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VWAP guaranteed contract

VWAP guaranteed contract

I Liquidation K stocks during [0,T ].

I Guarantee a better than δ basis point w.r.t market VWAP:

Guaranteed VWAP =
(
1 + δ · 10−4

)︸ ︷︷ ︸
γ

VWAPmkt .

I Brokerage fee: ask for a premium such that, up to a
functional:

premium + realized gain ≥ 0 a.s. (1)
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VWAP guaranteed contract

Mathematical modeling

I VWAP: Volume Weighted Average Price

I Cumulative trading volume Lt : continuous real-valued, non
decreasing adapted process and

L0 = 0 , LT = K . (2)

I Stock price X L,1(t)

I Cumulative market volume: Θ(t) :=
∫ t
0 ϑ(s)ds .

Execution turnover : dY L(t) = X L,1(t)dLt

Market turnover : dX L,2(t) = X L,1(t)dΘt = X L,1(t)ϑ(t)dt

Y L(0) = X L,2(0) = 0 .
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VWAP guaranteed contract

Mathematical modeling cont.

I Due to price impact effect: stock price is influenced by trading
activity

I In case of linear impact

dX L,1(t)

X L,1(t)
= µ(t,X L,1(t))dt+σ(t,X L,1(t))dWt−β(t,X L,1(t))dLt .

I Realized gain in cash(
Y L(T )

K
− γX

L,2(T )

Θ(T )

)
K .
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VWAP algorithm - Trading envelops

VWAP benchmark

I VWAP: involve (price, proportion of volume) jointly

I S : stock price, (vt)t∈[0,T ]: density of trading volume

I Define

pt =

∫ t
0 vudu∫ T
0 vudu

then p0 = 0, pT = 1 and VWAP =

∫ T

0
Stdpt .

I VWAP benchmark, heuristically, minimize the following
quantity (pX , pM : broker and market trading curve)∫ T

0
Stdp

X
t −

∫ T

0
Stdp

M
t

=⇒ Follow the market “ ≡ ” minimize ‖pX − pM‖.
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VWAP algorithm - Trading envelops

Volume curve
I In reality, unable to determine (pMt ), t ∈ [0,T ] before T !
I One of possible proxies:

pXt ∈ [lMt , u
M
t ] : so-called trading envelope.

Figure: Trading envelopes
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VWAP algorithm - Trading envelops

Mathematical modeling

I Introduce X L,3:
X L,3(t) = Lt − L0 .

I Then require

X L,3(s) ∈ [Λ(s),Λ(s)] for all s ≤ T , (3)

where

Λ < Λ on [0,T ) and Λ(T ) = Λ(T ) = K .

I For future utilization, also require:

DΛ,DΛ ∈ (0,M] on [0,T ] for some M > 0 .
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VWAP algorithm - Trading envelops

Summarized problem

I For a control variable L, consider
(Y ,X = (X L,1,X L,2,X L,3),Θ) whose dynamics are given as
above.

I Given a function `, finding y minimum such that (Equation
(1))

`

(
y +

(
Y L(T )

K
− γX

L,2(T )

Θ(T )

)
K

)
≥ 0 ,

I and also

equation (2), (3) hold : X L,3(s) ∈ [Λ(s), Λ̄(s)] for all s ≤ T .

=⇒ Stochastic Target

under State Constraints problem
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Abstract model

Problem formulation
I Given φ = (ν, L) ∈ A := U × L the set of controls
I Zφ = (Xφ,Y φ) ∈ Rd × R verifies:

dXφ = µX (Xφ, νr )dr + βX (Xφ)dL + σX (Xφ, νr )dWr

dY φ = µY (Zφ, νr )dr + βY (Zφ)>dL + σY (Zφ, νr )>dWr .

I Under Standing Assumption on constraint set:

∀(t, x) : (x , y) ∈ O(t) , y ′ ≥ y ⇒ (x , y ′) ∈ O(t) .

I Then

V (t) :=
{

(x , y) : Zφt,x ,y (s) ∈ O(s) ∀t ≤ s ≤ T
}
.

is equivalent to

v(t, x) := inf {y : (x , y) ∈ V (t)} .
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Examples

Super-hedging with cash delivery and proportional costs

I Let d = 2 and µiX (x , u) = x iµ, σiX (x , u) = x iσ, for i ∈ {1, 2},

β21X (x) = −1 , β22X (x) = 1 , βY (x , y) = (1− λ,−1− λ) .

I Then, X L,1 follows a Black-Scholes dynamics, and

X 2,L
t,x (s) = x2 +

∫ s

t

X 2,L
t,x (r)

X 1
t,x(r)

dX 1
t,x(r)−

∫ s

t
dL1r +

∫ s

t
dL2r

Y L
t,y (s) = y +

∫ s

t
(1− λ)dL1r −

∫ s

t
(1 + λ)dL2r .

