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Geometrical Brownian motion and Running
supremum

Third Lesson in the master program

Let S; be a geometrical Brownian motion, such that S7 is a martingale and

S = sup,<; Sy- it running supremum.

® By the symmetry principle, we have

P(St < K,5p 2 H)=P(57 < K, Ty <T)
T\ H? T\ Kx
p— — _ < p— _ -
(H) P<$2 ST—K) <H) N(51(H2’U’T>>’

P(Sr < K) :N(51 (%,U,T)) :N(—5O(§,U,T)).

and
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Theorem

The tail function de St given {St = K} is given for x, K < H by

2 K
P(Sh > H | St = K) — exp (_ OzTLn(ﬁ)Ln(%))

® Very useful for instance in Mont Carlo simulation of Barrier Option

® The proof is not completely immediate...

NEK, UPMC/CMAP



Janvier 2010 Azéma-Yor Processes

Azéma-Yor Processes
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Azéma-Yor Processes (1979)

As usual, (2, F;,P) is a filtered probability space, satisfying usual assumptions.

Notation and basic properties

® The running supremum or maximum process of some adapted cadlag

process X is defined as
X; =sup X,.

u<t
Between two dates, we write X1 = sup,,,<; Xu-

Properties

—> X, is an increasing process, right-continuous, with the “max-additivity”
property X; = X,V Ys,t.

— When X, is a continuous process, for instance when the process X has only

negative jumps, the process X, only increases when X; = X,, that is

T
/ (yt - Xt)dyt — O
0
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Let u be a locally bounded Borel function. The primitive function
U(z) =a* + f(a 2 U(s) ds is defined on [a, 00).

Definition of AY Process

Let X be a cadlag semimartinale with continuous running supremum
X, = SUp, <¢ Xu, and u a locally bounded function.

The (U, X)-Azéma-Yor process is defined by one of these two equations
M7 (X) = UXy)+u(X) (X — Xy)

t
or = a*—|—/ u(X¢)dXs
0

If X is a local martingale, M is also a local martingale.
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Main properties

—> The equivalence between the two equations is straightforward when U is a

regular function, since from It6’s formula

dMY (X) = w(X)dX; +u(X)(dX, — dX,) + (X, — Xo)u'(X,)dX,
= u(Xy)dX;

—> The case of locally integrable function u can be attained for continuous local
martingale X (Obloj,Yor 2004)
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Bachelier equation

Non decreasing transformation

Let U,,, be the set of primitive function U of non negative locally bounded functions
u, and G,, the subgroup of increasing functions U s.t. the increasing inverse
function V' of U, with first right-hand derivative V' := v is in U,,.

® Let U be in U,,, X be a max-continuous semimartingale. The

(U,X)-Azéma-Yor process (MU (X)) is a max-continuous semimartingale since,

M (X) =U(Xy) =U(Xy),

e Pick F in U,,. Then, MY (MF (X)) = MP°F(X).

e Moreover, the processes MY (X) associated with U € G,,, is a group under the

multiplication ® defined by

MY @ M" .= MU°".

NEK, UPMC/CMAP 8



Bachelier (1906) Bachelier equation

e If u is only defined on [a,b), MY (X) may be defined up to the exit time T} of
la,b) by X.

e If u is non negative, MV(X), 1, = U(Xir1,)
Bachelier equation

e By the property of the inverse, uoV =1/V' =1/v
o Since M, = U(Xy), u(X;) = uo V(UX,)) = (1/v)(M, ).
The AY-process is a solution of

dMY = (1/v)(M )dXt

Such equations were first introduced by Bachelier in 1906.
Definition: Let ¢ : [a*,00) be a locally bounded away from 0 function and X as

below. The Bachelier equation is

dY, = ¢(Y)dX:, Yo=a*
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Bachelier (1906) Bachelier equation

Existence
= MY is a solution associated with ¢ = 1/v.

—> Conversely, given ¢ : [a*,00) — (0,00) be a Borel function locally bounded
away from zero, v = 1/¢ and V a primitive of v. Then the inverse function U of
V is defined on (a*, V(00)).
Y; = MY (X) is a solution of the Bachelier equation on (0,7y_).

