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Geometrical Brownian motion and Running
supremum

Third Lesson in the master program

Let St be a geometrical Brownian motion, such that Sγ is a martingale and
S = supu≤t Su. it running supremum.

• By the symmetry principle, we have

P(ST ≤ K,S∗T ≥ H) = P(ST ≤ K,TH ≤ T )
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Theorem
The tail function de ST given {ST = K} is given for x,K ≤ H by

P(S∗T ≥ H | ST = K) = exp

(
− 2

σ2T
Ln
(K
H

)
Ln
( x
H

))

• Very useful for instance in Mont Carlo simulation of Barrier Option

• The proof is not completely immediate...
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Azéma-Yor Processes
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Azéma-Yor Processes (1979)
As usual, (Ω,Ft,P) is a filtered probability space, satisfying usual assumptions.
Notation and basic properties

• The running supremum or maximum process of some adapted cadlag
process X is defined as

Xt = sup
u≤t

Xu.

Between two dates, we write Xs,t = sups<u≤tXu.

Properties

⇒ Xt is an increasing process, right-continuous, with the “max-additivity”
property Xt = Xs ∨Xs,t.

⇒ When Xt is a continuous process, for instance when the process X has only
negative jumps, the process Xt only increases when Xt = Xt, that is∫ T

0

(Xt −Xt)dXt = 0
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Let u be a locally bounded Borel function. The primitive function
U(x) = a∗ +

∫
(a,x]

u(s) ds is defined on [a,∞).

Definition of AY Process

Let X be a cadlag semimartinale with continuous running supremum
Xt = supu≤tXu, and u a locally bounded function.
The (U,X)-Azéma-Yor process is defined by one of these two equations

MU
t (X) = U(Xt) + u(Xt)(Xt −Xt) (1)

or = a∗ +

∫ t

0

u(Xt)dXs (2)

If X is a local martingale, MU
t is also a local martingale.
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Main properties

⇒ The equivalence between the two equations is straightforward when U is a
regular function, since from Itô’s formula

dMU
t (X) = u(Xt)dXt + u(Xt)(dXt − dXt) + (Xt −Xt)u

′(Xt)dXt

= u(Xt)dXt

⇒ The case of locally integrable function u can be attained for continuous local
martingale X (Obloj,Yor 2004)
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Bachelier equation
Non decreasing transformation

Let Um be the set of primitive function U of non negative locally bounded functions
u, and Gm the subgroup of increasing functions U s.t. the increasing inverse
function V of U , with first right-hand derivative V ′ := v is in Um.

• Let U be in Um, X be a max-continuous semimartingale. The
(U,X)-Azéma-Yor process (MU

t (X)) is a max-continuous semimartingale since,

MU
t (X) = U(Xt) = U(Xt),

• Pick F in Um. Then, MU
t

(
MF(X)

)
= MU◦F

t (X).

• Moreover, the processes MU (X) associated with U ∈ Gm is a group under the
multiplication ⊗ defined by

MU ⊗MF := MU◦F .
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• If u is only defined on [a, b), MU (X) may be defined up to the exit time Tb of
[a, b) by X.

• If u is non negative, MU (X)t∧Tb = U(Xt∧Tb)

Bachelier equation

• By the property of the inverse, u ◦ V = 1/V ′ = 1/v

• Since M
U

t = U(Xt), u(Xt) = u ◦ V (U(Xt)) = (1/v)(M
U

t ).

The AY-process is a solution of

dMU
t = (1/v)(M

U

t )dXt

Such equations were first introduced by Bachelier in 1906.
Definition: Let φ : [a∗,∞) be a locally bounded away from 0 function and X as
below. The Bachelier equation is

dYt = φ(Y t)dXt, Y0 = a∗
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Existence

⇒ MU
t is a solution associated with φ = 1/v.

