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Geometrical Brownian motion and Running
supremum

Third Lesson in the master program

Let S; be a geometrical Brownian motion, such that S7 is a martingale and

S = sup,<; Sy- it running supremum.

® By the symmetry principle, we have

P(St < K,5p 2 H)=P(57 < K, Ty <T)
T\ H? T\ Kx
p— — _ < p— _ -
(H) P<$2 ST—K) <H) N(51(H2’U’T>>’

P(Sr < K) :N(51 (%,U,T)) :N(—5O(§,U,T)).

and
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Theorem

The tail function de St given {St = K} is given for x, K < H by

2 K
P(Sh > H | St = K) — exp (_ OzTLn(ﬁ)Ln(%))

® Very useful for instance in Mont Carlo simulation of Barrier Option

® The proof is not completely immediate...
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Azéma-Yor Processes
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Azéma-Yor Processes (1979)

As usual, (2, F;,P) is a filtered probability space, satisfying usual assumptions.

Notation and basic properties

® The running supremum or maximum process of some adapted cadlag

process X is defined as
X; =sup X,.

u<t
Between two dates, we write X1 = sup,,,<; Xu-

Properties

—> X, is an increasing process, right-continuous, with the “max-additivity”
property X; = X,V Ys,t.

— When X, is a continuous process, for instance when the process X has only

negative jumps, the process X, only increases when X; = X,, that is

T
/ (yt - Xt)dyt — O
0
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Let u be a locally bounded Borel function. The primitive function
U(z) =a* + f(a 2 U(s) ds is defined on [a, 00).

Definition of AY Process

Let X be a cadlag semimartinale with continuous running supremum
X, = SUp, <¢ Xu, and u a locally bounded function.

The (U, X)-Azéma-Yor process is defined by one of these two equations
M7 (X) = UXy)+u(X) (X — Xy)

t
or = a*—|—/ u(X¢)dXs
0

If X is a local martingale, M is also a local martingale.
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Main properties

—> The equivalence between the two equations is straightforward when U is a

regular function, since from It6’s formula

dMY (X) = w(X)dX; +u(X)(dX, — dX,) + (X, — Xo)u'(X,)dX,
= u(Xy)dX;

—> The case of locally integrable function u can be attained for continuous local
martingale X (Obloj,Yor 2004)
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Bachelier equation

Non decreasing transformation

Let U,,, be the set of primitive function U of non negative locally bounded functions
u, and G,, the subgroup of increasing functions U s.t. the increasing inverse
function V' of U, with first right-hand derivative V' := v is in U,,.

® Let U be in U,,, X be a max-continuous semimartingale. The

(U,X)-Azéma-Yor process (MU (X)) is a max-continuous semimartingale since,

M (X) =U(Xy) =U(Xy),

e Pick F in U,,. Then, MY (MF (X)) = MP°F(X).

e Moreover, the processes MY (X) associated with U € G,,, is a group under the

multiplication ® defined by

MY @ M" .= MU°".
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e If u is only defined on [a,b), MY (X) may be defined up to the exit time T} of
la,b) by X.

e If u is non negative, MV(X), 1, = U(Xir1,)
Bachelier equation

e By the property of the inverse, uoV =1/V' =1/v
o Since M, = U(Xy), u(X;) = uo V(UX,)) = (1/v)(M, ).
The AY-process is a solution of

dMY = (1/v)(M )dXt

Such equations were first introduced by Bachelier in 1906.
Definition: Let ¢ : [a*,00) be a locally bounded away from 0 function and X as

below. The Bachelier equation is

dY, = ¢(Y)dX:, Yo=a*
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Existence
= MY is a solution associated with ¢ = 1/v.

—> Conversely, given ¢ : [a*,00) — (0,00) be a Borel function locally bounded
away from zero, v = 1/¢ and V a primitive of v. Then the inverse function U of
V is defined on (a*, V(00)).
Y; = MY (X) is a solution of the Bachelier equation on (0,7y_).
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Example

® X is a geometrical Brownian motion with volatility o,
® U is the power function U(x) = 27,7 < 1
Then,
— The AY Process Yy = MY (X,) = X, (1 —7) +v(X;)""' X, is also given by
Vi =Y -)+7(3)"]
—> The process Z; = X, is a supermartingale, with dynamic

dX; 1
dZ; = vZ; (7’5 — 5 (1= 7)o%dt)
t

The martingale Yy is still above the supermartingale Z

—> The Bachelier equation becomes

dY, = v(Y )1~V dX,

NEK, UPMC/CMAP
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Bachelier equation with power function

— M7 —Z, —Z

» \ ‘“4’1,.._.
" \7”‘ e

In green the AY process Y, in blue the path of Z, in red the running supremum of Y
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Bachelier equation with power function

n
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In red the AY process Y, in blue the path of Z, in green the martingale part of Z

NEK, UPMC/CMAP 13



Paris, January 2011 Drawdown properties of the Bachelier equation

Drawdown properties of the Bachelier equation

Def : Given a cadlag process X, and a (increasing) function w such that w(s) < s,
a DD constraint is a constraint of the type, X; > w(X}).