I Define O(t) = 1t<TR∗+ ×R2 + 1t=T {(x , y) : Λ(y , x) ≥ g(x)}
with Λ(y , x) := y + (1− λ)x2.
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Examples

Loss function pricing
I Super-hedging criteria is too strict in markets with

proportional costs
I Given a non-decreasing function `, price at time t:

v̂(t, x ; p) := inf
{
y : E

[
`
(

Λ(Y L(T ),X L(T ))− g(X 1(T ))
)]
≥ p

}
I Bouchard-Elie-Touzi (2009) shows that

v̂(t, x ; p) := inf
{
y : GL

t,x ,y (T ) ≥ Pνt,p(T ) , (ν, L) ∈ U × L
}

where

GL
t,x ,y (T ) = `

(
Λ(Y L

t,y (T ),X L
t,x(T ))− g

(
X 1
t,x(T )

))
∈ L2

Pνt,p := p +

∫ ·
t
ν1sdW

1
s .
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Geometric dynamic programming

Geometric dynamic programming

I Firstly introduced by Soner and Touzi for super-hedging under
Gamma constraints

I Extended to American type constraints: obstacle version of
Bouchard-Vu (2010)

Theorem:

V (t) =

{
z : ∃ φ ∈ A s.t. Zφt,z(θ ∧ τ) ∈ O

τ,θ⊕
V for all θ, τ ∈ T[t,T ]

}
.

O

τ,θ⊕
V := O(τ) 1τ≤θ + V (θ) 1τ>θ for θ, τ ∈ T[0,T ] .
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Geometric dynamic programming

Geometric dynamic programming

I Firstly introduced by Soner and Touzi for super-hedging under
Gamma constraints

I Extended to American type constraints: obstacle version of
Bouchard-Vu (2010)

Theorem: For all φ ∈ U × L and θ ∈ T[t,T ]

1. GDP1: y > v(t, x)

Y φ
t,x ,y (θ) ≥ v(θ,Xφ

t,x(θ)) and Zφt,x ,y ∈ O ∀ s ∈ [t,T ] .

2. GDP2: y < v(t, x), then ∀ (φ, θ) ∈ A× T[t,T ]

P
[
Y φ
t,x ,y (θ) > v(θ,Xφ

t,x(θ)) and Zφt,x ,y ∈ O ∀ s ∈ [t,T ]
]
< 1 .
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Informal PDE derivation

Interior of the domain
In the case where βX = βY = 0:

I y = v(t, x), GDP implies that ∃ν ∈ U such that:

for φ = (ν, 0) then dY φ
t,x ,y (t) ≥ dv(t,Xφ

t,x(t)) . (4)

I Formally:

dY φ(t) = µφY (Zφ, νt)dt + σY (Zφ, νt)dWt

dv(t,Xφ(t)) = LνtX v(t,Xφ)dt + Dv(t,Xφ(t))>σX (Xφ, νt)dWt

I Inequality (4) suggests:

µY (Zφ, νt) ≥ LνtX v(t,Xφ)

and σY (Zφ, νt) = σX (Xφ, νt)
>Dv(t,Xφ(t)) ,

but in our case, also(
βY (Zφ)> − Dv(t,Xφ(t))>βX (Xφ)

)
dLt ≥ 0 .
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Informal PDE derivation
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In the case where βX , βY 6= 0:

I y = v(t, x), GDP implies that ∃ν ∈ U such that:

for φ = (ν, L) then dY φ
t,x ,y (t) ≥ dv(t,Xφ

t,x(t)) . (4)

I Formally:

dY φ(t) = · · ·+ βY (Zφ)dLt

dv(t,Xφ(t)) = · · ·+ Dv(t,Xφ(t))>βX (Xφ)dLt

I Inequality (4) suggests:

µY (Zφ, νt) ≥ LνtX v(t,Xφ)

and σY (Zφ, νt) = σX (Xφ, νt)
>Dv(t,Xφ(t)) ,

but in our case, also(
βY (Zφ)> − Dv(t,Xφ(t))>βX (Xφ)

)
dLt ≥ 0 .

Minh N. Dang

Generalized stochastic target problems for pricing and partial hedging under loss constraints - Application in optimal book liquidation



Trading issues Outline Generalized stochastic target problem Liquidation problem Conclusion

Informal PDE derivation

Interior of the domain cont.
Define

F u
ε := sup {µY (x , y , u)− LuX v , u ∈ Nεv}

G := max
{

[βY (z)> − Dv(t, x)βX (x)]` , ` ∈ ∆+

}
where

Nεv := {u ∈ U : |σY (·, v , u)− DvσX (·, u)| ≤ ε}
∆+ := Rd

+ ∪ ∂B1(0) .

then PDE characterization in the interior of the domain:

max{F0v ,Gv} = 0 on (t, x , v(t, x)) ∈ int(D)

where D := {(t, x , y) : (x , y) ∈ O(t)} .
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Informal PDE derivation

On the boundaries of the domain

I Suppose ∃δ ∈ C 1,2 such that δ = 0 uniquely in ∂D, takes
opposite sign inside and outside of D

I Then the state constraints require:

dδ(Zφt,z(t)) ≥ 0 if (t, z) ∈ ∂D .

I Hence,

LuZδ(t, x , y) ≥ 0 and Dδ(t, x , y)σZ (x , y , u) = 0 .