⇒ Conversely, given φ : [a∗,∞)→ (0,∞) be a Borel function locally bounded
away from zero, v = 1/φ and V a primitive of v. Then the inverse function U of
V is defined on (a∗, V (∞)).
Yt = MU

t (X) is a solution of the Bachelier equation on (0, TV∞).
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Example
• X is a geometrical Brownian motion with volatility σ,

• U is the power function U(x) = xγ , γ < 1

Then,

⇒ The AY Process Yt = MU(Xt) = X
γ

t (1− γ) + γ(Xt)
γ−1Xt is also given by

Yt = Y t

[
(1− γ) + γ

(
Yt
Y t

)1/γ]
⇒ The process Zt = Xγ

t is a supermartingale, with dynamic

dZt = γZt
(dXt

Xt
− 1

2
(1− γ)σ2dt

)
The martingale Yt is still above the supermartingale Z

⇒ The Bachelier equation becomes

dYt = γ(Y t)
1−1/γdXt
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Bachelier equation with power function

In green the AY process Y , in blue the path of Z, in red the running supremum of Y
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Bachelier equation with power function

In red the AY process Y , in blue the path of Z, in green the martingale part of Z
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Drawdown properties of the Bachelier equation
Def : Given a cadlag process X, and a (increasing) function w such that w(s) < s,
a DD constraint is a constraint of the type, Xt ≥ w(Xt).
AY process and DD Constraints
Let X be a non negative max-continuous semimartingale and u a non negative
function, U its primitive, and V the inverse function of U .

⇒ The AY-process MU
t = U(Xt)− u(Xt)(Xt −Xt) satisfies the DD Constraint

MU
t ≥ w(M

U

t ), where the function w is given by

w(y) = (U − Id .u)oV (y) = y − V (y)

V ′(y)
≤ y

⇒ w is an increasing function if and only if U(x) (V (y) ) is a concave(convex)
function.

⇒ Then MU
t ≥ U(Xt) = Zt = U(MV (Yt))
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DD and Bachelier equation

⇒ In terms of Bachelier equation associated with φ(y) = 1
V ′(y) , we have:

The solution Y satisfies the DD constraint with the function w obtained by

• Taking a primitive V of V ′(y) = 1/φ(y) and

• Putting w(y) = y − V (y)
V ′(y)

• Conversely, given a function w, put φ(y) = (V ′(y))−1, where V is a solution
of the ODE equation

V ′(y)

V (y)
=

1

y − w(y)
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Dynamic strategy with drawdown constraints

Grossmann-Zhou(93), Cvitanic -Karatzas(95), Uryasev & alii(05),
Elie& Touzi (2006-2008), Roche(06)......
Why DD constraints?

• Hedge funds : The final decision of a client into opening an
account with a manager is most likely based on his account’s
drawdown sizes and duration.

• Client would not tolerate drawdown for a long time period.

• In an investment bank setup, for proprietary trading, warming
drawdown level are generally fixed to 20%

NEK, UPMC/CMAP 16



Paris, January 2011 Strategy with Drawdown Constraints

Strategy with Drawdown Constraints
Problem :To find a portfolio strategy based on a reference asset satisfying some
drawdown constraints on the discounted prices at any time.
Framework

• the reference asset is the discounted value St of some strategic portfolio.
There exists a probability measure Q such that St is a Q local martingale.

• the discounted value of any portfolio strategy π evolves as:
dXπ

t = πt
dSt
St
, Xπ

0 = x

• Drawdown constraints C.K (1995): Xπ
t > αX

π

t , ∀t, 0 < γ < 1.

• More generally, let w be a positive increasing function such that w(x) < x.
The DD-constraint becomes Xπ

t ≥ w(X
π,∗
t ) ∀t.
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Portfolio Point of view
The AY-Martingale MU (S)t, associated with some well-chosen function U is an
admissible portfolio, if the budget constraint is satisfied.

⇒ Given a increasing DD-function w, with w(x) < x, let V be a positive solution
of the ODE

V ′(y)

V (y)
=

1

y − w(y)

⇒ Then V is convex and its inverse function U is concave increasing.

⇒ Then Y = MU (S) is a self-financing strategy such that

dMU
t =

(
MU

t −w(M
U

t )
)dSt
St

• The portfolio strategy is very simple: at any time the amount invested in the
risky asset is the distance to drawdown, and the amount invested in cash is
w(M

U

t ).
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• There is a floor process Zt = U(St), which is a supermartingale.

• The existence of the floor implies a budget constraint that x ≥ U(S0).

• The initial condition MU
0 = x is satisfied if the function V is chosen such that

V (x) = S0.

