Trading issues 0000000	Outline		

Generalized stochastic target problems for pricing and partial hedging under loss constraints -Application in optimal book liquidation

Minh N. Dang CEREMADE, University Paris Dauphine and CA Cheuvreux Joint work with B. Bouchard CEREMADE, University Paris Dauphine, and CREST, ENSAE

> Modeling and managing financial risks Paris, January 10 - 13, 2011

Minh N. Dang

VWAP guaranteed contract

- Liquidation K stocks during [0, T].
- Guarantee a better than δ basis point w.r.t market VWAP:

Guaranteed VWAP =
$$\underbrace{(1 + \delta \cdot 10^{-4})}_{\gamma}$$
 VWAP_{mkt}.

Brokerage fee: ask for a premium such that, up to a functional:

$$premium + realized gain \ge 0 \text{ a.s.}$$
(1)

Minh N. Dang

Trading issues 0●00000	Outline		
VWAP guaranteed cont	tract		

Mathematical modeling

- VWAP: Volume Weighted Average Price
- Cumulative trading volume L_t: continuous real-valued, non decreasing adapted process and

$$L_0 = 0, L_T = K$$
. (2)

- Stock price $X^{L,1}(t)$
- Cumulative market volume: $\Theta(t) := \int_0^t \vartheta(s) ds$.

Execution turnover : $dY^{L}(t) = X^{L,1}(t)dL_t$ Market turnover : $dX^{L,2}(t) = X^{L,1}(t)d\Theta_t = X^{L,1}(t)\vartheta(t)dt$ $Y^{L}(0) = X^{L,2}(0) = 0$.

Minh N. Dang

Trading issues 00●0000	Outline		
VWAP guaranteed cont	tract		

Mathematical modeling cont.

- Due to price impact effect: stock price is influenced by trading activity
- In case of linear impact

$$\frac{dX^{L,1}(t)}{X^{L,1}(t)} = \mu(t, X^{L,1}(t))dt + \sigma(t, X^{L,1}(t))dW_t - \beta(t, X^{L,1}(t))dL_t$$

Realized gain in cash

$$\left(\frac{Y^{L}(T)}{K} - \gamma \frac{X^{L,2}(T)}{\Theta(T)}\right) K .$$

Minh N. Dang

Trading issues ○○○●○○○	Outline		Conclusion
VWAP algorithm - Trac	ling envelops		

VWAP benchmark

- VWAP: involve (price, proportion of volume) jointly
- ► S: stock price, $(v_t)_{t \in [0,T]}$: density of trading volume
- Define

$$p_t = \frac{\int_0^t v_u du}{\int_0^T v_u du} \text{ then } p_0 = 0, p_T = 1 \text{ and } \text{VWAP} = \int_0^T S_t dp_t .$$

 VWAP benchmark, heuristically, minimize the following quantity (p^X, p^M: broker and market trading curve)

$$\int_0^T S_t dp_t^X - \int_0^T S_t dp_t^M$$

$$\implies$$
 Follow the market " \equiv " minimize $||p^X - p^M||$.

Minh N. Dang

Trading issues ○○○○●○○	Outline		
VWAP algorithm - Trac	ling envelops		

Volume curve

- ▶ In reality, unable to determine $(p_t^M), t \in [0, T]$ before T!
- One of possible proxies:

 $p_t^X \in [I_t^M, u_t^M]$: so-called trading envelope.

Figure: Trading envelopes

Minh N. Dang

Trading issues ○○○○○●○	Outline		
VWAP algorithm - Tra	ding envelops		

Mathematical modeling

Introduce X^{L,3}:

$$X^{L,3}(t) = L_t - L_0$$
.

Then require

$$X^{L,3}(s) \in [\underline{\Lambda}(s), \overline{\Lambda}(s)]$$
 for all $s \leq T$, (3)

where

$$\underline{\Lambda} < \overline{\Lambda} \text{ on } [0, T) \text{ and } \underline{\Lambda}(T) = \overline{\Lambda}(T) = K$$

For future utilization, also require:

$$D\underline{\Lambda}, D\overline{\Lambda} \in (0, M]$$
 on $[0, T]$ for some $M > 0$.