I Define F in
0 and G in similarly as above, then PDE:

max
{
F in
0 v ,G inv

}
= 0 on (t, x , v(t, x)) ∈ ∂D .

I Terminal condition + Relax all operators in
(ε, t, x , v ,Dv ,D2v) . . .
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Problem formulation

Mathematical modeling of the VWAP liquidation problem
Value function:

v(t, x , p) := inf

{
y : ∃L ∈ L

∣∣ X 3,L
t,x ∈ [Λ,Λ] and E

[
Ψ(ZL

t,x ,y (T ))
]
≥ p

}
where Ψ(x , y) = `(y − γx2) .

Theorem:

v(t, x , p) := inf{y ≥ 0 : At,x ,y ,p 6= ∅} ,

where At,x ,y ,p :=
{

(ν, L) ∈ A
∣∣ (ZL

t,x ,y ,P
ν
t,p) ∈ V on [t,T ]

}
with

V :=
{

(x , y , p) : x3 ∈ [Λ,Λ]
}
1[0,T )

+
{

(x , y , p) : x3 = K and `(y − γx2) ≥ p
}
1{T} ,

and Pνt,p := p +
∫ ·
t νsdWs .
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PDE characterization

PDE characterization

Proposition: Under “good assumption”, v∗ is a viscosity
supersolution of

max
{
F0ϕ , x

1 + x1βDx1ϕ− Dx3ϕ
}

= 0 .

And v∗ is a subsolution of

min
{
ϕ , max

{
F0ϕ , x

1 + x1βDx1ϕ− Dx3ϕ
}}

= 0 if Λ < x3 < Λ
min

{
ϕ , x1 + x1βDx1ϕ− Dx3ϕ

}
= 0 if Λ = x3

min {ϕ , F0ϕ} = 0 if x3 = Λ .

Moreover,

v∗(T , x , p) = v∗(T , x , p) = Ψ−1(x , p) for all (x , p) ∈ [0,∞)2×{K}×R .
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Additional assumption and a priori estimates

Additional assumption

I Operator F0 defined as:

F0ϕ := −LXϕ−
(x1σ)2

2

(
|Dx1ϕ/Dpϕ|2D2

pϕ− 2(Dx1ϕ/Dpϕ)D2
(x1,p)ϕ

)
with

LXϕ := ∂tϕ+ x1µDx1ϕ+ x1ϑDx2ϕ+
1

2
(x1σ)2D2

x1ϕ .

I “Good assumption” on loss function `

∃ε > 0 s.t. ε ≤ D−` , D+` ≤ ε−1 ,
and lim

r→∞
D+`(r) = lim

r→∞
D−`(r) =: D`(∞) .

I Also other conditions on boundaries Λ,Λ.
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Additional assumption and a priori estimates

A priori estimates

I Proposition: h ∈ (−(x1 ∧ 1), 1)

, ∃C depends only in x s.t.

v(t, x , p) ≥

max
{

v(t, x , p − ε−1|h|) + |h|

, v(t, x + he1, p − C (x)|h|)
}
.

I Corollary:

v∗ is a viscosity supersolution of

min {

Dpϕ− ε

, (Dx1ϕ− C (x)Dpϕ)1x1>0,−Dx1ϕ+ C (x)Dpϕ}

= 0, (∗)

and v∗ is a viscosity subsolution of

max {

−Dpϕ+ ε

, (Dx1ϕ− C (x)Dpϕ)1x1>0,−Dx1ϕ+ C (x)Dpϕ}

= 0(∗∗)
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Comparison theorem

Comparison principle and uniqueness
Assumption: ∃ x̂1 > 0 s.t. µ(·, x̂1) = σ(·, x̂1) = 0 .
Theorem: U (resp. V ) non-negative lower-semicontinuous
supersolution(resp. upper-semicontinuous subsolution) and
continuous in x3. Assume that

U(t, x , p) ≥ V (t, x , p) if t = T or x1 ∈ {0, 2x̂1},
and ∃c+ > 0, c− ∈ R such that

lim sup
(t′,x ′,p′)→(t,x ,∞)

V (t ′, x ′, p′)/p′ ≤ c+ ≤ lim inf
(t′,y ′,p′)→(t,y ,∞)

U(t ′, y ′, p′)/p′ ,

lim sup
(t′,x ′,p′)→(t,x ,−∞)

V (t ′, x ′, p′) ≤ c− ≤ lim inf
(t′,y ′,p′)→(t,y ,−∞)

U(t ′, y ′, p′) .

If either U is a viscosity supersolution of (∗) and continuous in p,
or V is a viscosity subsolution of (∗∗) and continuous in p, then

U ≥ V .
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Conclusion

I Propose generalized stochastic target problem:
I controls in the form of bounded variation process
I under state constraint.

I Suitable framework for:
I pricing derivatives under loss constraint
I models involving liquidity costs.

I Application in optimal liquidation: Pricing guaranteed VWAP
contract with trading envelopes.

I Under “good assumptions”, comparison holds.

I Work on numerical resolution is in progress.
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Thank you for your attention
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