AY process and DD Constraints

Let X be a non negative max-continuous semimartingale and © a non negative

function, U its primitive, and V the inverse function of U.

— The AY-process M = U(X;) — u(X;)(X; — X;) satisfies the DD Constraint
MY > w(ﬁg ), where the function w is given by

w(y) = (U — Id u)oV (y) = y —

<y

—> w is an increasing function if and only if U(x) (V(y) ) is a concave(convex)

function.

= Then MU > U(X,) = Z; = UMY (V}))
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DD and Bachelier equation

—> In terms of Bachelier equation associated with ¢(y) = V,#@), we have:

The solution Y satisfies the DD constraint with the function w obtained by

e Taking a primitive V of V'(y) = 1/¢(y) and

e Putting w(y) =y — \‘//’((Z))

e Conversely, given a function w, put ¢(y) = (V'(y))~ !, where V is a solution

of the ODE equation
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Dynamic strategy with drawdown constraints

Grossmann-Zhou(93), Cvitanic -Karatzas(95), Uryasev & alii(05),
Elie& Touzi (2006-2008), Roche(06)......
Why DD constraints?

e Hedge funds : The final decision of a client into opening an
account with a manager is most likely based on his account’s

drawdown sizes and duration.
e Client would not tolerate drawdown for a long time period.

e In an investment bank setup, for proprietary trading, warming

drawdown level are generally fixed to 20%
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Strategy with Drawdown Constraints

Problem :7o find a portfolio strategy based on a reference asset satisfying some

drawdown constraints on the discounted prices at any time.

Framework

the reference asset is the discounted value S; of some strategic portfolio.

There exists a probability measure Q such that S; is a Q local martingale.

the discounted value of any portfolio strategy m evolves as:

dXT =m%t, X§=u
Drawdown constraints C.K (1995): X7 > aX,, Vt, 0<~vy<1.

More generally, let w be a positive increasing function such that w(x) < x.
The DD-constraint becomes X7 > w(X, ) Vt.
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Portfolio Point of view

The AY-Martingale MY (S);, associated with some well-chosen function U is an

admissible portfolio, if the budget constraint is satisfied.

—> Given a increasing DD-function w, with w(z) < x, let V be a positive solution

of the ODE
Vity) 1

Viy)  y—w(y)

—> Then V is convex and its inverse function U is concave increasing.

= Then Y = MY (S) is a self-financing strategy such that

—uU.,dS
dMY = (MY — w(M; ))?:

e The portfolio strategy is very simple: at any time the amount invested in the

risky asset is the distance to drawdown, and the amount invested in cash is
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® There is a floor process Z; = U(S;), which is a supermartingale.
® The existence of the floor implies a budget constraint that x > U(Sy).

® The initial condition M{ = z is satisfied if the function V is chosen such that

® When w(y) = (1 — )y, U(x) = Cx"

NEK, UPMC/CMAP
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Bachelier solution of a power function

In black the AY process Y, in red the path of Z, in green the martingale part of Z,

in blue the Z running supremum
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American Call options, and AY-martingales
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Darling, Ligget, Taylor Point of View,(1972)

® Z is a supermartingale on [0, (] and E[|Z || < +o0

® Assume Z to be a conditional expectation of some running supremum

process zs,t — SUP{sgugt} Lu, such that EUZO»CH < 400 and Zt = E[Eudft]

American Call options Let C;(Z, m) be the American Call option with strike m,
Ci(Z, m) = esssup;cg<; E|(Zs —m)T|F;|. Then

Ct(Z, m) == E[(Et’g V ZC — m)ﬂft}

and the stopping time D¢(m) = inf{s € [t,(]; Ls > m} is optimal.
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Proof

— E[(Zt,g — m)+|.7—"t] is a supermartingale dominating E[ft,c\ft} —m =y —m,
and so Cy(Z,m)

= Conversely, since on {6 = Dy(m) < oo}, Lg ¢ > m, at time § = Dy(m), we can
omit the sign +, and replace (Lg,c — m) by its conditional expectation

Zp,(m) — M, still nonnegative.
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Perpetual American Call Options and Azéma Yor
martingales

Framework
® (N,) is a positive local martingale, which tends to 0 as ¢t goes to oo.

® g is a continuous increasing function on R™ whose increasing concave envelope
U is finite.

® the underlying process of the option is Yy = ¢g(/V¢), and we assume that
Efsupo,q [9(N,)]] < oo.

Galtchouk, Mirochnitchenko Result (1994): The process Z¢ = U (V) is the

Snell envelope of Y,

® 7, =U(Ny) is the running supremum of Z, and Zs; = sup,<, <, Zy is the
running supremum between s and t.
o M” =U(N;)—u(N¢)(Ny — Ny) is the Azéma Yor martingale associated with

U. Observe that the concavity of U implies that at any time ¢, MY > Z;.
NEK, UPMC/CMAP 24
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Main Result

Theorem Under the previous assumption, Z is the conditional expectation of the
running supremum (N, o) where h(y) = U(y) — yu(y) is a nondecreasing

function on R.