• When w(y) = (1− γ)y, U(x) = Cxγ
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Bachelier solution of a power function

In black the AY process Y , in red the path of Z, in green the martingale part of Z,
in blue the Z running supremum
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American Call options, and AY-martingales
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Darling, Ligget, Taylor Point of View,(1972)

• Z is a supermartingale on [0, ζ] and E
[
|Z0,ζ |

]
< +∞

• Assume Z to be a conditional expectation of some running supremum
process Ls,t = sup{s≤u≤t} Lu, such that E

[
|L0,ζ |

]
< +∞ and Zt = E

[
Lt,ζ |Ft

]
American Call options Let Ct(Z,m) be the American Call option with strike m,
Ct(Z,m) = ess supt≤S≤ζ E

[
(ZS −m)+|Ft

]
. Then

Ct(Z,m) = E
[(
Lt,ζ ∨ Zζ −m

)+|Ft

]

and the stopping time Dt(m) = inf{s ∈ [t, ζ]; Ls ≥ m} is optimal.
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Proof

⇒ E
[(
Lt,ζ −m

)+|Ft] is a supermartingale dominating E
[
Lt,ζ |Ft

]
−m = Zt −m,

and so Ct(Z,m)

⇒ Conversely, since on {θ = Dt(m) <∞}, Lθ,ζ ≥ m, at time θ = Dt(m), we can
omit the sign +, and replace (Lθ,ζ −m) by its conditional expectation
ZDt(m) −m, still nonnegative.
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Perpetual American Call Options and Azéma Yor
martingales

Framework

• (Nt) is a positive local martingale, which tends to 0 as t goes to ∞.

• g is a continuous increasing function on R+ whose increasing concave envelope
U is finite.

• the underlying process of the option is Yt = g(Nt), and we assume that
E[sup0,∞ |g(Nt)|] <∞.

Galtchouk, Mirochnitchenko Result (1994): The process Zt = U(Nt) is the
Snell envelope of Y ,

• Zt = U(N t) is the running supremum of Z, and Zs,t = sups≤u≤t Zu is the
running supremum between s and t.

• MU
t = U(N t)− u(N t)(N t −Nt) is the Azéma Yor martingale associated with

U . Observe that the concavity of U implies that at any time t, MAY
t ≥ Zt.
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Main Result
Theorem Under the previous assumption, Z is the conditional expectation of the
running supremum h(N t,∞) where h(y) = U(y)− yu(y) is a nondecreasing
function on R+.

• The American Call option Ct(Z,m) is optimally stopped at the time
Dt(m) = inf{s ∈ [t,∞]; h(Nt) ≥ m}.

• The Call price at time t is given by

Ct(Y,m) = E[(h(N t,∞)−m)+|Ft] = V(Nt,m) = φ(Nt)−m

where V(z,m) is the concave envelope of (g(z)−m)+.

Proof:We only have to observe that Zt = U(Nt) = E[h(N t,∞)|Ft].

NEK, UPMC/CMAP 25



Paris, January 2011 The concave envelop of u(y) ∨m

The concave envelop of u(y) ∨m

Concave Hull
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American Call Options for Supermartingales with
Independent Increments

Continuous case Let N be a geometric Brownian motion with return=0 and
volatility to be specified. Let Z be a supermartingale defined on [0,∞] such that

• a geometric Brownian motion with negative drift ,
dZt
Zt

= −rdt+ σdWt, Z0 = z > 0.

• Setting γ = 1 + 2r
σ2 , Nt = Zγt is a local martingale, with volatility γσ

• Zt = U(Nt) where U is the increasing concave function U(x) = x1/γ .

• h(x) = U(x)− xu(x) = γ−1
γ x1/γ = γ−1

γ z,

• the optimal boundary for American Call options, is given by y∗(m) = γ
γ−1 m,

where γ
γ−1 = E[Z∞/Z0].
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• Let Z be a Brownian motion with negative drift −(r + 1
2σ

2) ≥ 0

dZt = −(r + 1
2σ

2)dt+ σdWt, Z0 = z.
Then Zt = 1

γ ln(Nt), h(z) = z − 1
γ and the Call American boundary is

y∗(m) = m+ 1
γ .

