying (a) $\mathbf{u} \in H^s(\Omega)$ (b) $\nabla \cdot \mathbf{u} = 0$ and (c) $\mathbf{u} \cdot \mathbf{n} = 0$ on $\partial \Omega$. Given $\mathbf{u}(\cdot,t) \in \mathcal{V}^s$, consider the flow $\mathbf{f_u} = \mathbf{f_u}(\mathbf{x},t)$ generated by \mathbf{u} , that is,

$$\frac{d}{dt}f_{\mathbf{u}}(\mathbf{x},t) = \mathbf{u}(\mathbf{f}_{\mathbf{u}}(\mathbf{x},t),t)$$
 (11)

where $\mathbf{f_u}(\mathbf{x},0) = \mathbf{x}$ for all $\mathbf{x} \in \Omega$. For each t, $\mathbf{f_u}(\cdot,t) \in \mathcal{D}_{\Omega} =$ the space of volume preserving diffeomorphisms of Ω . Thus the map $t \to \mathbf{f_u}(\cdot,t)$ is a curve in \mathcal{D}_{Ω} .

Geometry of \mathcal{D}_{Ω}

 \mathcal{D}_{Ω} has a natural group structure: composition. The tangent space $T_{\mathcal{D}_{\Omega}}(\mathcal{I})$ to \mathcal{D}_{Ω} at \mathcal{I} can be identified with the space \mathcal{V}^s of divergence-free vector fields. Putting an inner-product on \mathcal{V}^s puts a metric on the tangent space to \mathcal{D}_{Ω} at \mathcal{I} . For example,

$$<\tau,\sigma>_{L^2} = \int_{\Omega} \tau(\mathbf{x}) \cdot \sigma(\mathbf{x}) d\mathbf{x}$$
 (12)

$$<\tau,\sigma>_{H^1_\alpha} = \int_{\Omega} \tau(\mathbf{x}) \cdot \sigma(\mathbf{x}) + \alpha \nabla \tau(\mathbf{x}) : \nabla \sigma(\mathbf{x}) d\mathbf{x}.$$
 (13)

Using the group structure allows us to translate this metric to the entire tangent bundle invariantly.

Geodesics come from solutions

Remarkably \mathbf{u} solves the Euler equations if and only if the curve $t \to \mathbf{f}_{\mathbf{u}}(\cdot,t)$ is a geodesic in \mathcal{D}_{Ω} with metric (12) given by the L^2 inner-product on \mathcal{V}^s .

Even more remarkably, \mathbf{u} solves α -model (5) if and only if the curve $t \to \mathbf{f}_{\mathbf{u}}(\cdot,t)$ is a geodesic in \mathcal{D}_{Ω} with metric (13) given by the H^1_{α} inner-product on \mathcal{V}^s .

This structural property of the α -model (5) exhibits a key property of a good model and makes it clear that it does not appear by chance.

Turbulence models

Statistical properties of ensembles of solutions of the Navier-Stokes equations satisfy averaged equations. If ${\bf u}$ denotes an ensemble average of solutions, it may satisfy a Rivlin-Erkicksen model, as was observed in the 1950's by Rivlin.

A modified Grade-two model has been used by Chen, Foias, Holm, Olson and Titi (1998) to provide an accurate model of turbulence experiments done in a channel.

Grade two and the blob

Oliver and Shkoller (2000) observed that the vortex-blob method of Chorin

$$\partial_t + \mathbf{u} \cdot \nabla q = 0$$

$$\mathbf{u} = K^\alpha * q$$
(14)

more closely represents the Grade- $2/\alpha$ equation than it does the Euler equation.

Here K^{α} is the integral kernal inverse of $(1 - \alpha \Delta)$ curl.

The (point) vortex method corresponds to $\alpha = 0$.