Minh N. Dang

Trading issues ○○○○○○●	Outline		
VWAP algorithm - Trac	ling envelops		

Summarized problem

- For a control variable L, consider (Y, X = (X^{L,1}, X^{L,2}, X^{L,3}), Θ) whose dynamics are given as above.
- Given a function ℓ , finding y minimum such that (Equation (1))

$$\ell\left(y+\left(\frac{Y^{L}(T)}{K}-\gamma\frac{X^{L,2}(T)}{\Theta(T)}\right)K\right)\geq 0,$$

$$\implies$$
 Stochastic Target

Minh N. Dang

Trading issues ○○○○○●	Outline		
VWAP algorithm - Trac	ling envelops		

Summarized problem

- For a control variable L, consider (Y, X = (X^{L,1}, X^{L,2}, X^{L,3}), Θ) whose dynamics are given as above.
- ► Given a function *l*, finding *y* minimum such that (Equation (1))

$$\ell\left(y+\left(\frac{Y^{L}(T)}{K}-\gamma\frac{X^{L,2}(T)}{\Theta(T)}\right)K\right)\geq 0$$

and also

equation (2), (3) hold : $X^{L,3}(s) \in [\underline{\Lambda}(s), \overline{\Lambda}(s)]$ for all $s \leq T$.

 \implies Stochastic Target under State Constraints problem

Minh N. Dang

Trading issues 0000000	Outline		

Outline

Generalized stochastic target problem

Abstract model Examples Geometric dynamic programming Informal PDE derivation

Liquidation problem

Problem formulation PDE characterization Additional assumption and *a priori* estimates Comparison theorem

Conclusion

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem ●○○○○○○	
Abstract model			

Problem formulation

Given
$$\phi = (\nu, L) \in \mathcal{A} := \mathcal{U} \times \mathcal{L}$$
 the set of controls
 $Z^{\phi} = (X^{\phi}, Y^{\phi}) \in \mathbb{R}^{d} \times \mathbb{R}$ verifies:
 $dX^{\phi} = \mu_{X}(X^{\phi}, \nu_{r})dr + \beta_{X}(X^{\phi})dL + \sigma_{X}(X^{\phi}, \nu_{r})dW_{r}$
 $dY^{\phi} = \mu_{Y}(Z^{\phi}, \nu_{r})dr + \beta_{Y}(Z^{\phi})^{\top}dL + \sigma_{Y}(Z^{\phi}, \nu_{r})^{\top}dW_{r}$.

Under Standing Assumption on constraint set:

$$orall (t,x): (x,y) \in O(t) \ , \ y' \geq y \Rightarrow (x,y') \in O(t) \ .$$

Then

$$V(t) := \left\{ (x,y) : Z^{\phi}_{t,x,y}(s) \in O(s) \ \forall t \leq s \leq T
ight\}$$
.

is equivalent to

$$v(t,x) := \inf \{y : (x,y) \in V(t)\}$$

•

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem ○●○○○○○	
Examples			

Super-hedging with cash delivery and proportional costs

• Let
$$d = 2$$
 and $\mu_X^i(x, u) = x^i \mu$, $\sigma_X^i(x, u) = x^i \sigma$, for $i \in \{1, 2\}$,

$$\beta_X^{21}(x) = -1 , \ \beta_X^{22}(x) = 1 , \ \beta_Y(x,y) = (1 - \lambda, -1 - \lambda) .$$

▶ Then, X^{L,1} follows a Black-Scholes dynamics, and

$$\begin{aligned} X_{t,x}^{2,L}(s) &= x^2 + \int_t^s \frac{X_{t,x}^{2,L}(r)}{X_{t,x}^1(r)} dX_{t,x}^1(r) - \int_t^s dL_r^1 + \int_t^s dL_r^2 \\ Y_{t,y}^L(s) &= y + \int_t^s (1-\lambda) dL_r^1 - \int_t^s (1+\lambda) dL_r^2 . \end{aligned}$$

► Define
$$O(t) = \mathbf{1}_{t < T} \mathbb{R}^*_+ \times \mathbb{R}^2 + \mathbf{1}_{t=T} \{(x, y) : \Lambda(y, x) \ge g(x)\}$$

with $\Lambda(y, x) := y + (1 - \lambda)x^2$.