NEK, UPMC/CMAP 10
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Example

® X is a geometrical Brownian motion with volatility o,
® U is the power function U(x) = 27,7 < 1
Then,
— The AY Process Yy = MY (X,) = X, (1 —7) +v(X;)""' X, is also given by
Vi =Y -)+7(3)"]
—> The process Z; = X, is a supermartingale, with dynamic

dX; 1
dZ; = vZ; (7’5 — 5 (1= 7)o%dt)
t

The martingale Yy is still above the supermartingale Z

—> The Bachelier equation becomes

dY, = v(Y )1~V dX,

NEK, UPMC/CMAP
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Bachelier equation with power function

— M7 —Z, —Z

» \ ‘“4’1,.._.
" \7”‘ e

In green the AY process Y, in blue the path of Z, in red the running supremum of Y
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Bachelier equation with power function

n
Q.W Bl L ,I L : hﬁ;F bﬁp’ﬁuﬁr u'r’
{ MY

lt-n a}"ﬁ“( Tiﬂt

g T —aT 2
b 1,&

In red the AY process Y, in blue the path of Z, in green the martingale part of Z
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Drawdown properties of the Bachelier equation

Def : Given a cadlag process X, and a (increasing) function w such that w(s) < s,
a DD constraint is a constraint of the type, X; > w(X}).

AY process and DD Constraints

Let X be a non negative max-continuous semimartingale and © a non negative

function, U its primitive, and V the inverse function of U.

— The AY-process M = U(X;) — u(X;)(X; — X;) satisfies the DD Constraint
MY > w(ﬁg ), where the function w is given by

w(y) = (U — Id u)oV (y) = y —

<y

—> w is an increasing function if and only if U(x) (V(y) ) is a concave(convex)

function.

= Then MU > U(X,) = Z; = UMY (V}))

NEK, UPMC/CMAP 14



Paris, January 2011 Drawdown properties of the Bachelier equation

DD and Bachelier equation

—> In terms of Bachelier equation associated with ¢(y) = V,#@), we have:

The solution Y satisfies the DD constraint with the function w obtained by

e Taking a primitive V of V'(y) = 1/¢(y) and

e Putting w(y) =y — \‘//’((Z))

e Conversely, given a function w, put ¢(y) = (V'(y))~ !, where V is a solution

of the ODE equation

NEK, UPMC/CMAP 15
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Dynamic strategy with drawdown constraints

Grossmann-Zhou(93), Cvitanic -Karatzas(95), Uryasev & alii(05),
Elie& Touzi (2006-2008), Roche(06)......
Why DD constraints?

e Hedge funds : The final decision of a client into opening an
account with a manager is most likely based on his account’s

drawdown sizes and duration.
e Client would not tolerate drawdown for a long time period.

e In an investment bank setup, for proprietary trading, warming

drawdown level are generally fixed to 20%

NEK, UPMC/CMAP 16
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Strategy with Drawdown Constraints

Problem :7o find a portfolio strategy based on a reference asset satisfying some

drawdown constraints on the discounted prices at any time.

Framework

the reference asset is the discounted value S; of some strategic portfolio.

There exists a probability measure Q such that S; is a Q local martingale.

the discounted value of any portfolio strategy m evolves as:

dXT =m%t, X§=u
Drawdown constraints C.K (1995): X7 > aX,, Vt, 0<~vy<1.

More generally, let w be a positive increasing function such that w(x) < x.
The DD-constraint becomes X7 > w(X, ) Vt.

NEK, UPMC/CMAP 17
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Portfolio Point of view

The AY-Martingale MY (S);, associated with some well-chosen function U is an

admissible portfolio, if the budget constraint is satisfied.

—> Given a increasing DD-function w, with w(z) < x, let V be a positive solution

of the ODE
Vity) 1

Viy)  y—w(y)

—> Then V is convex and its inverse function U is concave increasing.

= Then Y = MY (S) is a self-financing strategy such that

—uU.,dS
dMY = (MY — w(M; ))?:

e The portfolio strategy is very simple: at any time the amount invested in the

risky asset is the distance to drawdown, and the amount invested in cash is

NEK, UPMC/CMAP 18
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® There is a floor process Z; = U(S;), which is a supermartingale.
® The existence of the floor implies a budget constraint that x > U(Sy).