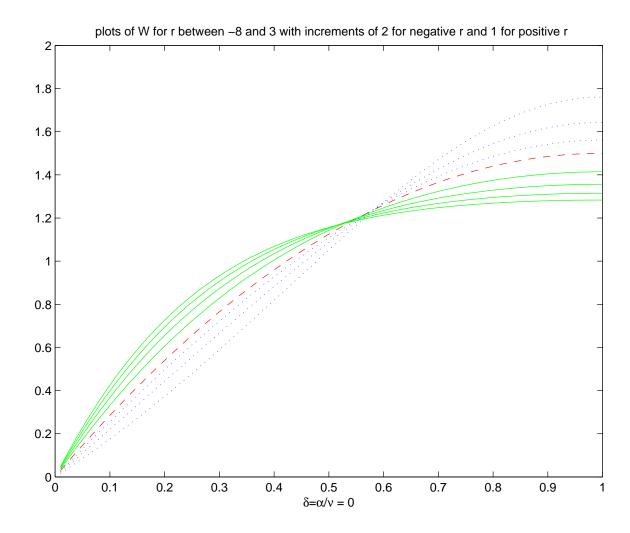
Lubrication model solutions

How does the α term affect the flow?

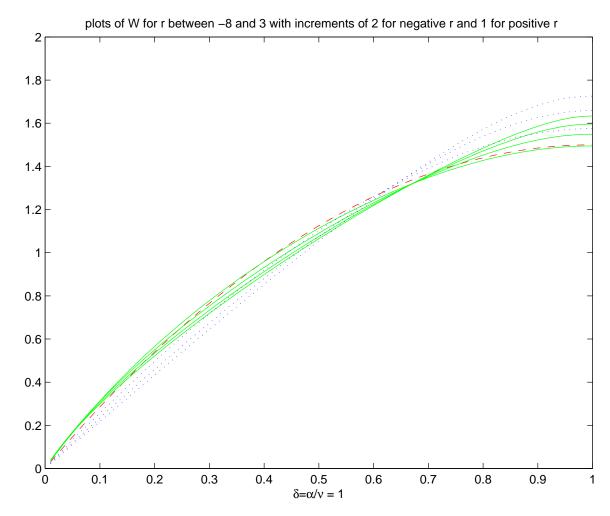
Lubrication theory provides flow patterns in a long channel with slowly varying width.

The shape depends on the parameter r := t'R where R is the Reynolds number and t is the width of the channel.

When $\alpha > 0$ the effect of R is diminished.



Newtonian flow in a wavy chanel.



 $\alpha \approx \nu = 1/R \implies$ parabolic flow re-established.

Stability of the grade-two model

Taking the curl of (5) and introducing the variable

$$z = \operatorname{curl} v = \operatorname{curl} (u - \alpha \Delta u) \tag{15}$$

This leads to a transport equation for z:

$$\alpha \mathbf{z}_t + \nu \mathbf{z} + \alpha \mathbf{u} \cdot \nabla \mathbf{z} - \alpha \mathbf{z} \cdot \nabla \mathbf{u} = \nu \operatorname{curl} \mathbf{u}$$
 (16)

The steady versions of (5) and (16) in 2-D read

$$-\nu \Delta \mathbf{u} + z(u_2 - u_1) + \nabla p = 0$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\nu z + \alpha \mathbf{u} \cdot \nabla z = \nu \operatorname{curl} \mathbf{u}$$
(17)

where we now \mathbf{u} denotes a 2-vector valued function and $\operatorname{curl} \mathbf{u} := u_{1,2} - u_{2,1}$.

Dependence of ${\bf u}$ on z

The first two equations in (17) are well posed with $\mathbf{u} \in H^1$ as long as $z \in L^r$ for r > 1: given such a z we can find a unique $\mathbf{u} \in H^1$ (and $p \in L^2$) to the modified Stokes equation

$$-\nu\Delta\mathbf{u} + z(u_2 - u_1) + \nabla p = 0$$

$$\nabla \cdot \mathbf{u} = 0$$
(18)

with appropriate bounds for ${\bf u}$ and p in terms of $||z||_{L^r}$.

However, the third (transport) equation in (17) is more problematic.