® The American Call option Cy(Z, m) is optimally stopped at the time
D.(m) = inf{s € [t, 00]; h(N¢) > m}.

® The Call price at time t is given by
Ci(Y,m) = E[(M(Nt,00) —m)T|Fi] = V(N,m) = ¢(Ny) —m

where V(z,m) is the concave envelope of (g(z) —m)™.

Proof:We only have to observe that Z; = U(N;) = E[h(N¢.o0 )| Ft-
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The concave envelop of u(y) Vm

The concave envelop of u(y) Vm

—— ufx) — uxwm —— tangente —— @ (x,m)
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American Call Options for Supermartingales with
Independent Increments

Continuous case Let N be a geometric Brownian motion with return=0 and

volatility to be specified. Let Z be a supermartingale defined on |0, oo] such that

® a geometric Brownian motion with negative drift ,

dTZ: = —rdt + odW;, Zy=2z>0.

® Setting v =1+ %, N; = Z is a local martingale, with volatility vyo

e 7, = U(N,) where U is the increasing concave function U(z) = /7.

o hiz)=U(x)—zu(z) ==Lt/ =221,
v v

® the optimal boundary for American Call options, is given by y*(m) = —= m,

where 25 =E[Z /Zo].
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® Let Z be a Brownian motion with negative drift —(r + 302) > 0
dZ; = —(r + %O‘2)dt +odWy, Zy=z.
Then Z; = %ln(Nt), h(z) =z — % and the Call American boundary is

y*(m) =m+ .

® the exponentional of a Lévy process with jumps
Assume Z to be a supermartingale with a continuous and integrable
supremum. Then the same result holds with a modified coefficient vz, such

that Z'"" defines a local martingale that goes to 0 at co.

e Finite horizon 71" without Azéma-Yor martingale

Same kind of solution: we have to find a function b(.) such that at any time ¢

Zy = E[ sup b(T — u)Zu}]:t}

t<u<T
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Paris, January 2011 Universal Boundary and Pricing Rule

Universal Boundary and Pricing Rule

Framework: Let Z = U(INV.) be a increasing concave function of the cadlag local
martingale N going to 0 at infinity, with continuous running supremum. Assume

EHZO’OO” < +00Q.

® Let V be the increasing convex, inverse function of U, such that V(Z) = N is a

local martingale and w(z) =hoV(z) =z — “///<(Z)) Then
Zy =Elw(Zeoo)| 7], CF (m) =E[(w(Zt,00) —m) " | F]

e Optimal boundary and price of the American Call options are given by the

universal rule
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Universal Boundary and Pricing Rule

NEK, UPMC/CMAP

30



Paris, January 2011

Max-Plus decomposition

Azéma-Yor martingales are well adapted to get very easily explicit formulae for

optimal strategies in portfolio insurance.

The same ideas may be used in ageneral case, based on a new decomposition of

general supermartingale.
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Max-Plus Supermartingale Decomposition

Let Z be a cadlag supermartingale in the class (D) defined on [, ].

® There exists L = (Lt)<t<g

running supremum Lj ;. = SUP;<, <5 L, S-t.

adapted, with upper-right continuous paths with

¢
Zy =E|( SupCLu) V Z|F] =E[L{ @ Zc| ] = E[]{ Ly @ Zc\Ft}
t<u< t

® Let M® be the martingale: MY := E[LS’C D ZC‘}})].Then,
MP>max(Zy, Ly ,) = Zy d Ly, <t<(
and the equality holds at times when L* increases or at maturity (:

Mg =max(Zg,Lj g) = Zs ® Lj, ¢ for all stopping times S € A U {(}.
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Martingale optimization problem

The optimization problem
Set M(z) = { (Mt),>q uwimartingale| My = z and My > Y Vt € [O,C]}

e We aim at finding a martingale (M;*) in M(x) such that for all martingales
(M) in M(x)
MZ <cx MC

® The initial value of any martingale dominating Y must be at least equal to the

one of the Snell envelope ZJ = sup, ¢ CEY],

NEK, UPMC/CMAP 33



Paris, January 2011 Z¥ - Max-Plus Martingale is optimal

Z¥- Max-Plus Martingale is optimal

The martingale MY ® of the Z¥ Mazx Plus decomposition is the smallest martingale

in MY (Z3), with respect to the convex stochastic order on the terminal value. In

particular, MS/’@ is less variable than M?(Y).

Sketch of proof: Let M be in MY (Z}). Since M dominates Z¥ , the American
Call option C;(M,m) also dominates C;(ZY,m). By convexity,

Cy(M,m) =E[(M; —m)*|Fs] > E[(Ly VY —m)"|Fs] VSeT.
More generally, this inequality holds true for any convex function ¢, and
Elg(Mc)] > E[g(Lg s v Ye)] = E[g(M )]

Initial condition z > Z} Same result by using L*>*S,{ V m in place of ng
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