• the exponentional of a Lévy process with jumps
Assume Z to be a supermartingale with a continuous and integrable
supremum. Then the same result holds with a modified coefficient γLevy, such
that ZγLevyt defines a local martingale that goes to 0 at ∞.

• Finite horizon T without Azéma-Yor martingale
Same kind of solution: we have to find a function b(.) such that at any time t

Zt = E
[

sup
t≤u≤T

b(T− u)Zu
∣∣Ft]

NEK, UPMC/CMAP 28



Paris, January 2011 Universal Boundary and Pricing Rule

Universal Boundary and Pricing Rule
Framework: Let Z = U(N.) be a increasing concave function of the cadlag local
martingale N going to 0 at infinity, with continuous running supremum. Assume
E[|Z0,∞|] < +∞.

• Let V be the increasing convex, inverse function of U , such that V (Z) = N is a

local martingale and w(z) = h oV (z) = z − V (z)

V ′(z)
. Then

Zt = E[w(Zt,∞)|Ft], CZt (m) = E[(w(Zt,∞)−m)+|Ft]

• Optimal boundary and price of the American Call options are given by the
universal rule
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y∗(m) = w−1(m) = m+
V (y∗(m))

V ′(y∗(m))

CZt (m) =

 (Zt −m) if Zt ≥ y∗(m)

y∗(m)−m
V (y∗(m)) ϕ(Zt) if Zt ≤ y∗(m)

.
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Max-Plus decomposition

Azéma-Yor martingales are well adapted to get very easily explicit formulae for
optimal strategies in portfolio insurance.

The same ideas may be used in ageneral case, based on a new decomposition of
general supermartingale.
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Max-Plus Supermartingale Decomposition
Let Z be a càdlàg supermartingale in the class (D) defined on [, ζ].

• There exists L =
(
Lt
)
≤t≤ζ adapted, with upper-right continuous paths with

running supremum L∗t,s = supt≤u≤s Lu, s.t.

Zt = E
[
( sup
t≤u≤ζ

Lu) ∨ Zζ |Ft
]

= E
[
L∗t,ζ ⊕ Zζ |Ft

]
= E

[ ∮ ζ

t

Lu ⊕ Zζ |Ft

]
• Let M⊕ be the martingale: M⊕t := E

[
L∗0,ζ ⊕ Zζ

∣∣Ft)].Then,
M⊕t ≥max(Zt, L

∗
0,t) = Zt ⊕ L∗0,t ≤ t ≤ ζ

and the equality holds at times when L∗ increases or at maturity ζ:

M⊕S = max(ZS , L
∗
0,S) = ZS ⊕ L∗0,S for all stopping times S ∈ AL? ∪ {ζ}.
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Martingale optimization problem

The optimization problem

SetM(x) =
{

(Mt)t≥0 u.i.martingale|M0 = x and Mt ≥ Yt ∀t ∈ [0, ζ]
}

• We aim at finding a martingale (M∗t ) inM(x) such that for all martingales
(Mt) inM(x)

M∗ζ ≤cx Mζ

• The initial value of any martingale dominating Y must be at least equal to the
one of the Snell envelope ZY0 = supτ∈T0,ζE [Yτ ] ,
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ZY - Max-Plus Martingale is optimal
The martingale MY,⊕ of the ZY Max Plus decomposition is the smallest martingale
inMY (ZY0 ), with respect to the convex stochastic order on the terminal value. In
particular, MY,⊕

ζ is less variable than MA
ζ (Y ).

Sketch of proof: Let M be inMY (ZY0 ). Since M dominates ZY , the American
Call option Ct(M,m) also dominates Ct(ZY ,m). By convexity,

Ct(M,m) = E
[
(Mζ −m)+|FS

]
≥ E

[
(LY,∗S,ζ ∨ Yζ −m)+|FS

]
∀S ∈ T .

More generally, this inequality holds true for any convex function g, and

E
[
g
(
Mζ

)]
≥ E

[
g
(
LY,∗0,ζ ∨ Yζ

)]
= E

[
g(MY,⊕

ζ )
]

Initial condition x ≥ ZY0 Same result by using LY,∗S, ζ ∨m in place of LY,∗S,ζ .
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