® The initial condition M{ = z is satisfied if the function V is chosen such that

® When w(y) = (1 — )y, U(x) = Cx"

NEK, UPMC/CMAP
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Bachelier solution of a power function

In black the AY process Y, in red the path of Z, in green the martingale part of Z,

in blue the Z running supremum
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American Call options, and AY-martingales
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Darling, Ligget, Taylor Point of View,(1972)

® Z is a supermartingale on [0, (] and E[|Z || < +o0

® Assume Z to be a conditional expectation of some running supremum

process zs,t — SUP{sgugt} Lu, such that EUZO»CH < 400 and Zt = E[Eudft]

American Call options Let C;(Z, m) be the American Call option with strike m,
Ci(Z, m) = esssup;cg<; E|(Zs —m)T|F;|. Then

Ct(Z, m) == E[(Et’g V ZC — m)ﬂft}

and the stopping time D¢(m) = inf{s € [t,(]; Ls > m} is optimal.

NEK, UPMC/CMAP 22
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Proof

— E[(Zt,g — m)+|.7—"t] is a supermartingale dominating E[ft,c\ft} —m =y —m,
and so Cy(Z,m)

= Conversely, since on {6 = Dy(m) < oo}, Lg ¢ > m, at time § = Dy(m), we can
omit the sign +, and replace (Lg,c — m) by its conditional expectation

Zp,(m) — M, still nonnegative.

NEK, UPMC/CMAP 23
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Perpetual American Call Options and Azéma Yor
martingales

Framework
® (N,) is a positive local martingale, which tends to 0 as ¢t goes to oo.

® g is a continuous increasing function on R™ whose increasing concave envelope
U is finite.

® the underlying process of the option is Yy = ¢g(/V¢), and we assume that
Efsupo,q [9(N,)]] < oo.

Galtchouk, Mirochnitchenko Result (1994): The process Z¢ = U (V) is the

Snell envelope of Y,

® 7, =U(Ny) is the running supremum of Z, and Zs; = sup,<, <, Zy is the
running supremum between s and t.
o M” =U(N;)—u(N¢)(Ny — Ny) is the Azéma Yor martingale associated with

U. Observe that the concavity of U implies that at any time ¢, MY > Z;.
NEK, UPMC/CMAP 24
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Main Result

Theorem Under the previous assumption, Z is the conditional expectation of the
running supremum (N, o) where h(y) = U(y) — yu(y) is a nondecreasing

function on R.

® The American Call option Cy(Z, m) is optimally stopped at the time
D.(m) = inf{s € [t, 00]; h(N¢) > m}.

® The Call price at time t is given by
Ci(Y,m) = E[(M(Nt,00) —m)T|Fi] = V(N,m) = ¢(Ny) —m

where V(z,m) is the concave envelope of (g(z) —m)™.

Proof:We only have to observe that Z; = U(N;) = E[h(N¢.o0 )| Ft-

NEK, UPMC/CMAP 25
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The concave envelop of u(y) Vm

The concave envelop of u(y) Vm

—— ufx) — uxwm —— tangente —— @ (x,m)
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American Call Options for Supermartingales with
Independent Increments

Continuous case Let N be a geometric Brownian motion with return=0 and

volatility to be specified. Let Z be a supermartingale defined on |0, oo] such that

® a geometric Brownian motion with negative drift ,

dTZ: = —rdt + odW;, Zy=2z>0.

® Setting v =1+ %, N; = Z is a local martingale, with volatility vyo

e 7, = U(N,) where U is the increasing concave function U(z) = /7.

o hiz)=U(x)—zu(z) ==Lt/ =221,
v v

® the optimal boundary for American Call options, is given by y*(m) = —= m,

where 25 =E[Z /Zo].

NEK, UPMC/CMAP 27
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® Let Z be a Brownian motion with negative drift —(r + 302) > 0
dZ; = —(r + %O‘2)dt +odWy, Zy=z.
Then Z; = %ln(Nt), h(z) =z — % and the Call American boundary is

y*(m) =m+ .

® the exponentional of a Lévy process with jumps
Assume Z to be a supermartingale with a continuous and integrable
supremum. Then the same result holds with a modified coefficient vz, such

that Z'"" defines a local martingale that goes to 0 at co.

e Finite horizon 71" without Azéma-Yor martingale

Same kind of solution: we have to find a function b(.) such that at any time ¢

Zy = E[ sup b(T — u)Zu}]:t}

t<u<T

NEK, UPMC/CMAP 28
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Universal Boundary and Pricing Rule

Framework: Let Z = U(INV.) be a increasing concave function of the cadlag local
martingale N going to 0 at infinity, with continuous running supremum. Assume

EHZO’OO” < +00Q.