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem ○o●○○○○	
Examples			

Loss function pricing

- Super-hedging criteria is too strict in markets with proportional costs
- Given a non-decreasing function ℓ , price at time *t*:

$$\hat{v}(t,x;p) := \inf \left\{ y : \mathbb{E} \left[\ell \left(\Lambda(Y^{L}(T), X^{L}(T)) - g(X^{1}(T)) \right) \right] \geq p \right\}$$

Bouchard-Elie-Touzi (2009) shows that

$$\hat{v}(t,x;p) := \inf \left\{ y : G_{t,x,y}^{L}(T) \ge P_{t,p}^{\nu}(T) , (\nu,L) \in \mathcal{U} \times \mathcal{L} \right\}$$

where

$$G_{t,x,y}^{L}(T) = \ell \left(\Lambda(Y_{t,y}^{L}(T), X_{t,x}^{L}(T)) - g \left(X_{t,x}^{1}(T)\right) \right) \in L^{2}$$
$$P_{t,p}^{\nu} := p + \int_{t}^{\cdot} \nu_{s}^{1} dW_{s}^{1} .$$

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem ○○○●○○○	
Geometric dynamic pro	ogramming		

Geometric dynamic programming

- Firstly introduced by Soner and Touzi for super-hedging under Gamma constraints
- Extended to American type constraints: obstacle version of Bouchard-Vu (2010)

Theorem:

- 0

$$V(t) = \left\{ z : \exists \phi \in \mathcal{A} \text{ s.t. } Z_{t,z}^{\phi}(\theta \wedge \tau) \in O \bigoplus^{\tau, \theta} V \text{ for all } \theta, \tau \in \mathcal{T}_{[t,T]} \right\}$$

$$O \bigoplus^{ au, heta} V := O(au) \ 1_{ au \leq heta} + V(heta) \ 1_{ au > heta} \ ext{ for } heta, au \in \mathcal{T}_{[0, T]} \ .$$

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem ○○○●○○○	
Geometric dynamic pro	ogramming		

Geometric dynamic programming

- Firstly introduced by Soner and Touzi for super-hedging under Gamma constraints
- Extended to American type constraints: obstacle version of Bouchard-Vu (2010)

Theorem: For all $\phi \in \mathcal{U} \times \mathcal{L}$ and $\theta \in \mathcal{T}_{[t,T]}$

1. GDP1: y > v(t, x)

 $Y^{\phi}_{t,x,y}(heta) \geq v(heta, X^{\phi}_{t,x}(heta)) ext{ and } Z^{\phi}_{t,x,y} \in O \; orall \; s \in [t,T] \; .$

2. GDP2: y < v(t, x), then $\forall (\phi, \theta) \in \mathcal{A} \times \mathcal{T}_{[t, T]}$

$$\mathbb{P}\left[Y^{\phi}_{t,x,y}(\theta) > v(\theta, X^{\phi}_{t,x}(\theta)) \text{ and } Z^{\phi}_{t,x,y} \in O \; \forall \; s \in [t,T]\right] < 1.$$

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem	
Informal PDE derivation	on		

Interior of the domain

In the case where $\beta_X = \beta_Y = 0$:

• y = v(t, x), GDP implies that $\exists \nu \in \mathcal{U}$ such that:

for
$$\phi=(
u,0)$$
 then $dY^{\phi}_{t,x,y}(t)\geq dv(t,X^{\phi}_{t,x}(t))$. (4)

► Formally:

$$dY^{\phi}(t) = \mu_{Y}^{\phi}(Z^{\phi}, \nu_{t})dt + \sigma_{Y}(Z^{\phi}, \nu_{t})dW_{t}$$
$$dv(t, X^{\phi}(t)) = \mathcal{L}_{X}^{\nu_{t}}v(t, X^{\phi})dt + Dv(t, X^{\phi}(t))^{\top}\sigma_{X}(X^{\phi}, \nu_{t})dW_{t}$$

Inequality (4) suggests:

$$\begin{split} \mu_{Y}(Z^{\phi},\nu_{t}) &\geq \mathcal{L}_{X}^{\nu_{t}} v(t,X^{\phi}) \\ \text{and } \sigma_{Y}(Z^{\phi},\nu_{t}) &= \sigma_{X}(X^{\phi},\nu_{t})^{\top} D v(t,X^{\phi}(t)) \;, \end{split}$$

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem ○○○●○○	
Informal PDE derivation	on		

Interior of the domain

In the case where $\beta_X, \beta_Y \neq 0$:

• y = v(t, x), GDP implies that $\exists \nu \in \mathcal{U}$ such that:

for
$$\phi = (\nu, \underline{L})$$
 then $dY^{\phi}_{t,x,y}(t) \ge dv(t, X^{\phi}_{t,x}(t))$. (4)