Transport equation

Let us write the general form of the transport equation in (17), after dividing by ν , as

$$z + \mathcal{W}\mathbf{u} \cdot \nabla z = f. \tag{19}$$

If all we know is that $\mathbf{u} \in H^1$, then $f \in L^2$ is the best we can hope for in (17). But then we could not hope for more than $z \in L^2$ either, as (19) provides no smoothing. And for $z \in L^2$ (and $\mathbf{u} \in H^1$), the term $\mathbf{u} \cdot \nabla z$ is a concern.

Certainly, $\mathbf{u} \cdot \nabla z$ will not in general be in L^2 for unrelated z and \mathbf{u} .

Transport equation solution

Miraculously, it is possible to show that (provided $\mathbf{u} \cdot \mathbf{n} = 0$ on $\partial \Omega$), the problem (17), i.e.,

$$z + \mathcal{W}\mathbf{u} \cdot \nabla z = f$$

has a unique solution $z \in L^2$ for any $f \in L^2$.

In fact, you can say more, in that z lies in the space

$$X_{\mathbf{u}} := \left\{ w \in L^2 : \mathbf{u} \cdot \nabla w \in L^2 \right\}$$
 (20)

and $||z||_{L^2} \le ||f||_{L^2}$.

Stability of numerical discretizations

A standard complication is the divergence zero condition in (17).

The major new ingredient in the system (17) is the transport equation (19):

$$\nu z + \alpha \mathbf{u} \cdot \nabla z = \nu \operatorname{curl} \mathbf{u} \tag{21}$$

Suppose that $\mathbf{u}_h = \mathbf{u}_h(z)$ and $p_h = p_h(z)$ denote finite element functions defined in appropriate spaces for solving the modified Stokes equation (18) for a given $z \in L^2$. Let W_h denote a subspace of H^1 for simplicity in which we will seek approximations z_h to the solutions of (21).

Numerical discretization of transport equation

We define a "master" variational problem for approximating (21) $(\nu z + \alpha u \cdot \nabla z = \nu \operatorname{curl} u)$ as:

Find $z_h \in W_h$ such that

$$\nu (z_h, w) + \alpha (\mathbf{u}_h \cdot \nabla z_h, w)
+ \frac{1}{2} \alpha ((\nabla \cdot \mathbf{u}_h) z_h, w) = \nu (\operatorname{curl} \mathbf{u}_h, w)$$
(22)

for all $w \in W_h$. Here, the forms (v, w) denote the $L^2(\Omega)$ inner-product.

Note that we have allowed for the possibility that $\nabla \cdot \mathbf{u}_h$ is not exactly zero.

Convergence

Coupled system for \mathbf{u}_h , p_h and z_h has solutions which converge to the system (17) if approximation scheme for Stokes-like equation (18) satisfies either

- $\nabla \cdot \mathbf{u}_h$ identically zero (true for high-degree polynomials on triangles), or
- $\nabla \cdot \mathbf{u}_h$ is orthogonal to products $z_h w_h$ for any $z_h, w_h \in W_h$ (e.g. $z_h w_h \in \Pi_h \ \forall z_h, w_h \in W_h$, holds if $\Pi = \text{quadratics}$ and $W_h = \text{linears}$).

Improved Convergence for z

If we modify the transport approximation with a standard upwinding technique (streamline diffusion), we again prove stability of the corresponding numerical approximation and prove quasi-optimal rates of convergence for $\mathbf{u} - \mathbf{u}_h$, $p - p_h$ and suffer only the usual half-order degradation of approximation for $z - z_h$ common for streamline diffusion schemes.

Unfortunately, our estimates involve constants proportional to $1/\alpha$ and would not be uniform as $\alpha \to 0$.

Convergence for general Π_h , W_h

With no assumption about the approximation scheme for (18) with regard to $\nabla \cdot \mathbf{u}_h$, if

- Ω is a convex polygon
- ullet and ${f u}$ and ${f z}$ satisfy some extra smoothness,

we again get convergence rates for the discrete approximation. However, these results require us to make a strong restriction on the domain Ω and so do not seem to be ideal.