® Let V be the increasing convex, inverse function of U, such that V(Z) = N is a

local martingale and w(z) =hoV(z) =z — “///<(Z)) Then
Zy =Elw(Zeoo)| 7], CF (m) =E[(w(Zt,00) —m) " | F]

e Optimal boundary and price of the American Call options are given by the

universal rule

NEK, UPMC/CMAP 29
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Universal Boundary and Pricing Rule
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Max-Plus decomposition

Azéma-Yor martingales are well adapted to get very easily explicit formulae for

optimal strategies in portfolio insurance.

The same ideas may be used in ageneral case, based on a new decomposition of

general supermartingale.

NEK, UPMC/CMAP
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Max-Plus Supermartingale Decomposition

Let Z be a cadlag supermartingale in the class (D) defined on [, ].

® There exists L = (Lt)<t<g

running supremum Lj ;. = SUP;<, <5 L, S-t.

adapted, with upper-right continuous paths with

¢
Zy =E|( SupCLu) V Z|F] =E[L{ @ Zc| ] = E[]{ Ly @ Zc\Ft}
t<u< t

® Let M® be the martingale: MY := E[LS’C D ZC‘}})].Then,
MP>max(Zy, Ly ,) = Zy d Ly, <t<(
and the equality holds at times when L* increases or at maturity (:

Mg =max(Zg,Lj g) = Zs ® Lj, ¢ for all stopping times S € A U {(}.

NEK, UPMC/CMAP
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Martingale optimization problem

The optimization problem
Set M(z) = { (Mt),>q uwimartingale| My = z and My > Y Vt € [O,C]}

e We aim at finding a martingale (M;*) in M(x) such that for all martingales
(M) in M(x)
MZ <cx MC

® The initial value of any martingale dominating Y must be at least equal to the

one of the Snell envelope ZJ = sup, ¢ CEY],

NEK, UPMC/CMAP 33
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Z¥- Max-Plus Martingale is optimal

The martingale MY ® of the Z¥ Mazx Plus decomposition is the smallest martingale

in MY (Z3), with respect to the convex stochastic order on the terminal value. In

particular, MS/’@ is less variable than M?(Y).

Sketch of proof: Let M be in MY (Z}). Since M dominates Z¥ , the American
Call option C;(M,m) also dominates C;(ZY,m). By convexity,

Cy(M,m) =E[(M; —m)*|Fs] > E[(Ly VY —m)"|Fs] VSeT.
More generally, this inequality holds true for any convex function ¢, and
Elg(Mc)] > E[g(Lg s v Ye)] = E[g(M )]

Initial condition z > Z} Same result by using L*>*S,{ V m in place of ng

NEK, UPMC/CMAP 34
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Second lecture

Second lecture
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Maximum distribution of the non negative martingale

Paris, January 2011 and Skorohod embedding problems

Maximum distribution of the non negative

martingale

and Skorohod embedding problems
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AY Process, Definition

Let u be a locally bounded Borel function. The primitive function

U(z) = a* + [ 4.4 u(s) ds is defined on [a, 00).
Definition of AY Process

Let X be a cadlag semimartinale with continuous running supremum
X; = SUp, <¢ Xu, and u a locally bounded function.

The (U, X )-Azéma-Yor process is defined by one of these two equations
M7 (X) = UXp)+u(Xe)(X: — Xo) (3)

or = a" —I—/Ot uw(X¢)dX, (4)

If X is a local martingale, M is also a local martingale.

NEK, UPMC/CMAP 37
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Maximum distribution

Let us come back to AY Martingale, written on a process (IV¢), Ng = 1 which is a
max-continuous non-negative local martingale such that Ny — 0 a.s. when ¢ — oc.

The typical example is the Geometrical Brownian Motion (GBM).

® Well-known result. Assume that Ny = 1.The running supremum °vlN, is

distibuted as the inverse of uniform r.v.:

1/NZ has a uniform distribution on [0, 1].

® Moreover if there exists a constant b > 1 and a stopping time ¢ s.t Ny € {0, b},
then given the event {N; < b} = {N, = 0} 1/N¢ is uniformly distributed on
(1/b,1] and P(N; =b) = 1/b

e True also for F;-conditional distribution, 1/Noo ~ (1/m) A (1/x)U, where U is

uniform, and m and z hold for m = N; and z = N, < m

NEK, UPMC/CMAP 38
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Proof: Let u(z) = (K — x)+ the “Put “function. Then, MY (N) is bounded and
u.l. martingale, such that

E(K—Neo)" +1kox 1Noo) = KP(K > Noo) = K — 1

NEK, UPMC/CMAP
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Analytic result

Given a U function we define the function h as h(x) = U(x) — x u(x).