► Formally:

$$dY^{\phi}(t) = \cdots + \beta_{Y}(Z^{\phi})dL_{t}$$
$$dv(t, X^{\phi}(t)) = \cdots + Dv(t, X^{\phi}(t))^{\top}\beta_{X}(X^{\phi})dL_{t}$$

Inequality (4) suggests:

$$\begin{split} \mu_{Y}(Z^{\phi},\nu_{t}) &\geq \mathcal{L}_{X}^{\nu_{t}} v(t,X^{\phi}) \\ \text{and } \sigma_{Y}(Z^{\phi},\nu_{t}) &= \sigma_{X}(X^{\phi},\nu_{t})^{\top} D v(t,X^{\phi}(t)) \;, \end{split}$$

but in our case, also

$$\left(eta_{\mathbf{Y}}(Z^{\phi})^{ op} - \mathit{Dv}(t, X^{\phi}(t))^{ op}eta_{X}(X^{\phi})
ight) dL_{t} \geq 0 \;.$$

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem	
Informal PDE derivation			

Interior of the domain cont. Define

$$egin{aligned} &\mathcal{F}^u_arepsilon := \sup\left\{ \mu_Y(x,y,u) - \mathcal{L}^u_X v \;,\; u \in \mathcal{N}_arepsilon v
ight\} \ &\mathcal{G} := \max\left\{ [eta_Y(z)^ op - \mathcal{D}v(t,x)eta_X(x)]\ell \;,\; \ell \in \Delta_+
ight\} \end{aligned}$$

where

1

$$\begin{split} & \mathcal{N}_{\varepsilon} \mathbf{v} := \{ u \in U : |\sigma_{Y}(\cdot, \mathbf{v}, u) - \mathcal{D} \mathbf{v} \sigma_{X}(\cdot, u)| \leq \varepsilon \} \\ & \Delta_{+} := \mathbb{R}^{d}_{+} \cup \partial B_{1}(\mathbf{0}) . \end{split}$$

then PDE characterization in the interior of the domain:

$$\max\{F_0v, Gv\} = 0 \text{ on } (t, x, v(t, x)) \in \operatorname{int}(D)$$

where $D := \{(t, x, y) : (x, y) \in O(t)\}$.

Minh N. Dang

Trading issues 0000000	Outline	Generalized stochastic target problem ○○○○○○●	
Informal PDE derivation	n		

On the boundaries of the domain

- Suppose ∃δ ∈ C^{1,2} such that δ = 0 uniquely in ∂D, takes opposite sign inside and outside of D
- Then the state constraints require:

$$d\delta(Z^{\phi}_{t,z}(t)) \geq 0$$
 if $(t,z) \in \partial D$.

Hence,

$$\mathcal{L}^u_Z \delta(t,x,y) \geq 0$$
 and $D\delta(t,x,y)\sigma_Z(x,y,u) = 0$.

Define Fⁱⁿ₀ and Gⁱⁿ similarly as above, then PDE:

$$\max\left\{F_0^{\mathsf{in}}v, G^{\mathsf{in}}v\right\} = 0 \text{ on } (t, x, v(t, x)) \in \partial D.$$

• Terminal condition + Relax all operators in $(\varepsilon, t, x, v, Dv, D^2v) \dots$

Minh N. Dang

Trading issues 0000000	Outline	Liquidation problem ●○○○○	
Problem formulation			

Mathematical modeling of the VWAP liquidation problem Value function:

$$v(t, x, p) := \inf \left\{ y : \exists L \in \mathcal{L} \mid X_{t,x}^{3,L} \in [\underline{\Lambda}, \overline{\Lambda}] \text{ and } \mathbb{E} \left[\Psi(Z_{t,x,y}^{L}(T))
ight] \ge p
ight\}$$

where $\Psi(x, y) = \ell(y - \gamma x^{2})$.