Sign of α ?

Rheologists tell us that often $\alpha < 0$.

Grade-two model is unstable for $\alpha < 0!$

Slemrod (1999) has suggested that truncation of the Rivlin-Ericksen expansion is at fault and a rational approximation should be used.

Dunn (1982) observed that if α is a function of $\|\nabla \mathbf{u} + \nabla \mathbf{u}^t\|^2$, stability is recovered for $\alpha < 0$.

One objective is to demonstrate the possibility of shear thinning without resorting to η dependence on strain-rate.

Energy estimates

If we take the dot-product of ${\bf u}$ and integrate over the flow domain Ω , we obtain an energy balance equation of the form

$$\frac{d}{dt} \left(\int_{\Omega} ||\mathbf{u}||^2 + \frac{1}{2}\beta(||\nabla \mathbf{u} + \nabla \mathbf{u}^t||^2) dx \right)
+ \eta \int_{\Omega} ||\nabla \mathbf{u} + \nabla \mathbf{u}^t||^2 dx = 0$$
(23)

where $\beta' = \alpha$. Stability requires $\beta \ge 0$, or

$$\int_0^r \alpha(s) \, ds \ge -\beta(0) \quad \forall \, r > 0 \,. \tag{24}$$

Stability of the rest state follows from $\beta(0) = 0$, but is this necessary?

Example: $\beta(r) = r/(1+r^2)$ has $\alpha < 0$ for r > 1.

Rheological properties

The viscometric functions commonly measured include the first normal stress difference N_1 which Dunn computes to be

$$N_1 = -2\gamma^2 \alpha(2\gamma^2) \tag{25}$$

where γ is the shear rate. This can clearly be either positive or negative depending on the sign of α .

 N_1 is typically positive, esp. for small γ , but N_1/κ^2 is not constant. In fact, it would appear that $N_1(\kappa) \approx \gamma^q$ for q < 2 leading to a singularity in α .

Stability of the rest state

Let $\{\phi_i\}$ be a complete set of eigenfunctions for the Stokes equations, which we write in variational form as

$$\langle \phi_i, v \rangle = \lambda_i(\phi_i, v) \ \forall v \in V \tag{26}$$

where V is the set of divergence zero functions in $H^1(\Omega)$ which vanish on the boundary. Assume that $(\phi_i,\phi_j)=\delta_{ij}$. Then if α is constant, we can write the grade-two equations as

$$(\mathbf{u}_t, v) + \alpha \langle \mathbf{u}_t, v \rangle + \nu \langle \mathbf{u}, v \rangle = 0.$$
 (27)

We can expand the solution as

$$\mathbf{u} = \sum_{i} c_i(t)\phi_i. \tag{28}$$

Using (28) in (27), we obtain ordinary differential equations for the coefficients c_i of the form

$$c_i'(t)(1+\alpha\lambda_i) + \nu\lambda_i c_i(t) = 0, \qquad (29)$$

which can be re-written as

$$c_i'(t) + \frac{\nu}{\lambda_i^{-1} + \alpha} c_i(t) = 0$$
 (30)

where $c_i(0) = (\mathbf{u}_0, \phi_i)$. Clearly if $\alpha < 0$ then $\lambda_i^{-1} + \alpha < 0$ for i sufficiently large, and we get exponential increase of these modes. On the other hand, if

$$\lambda_i^{-1} + \alpha > 0 \tag{31}$$

then the *i*-th mode is stable.