Analytic lemma Let h be a function defined on (0, 00), such that |ha(j‘§)| is

integrable away from 0, then

® the solution of equation

Ulz) — oU'(z) = h(z), isU(x) = 2 / LG /0 B

® When h is increasing, then U is concave.

e If h,, is the function h(. VvV m), constant on (0, m), then the associated function

Uoso(m, x) is affine on (0, m),
Uoo(max) — Uoo(m) o ch;o(m)(m o ZC), fo <m

and Uy (m,x) = Us(x) if x < m.
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This analytical lemma allows us to characterize Azema-Yor martingales from their

terminal values.
Characterization from terminal value

Let i such that h(z)/z? is integrable away from 0, and U, the solution of the
previous ODE.

Let N be a max-continuous non negative local martingale, going to 0 at oo and
¢ =To(N).

® Then, h(N) is an integrable random variable and the closed martingale
Hipne = E(h(N¢)|Fine) is the Azema-Yor martingale MU= (N).

® The semimartingale Us (Nia¢) = E<h(ﬁt,C)|Ft/\C)

NEK, UPMC/CMAP 41
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Skohorod Embedding problem

Analytical Result

Let i be a centered probability measure on R.
® 7i(z) = p([x,00)) is the right continuous tail distribution function.

® Let g:|0,1] — R is the tail quantile function that is the left-continuous inverse

of r, ii(z) < y iff g(y) < .

e If ¢(0") = oo, the solution U, of the previous equation with h(z) = m(1/x)

verifies
U, (1)) = /O G(uz)du = 1/z /O " 4(2)du = AVaR(x)

U,(1/x) is the average value at risk (AVaR) of L.

NEK, UPMC/CMAP 42
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® The barycentre function ¥ ,(.) is defined as

1
U, (r)= =) /[m,oo) s p(ds).
For a.e x, AVaR(x) = v, (q(x))

® Let w, be the increasing draw-down function associated with p by
w, (U, (x)) =q(1/x) or equivalently w,(AVaR(x)) = q(x).

The inverse function of w is a.e. equal to the barycentre function v,,.

NEK, UPMC/CMAP
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Corollary
Let U be the solution of ODE associated with h(z) = gq(1/x), and Y,, = MY«(N) be

the Azema-Yor martingale associated.
® Then Y, = q(l /NC) is distributed according to pu.
® Since Y, =U(N¢), Ye = w(Y¢) and ( is the first time where the DD constraint
Y; < w(Y;) does not hold.

e Since w™! is the barycentre function ¥, ¢ is the first time where ¥, (V;) <Y,
which is the definition of the Azema-Yor stopping time.

e Y:=U(N;)=AVaR,(1/N;) is a Hardy and Littlewood maximal r.v.
associated with p. (Gilat and Meilijson), that is a r.v. X* = AVaR,,(§) where
¢ is uniformly distributed on [0, 1].

Skohorod embedding:AY Solution

Let (X¢) be a continuous local martingale, Xo =0, (X),, = 0o a.s. and p a

centered probability measure on R: [ |z|u(dz) < oo, [ zp(dz) =0. Then (Xiar,)

NEK, UPMC/CMAP 44
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is a UI martingale and X7, ~ p1, where T, is defined via (??)-(?7?). Moreover, Y,
is distibuted as V(1/U)

NEK, UPMC/CMAP 45
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Skorokhod embedding problem : Other formulation

- Given a strictly increasing function g, such that V s g(s) < s, our goal is to study
the distribution of M, where

Tg = inf{t > O’Mt < g(St)}

Proposition. Assume that (Mt/wg) is a u.i. martingale.

a) Denote by p° the law of S, and by G°(z) = P(S,, > z) the hazard function.
G>(y)
y—9(y)

b) Denote by p the law of M, , and by GM(z) = G°(g~!(x)) its tail function.
Then

u® (dy) =

dy

—1 _ 1 M
g (r) = 1M ([, 4+00)) /[:I?,—I—oo) yp (dy)

is the barycenter function of the measure pu.
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Local Volatility

B.Dupire (95), E.Derman& Kani(95)
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Implied Diffusion
Which Model

— How to,extend Black-Scholes model to make it compatible with market option

prices?

—> To price and hedge with vanilla options exotics options, as barrier, start

forward options, basket, asian, with early exercice....