Theorem:

$$\begin{aligned} v(t, x, p) &:= \inf\{y \ge 0 : \mathcal{A}_{t, x, y, p} \neq \emptyset\}, \\ \text{where } \mathcal{A}_{t, x, y, p} &:= \{(\nu, L) \in \mathcal{A} \mid (Z_{t, x, y}^{L}, P_{t, p}^{\nu}) \in V \text{ on } [t, T]\} \text{ with} \\ V &:= \{(x, y, p) : x^{3} \in [\underline{\Lambda}, \overline{\Lambda}]\} \mathbf{1}_{[0, T)} \\ &+ \{(x, y, p) : x^{3} = K \text{ and } \ell(y - \gamma x^{2}) \ge p\} \mathbf{1}_{\{T\}}, \\ \text{and } P_{t, p}^{\nu} &:= p + \int_{t}^{\cdot} \nu_{s} dW_{s}. \end{aligned}$$

Minh N. Dang

Trading issues 0000000	Outline	Liquidation problem ○●○○○	
PDE characterization			

PDE characterization

Proposition: Under "good assumption", v_* is a viscosity supersolution of

$$\max\left\{ \mathcal{F}_{0}\varphi\,,\;x^{1}+x^{1}\beta D_{x^{1}}\varphi-D_{x^{3}}\varphi\right\} =0\;.$$

And v^* is a subsolution of

$$\begin{split} \min \left\{ \varphi \;,\; \max \left\{ F_0 \varphi \;,\; x^1 + x^1 \beta D_{x^1} \varphi - D_{x^3} \varphi \right\} \right\} &= 0 \quad \text{if} \quad \underline{\Lambda} < x^3 < \overline{\Lambda} \\ \min \left\{ \varphi \;,\; x^1 + x^1 \beta D_{x^1} \varphi - D_{x^3} \varphi \right\} = 0 \quad \qquad \text{if} \quad \underline{\Lambda} = x^3 \\ \min \left\{ \varphi \;,\; F_0 \varphi \right\} = 0 \quad \qquad \text{if} \quad x^3 = \overline{\Lambda} \;. \end{split}$$

Moreover,

$$v_*(T,x,p) = v^*(T,x,p) = \Psi^{-1}(x,p)$$
 for all $(x,p) \in [0,\infty)^2 \times \{K\} \times \mathbb{R}$.

Minh N. Dang

Trading issues 0000000	Outline		Liquidation problem ○○●○○	
Additional assumption and a priori estimates				

Additional assumption

• Operator F_0 defined as:

$$F_0\varphi := -\mathcal{L}_X\varphi - \frac{(x^1\sigma)^2}{2} \left(|D_{x^1}\varphi/D_p\varphi|^2 D_p^2\varphi - 2(D_{x^1}\varphi/D_p\varphi)D_{(x^1,p)}^2\varphi \right)$$

with

$$\mathcal{L}_{X} \varphi := \partial_t \varphi + x^1 \mu D_{x^1} \varphi + x^1 \vartheta D_{x^2} \varphi + \frac{1}{2} (x^1 \sigma)^2 D_{x^1}^2 \varphi$$

"Good assumption" on loss function ℓ

$$\exists \epsilon > 0 \text{ s.t. } \epsilon \leq D^{-}\ell , \ D^{+}\ell \leq \epsilon^{-1} ,$$

and
$$\lim_{r \to \infty} D^{+}\ell(r) = \lim_{r \to \infty} D^{-}\ell(r) =: D\ell(\infty) .$$

• Also other conditions on boundaries $\underline{\Lambda}, \overline{\Lambda}$.

Minh N. Dang

Trading issues 0000000	Outline		Liquidation problem ○○○●○	
Additional assumption and a priori estimates				

A priori estimates

Proposition:
$$h \in (-(x^1 \land 1), 1)$$
 $v(t, x, p) \ge v(t, x, p - e^{-1}|h|) + |h|$

Corollary:

 v_* is a viscosity supersolution of

= 0, (*) $D_{o}\varphi - \epsilon$

and v^* is a viscosity subsolution of

 $-D_p\varphi + \epsilon$

Minh N. Dang

Trading issues 0000000	Outline		Liquidation problem ○○○●○		
Additional assumption and a priori estimates					

A priori estimates

▶ Proposition: $h \in (-(x^1 \land 1), 1)$, $\exists C$ depends only in x s.t.