However, if α depends on $\nabla \mathbf{u} + \nabla \mathbf{u}^t$ then the picture is more complicated. We have

$$\lambda_{i} = \lambda_{i}(\phi_{i}, \phi_{i})$$

$$= \langle \phi_{i}, \phi_{i} \rangle$$

$$= \int_{\Omega} ||\nabla \phi_{i} + \nabla \phi_{i}^{t}||^{2} dx.$$
(32)

That is, $\lambda_i/|\Omega|$ is the mean of $\|\nabla\phi_i+\nabla\phi_i^t\|^2$ over Ω , where $|\Omega|$ denotes the volume of Ω . Thus we can think that

$$\alpha(\|\nabla\phi_i + \nabla\phi_i^t\|^2) \approx \alpha(\lambda_i/|\Omega|). \tag{33}$$

Combining this with the stability condition (31), we find that we have a stable mode if

$$\lambda_i^{-1} + \alpha(\lambda_i/|\Omega|) > 0. \tag{34}$$

Since we are interested in the case $\alpha < 0$, let us set $\tilde{\alpha} = -\alpha$. Then (34) becomes

$$\tilde{\alpha}(\lambda_i/|\Omega|) < \lambda_i^{-1}, \tag{35}$$

which would be satisfied if we knew that

$$-\alpha(r) = \tilde{\alpha}(r) < \frac{1}{|\Omega|r}.$$
 (36)

Notice that

$$\alpha(r) := \frac{br}{1 + ar^2}.\tag{37}$$

satisfies this condition for suitable a and b. Also, if α is monotone for large r, then the integrability of $-\alpha(r)$ implies that $-\alpha(r) \leq \delta/r$ for $r > r_{\delta}$ for any $\delta > 0$.

Oldroyd-B model

The upper-convected Maxwellian derivative is defined by

$$\frac{\nabla}{\nabla t} \mathbf{f} := \frac{\mathsf{D}}{\mathsf{D}t} \mathbf{f} - (\nabla \mathbf{u}) \mathbf{f} - \mathbf{f} \nabla \mathbf{u}^T, \tag{38}$$

for any tensor f. The Oldroyd-B fluid has the following constitutive equation for the extra stess tensor T:

$$\lambda \frac{\nabla}{\nabla t} \mathbf{T} + \mathbf{T} = \eta \mathbf{a}_1, \qquad (39)$$

in its simplest form, where $\mathbf{a}_1 := \nabla \mathbf{u} + \nabla \mathbf{u}^t$.

Suppose that $\alpha_1 = -\lambda \eta$ and $\alpha_2 = 2\lambda \eta$. Then the grade-two model becomes

$$T = \eta \mathbf{a}_{1} - \lambda \eta \frac{\Delta}{\Delta t} \mathbf{a}_{1} + 2\lambda \eta \mathbf{a}_{1}^{2}$$

$$= \eta \mathbf{a}_{1} - \lambda \eta \frac{\nabla}{\nabla t} \mathbf{a}_{1}$$
(40)

This is to be contrasted with the Oldroyd-B model (39), which we can write as

$$T = \eta \mathbf{a}_{1} - \lambda \frac{\nabla}{\nabla t} \mathbf{T}$$

$$\approx \eta \mathbf{a}_{1} - \lambda \eta \frac{\nabla}{\nabla t} \mathbf{a}_{1},$$
(41)

provided λ is very small. Thus we expect that the Oldroyd-B model will be very similar to the grade-2 model with the choice $\alpha_1 = -\lambda \eta$ and $\alpha_2 = 2\lambda \eta$.

Note that this would imply that $\alpha_1 < 0$ if $\lambda > 0$, and $\alpha_1 + \alpha_2 = \lambda \eta > 0$. This would imply that the model is not shear thinning.

We can understand the relationship of the two models by letting the symbol z denote the operator

$$z := \lambda \frac{\nabla}{\nabla t}.\tag{42}$$

Then the two models can be written as

$$(1+z)T = \eta a_1$$

$$T = \eta (1-z)a_1$$
(43)

Thus the two models are related simply by the approximation

$$(1+z)^{-1} \approx 1-z$$
. (44)

Conclusions

Reviewed model for dispersive flow in 2 & 3 D.

Lubrication models illustrate laminar flows.

Stability was described in the 2-D case. Numerical schemes for approximating the equations and their corresponding stability and convergence properties have been proved.

The sign of α provides open questions.

Oldroyd-B and Grade-2 may be similar.