 $v(t,x,p) \ge v(t,x+he_1,p-C(x)|h|)$

Corollary:

 v_* is a viscosity supersolution of

 $\min\left\{ (D_{x^1}\varphi - C(x)D_p\varphi)\mathbf{1}_{x^1>0}, -D_{x^1}\varphi + C(x)D_p\varphi \right\} = \mathbf{0}, (*)$

and v^* is a viscosity subsolution of

 $\max\left\{ (D_{x^1}\varphi - C(x)D_p\varphi)\mathbf{1}_{x^1>0}, -D_{x^1}\varphi + C(x)D_p\varphi \right\} = \mathbf{0}(**)$

UNIVERSITÉ PARIS

Minh N. Dang

Trading issues 0000000	Outline		Liquidation problem ○○○●○	
Additional assumption and a priori estimates				

A priori estimates

▶ Proposition: $h \in (-(x^1 \land 1), 1)$, $\exists C$ depends only in x s.t.

 $v(t,x,p) \ge \max \left\{ v(t,x,p-\epsilon^{-1}|h|) + |h|, v(t,x+he_1,p-C(x)|h|) \right\}.$

• Corollary:

 v_* is a viscosity supersolution of

 $\min\left\{\frac{D_p\varphi-\epsilon}{(D_{x^1}\varphi-C(x)D_p\varphi)}\mathbf{1}_{x^1>0}, -D_{x^1}\varphi+C(x)D_p\varphi\right\} = \mathbf{0}, (*)$

and v^* is a viscosity subsolution of

 $\max\left\{-D_{\rho}\varphi+\epsilon, (D_{x^{1}}\varphi-C(x)D_{p}\varphi)\mathbf{1}_{x^{1}>0}, -D_{x^{1}}\varphi+C(x)D_{p}\varphi\right\} = \mathbf{0}(**)$

Minh N. Dang

Trading issues 0000000	Outline	Liquidation problem ○○○○●	
Comparison theorem			

Comparison principle and uniqueness

Assumption: $\exists \hat{x}^1 > 0 \text{ s.t. } \mu(\cdot, \hat{x}^1) = \sigma(\cdot, \hat{x}^1) = 0$. Theorem: U (resp. V) non-negative lower-semicontinuous supersolution(resp. upper-semicontinuous subsolution) and continuous in x^3 . Assume that

$$U(t, x, p) \ge V(t, x, p)$$
 if $t = T$ or $x^1 \in \{0, 2\hat{x}^1\}$,

and $\exists \textit{c}_{+} > 0, \textit{c}_{-} \in \mathbb{R}$ such that

 $\limsup_{(t',x',p')\to(t,x,\infty)}V(t',x',p')/p'\leq c_+\leq \liminf_{(t',y',p')\to(t,y,\infty)}U(t',y',p')/p'\;,$

 $\limsup_{(t',x',p')\to(t,x,-\infty)}V(t',x',p')\leq c_-\leq \liminf_{(t',y',p')\to(t,y,-\infty)}U(t',y',p').$

If either U is a viscosity supersolution of (*) and continuous in p, or V is a viscosity subsolution of (**) and continuous in p, then

$$U \geq V$$
.

Minh N. Dang

Trading issues 0000000	Outline		Conclusion

Conclusion

- Propose generalized stochastic target problem:
 - controls in the form of bounded variation process
 - under state constraint.
- Suitable framework for:
 - pricing derivatives under loss constraint
 - models involving liquidity costs.
- Application in optimal liquidation: Pricing guaranteed VWAP contract with trading envelopes.
- Under "good assumptions", comparison holds.
- Work on numerical resolution is in progress.

Minh N. Dang

Trading issues 0000000	Outline		

Thank you for your attention

Minh N. Dang

B. Bouchard, R. Elie, and N. Touzi.

Stochastic target problems with controlled loss. *SIAM Journal on Control and Optimization*, 48(5), 3123–3150, 2009.

B. Bouchard and T. N. Vu.

The American version of the geometric dynamic programming principle, Application to the pricing of american options under constraints.

Applied Mathematics and Optimization, 61(2), 235–265, 2010.

🔒 H. M. Soner and N. Touzi.

Super-replication under Gamma constraint.

Journal on Control and Optimization, 39, 73-96, 2000.

H. M. Soner and N. Touzi.

Stochastic target problems, dynamic programming and viscosity solutions.

Minh N. Dang

SIAM Journal on Control and Optimization, 41, 404–424, 2002.

H. M. Soner and N. Touzi.

The problem of super-replication under constraints,

to appear in Paris-Princeton Lectures in Mathematical Finance, Lecture Notes in Mathematics, Springer-Verlag.

H. M. Soner and N. Touzi.

Dynamic programming for stochastic target problems and geometric flows.

Journal of the European Mathematical Society, 4, 201–236, 2002.

Minh N. Dang