—> For easy implementation, we are looking for a Markovian diffusion,

d
% = rdt + ODUP(ta St)dW;
t

fitting market data
E[GTT(ST—K)+] _ CMar<T, K)

—> Are there several solutions?

Dupire ANSWER: One and only one way to do it.
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PDE forward and Dupire formula

No interest rate, no dividend
Dupire formula C(0,K) = (Sy — K)*, and

O O(T, K) = 5 K*(oP")(T, K)Cle e (T K

That is the dual PDE integrated twice. From probabilistic point of view, the
simplest proof is the following
1. Assume that S is driven by a stochastic volatility +;

2. Apply Itd’s formula to ((S7 — K)T)?, take the expectation, and consider the

first derivative with respect to T

OrCallPM™™ (T, K) = E(Vfl{stK}Szzr) = E(E(7%|ST)1{ST2K}5:2F)
3. Then, take the derivative w.r to K

207 Call(T,K) = o*(T, K)K*C} (T, K), 0*(T,K) = E(v4|St = K)

NEK, UPMC/CMAP
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Drawbacks, and performances

® Very sensitive to the process used to interpolate

® The local volatility surface is not very regular and process to regularize the

surface are very times consuming.

If the Dupire formula is difficult to implement, the dual PDEs is a useful tool to
generate a large number of Call prices from a given local volatility. It may be use to

generate local volatility by fixed point argument. In particular
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Other Markovian projections
Obviously we have to relax some assumptions

—> Dynamic “copula method”:

e Choose a BS diffusion, X. At any time, calibrate a strictly increasing
function ¢(t,z) s.t ¢(t, X;) has the marginal distribution of S;.

e Study the Markovian diffusion Y; = ¢(t, X;), fitting the market, but not

risk-neutral

—> Skorohod Embedding problem

See below
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Calibration via Skorohod embedding problem

Ref: D.Madan,and M.Yor :Making Martingales meet marginals: with explicit

construction.(Bernouilli 2002)

Assumptions As Madan & Yor, we use Brownian Motion in place of Geometrical
BM.

e We assume marginal density g(y,?), ( ¥y € R) for the centered underlying,

S; — Sp, and assume that
/\y\g(y,t)dy < 00, /yg(y,t)dy —0

® By no arbitrage assumption, Call prices are increasing in maturity, property
equivalent to say that g(s,y) is smaller than g(¢,y), Vs < for the concave

order.
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® Moreover, we assume that the family of barycentre functions defined by

_ Jovaly, t)dy
| 9(y,t)dy

(1)

are increasing in t for any x.

Necessary condition implied by the martingale property

NEK, UPMC/CMAP
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Main result

Theorem

Under the previous assumptions on g(y,t), and the baycentre functions ¢ (x,t), for a
standard BM B(u), there exists an increasing family of stopping times T}, defined
via the embedding theorem by

Ty = inf{u | B, > ¢(By,1)
such that
1. Y; = B(T}) is a martingale
2. (Yy;t > 0) is an inhomogeneous Markov process

3. for any t, the density of Y; is g(t,y)

The semigroup only depend on B, since the change of time 7T} only increase when
B, = 9(By,t), and so B, is know as function of B at this date.
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A one side pure jump process

The @Q: semigroup of the Markov process may be compute from y and mg = ¥(x, s)

Quf(y,s) = af(W (ms 1)+ (1 =)W (1)
_ mgs — X
T ma - Yv=1(z,t)
Wiap) = Jetmen 98D

fw_l(ms,t) g(y7 t)dy
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Optimal Stopping of the Maximum Process
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Optimal Stopping problem of Maximum Processes

Framework

On the probability space (€2, F;,P), we consider a Brownian motion (B;), and the
maximum process Sy = sUPso<q,<¢} Bu-
Let ¢ be a non-negative, increasing and continuous function and ¢ a continuous,

positive function.
The problem (in short OSMP) is to maximize E(W¥)

over all integrable stopping times such that

E(¢(S7) + /OT ¢(Bs)ds) < +oo (6)
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Related Works

1. 1987 with ¢(x) = x and ¢(x) = ¢ : Dubins and Schwarz were the first to

introduce this problem in order to obtain Doob-like inequalities.

2. Peskir(1995-2004) studied in many papers different versions of this problem, in

general when ¢(x) = .
3. Meilijson (1997) with a general function ¢ and c¢(x) = c.

4. Peskir(2000) and Obloj(2004) have related this problem to the embedding

Skorohod problem, and Azema-Yor stopping times

5. Espinoza-Touzi (2010) based on the running maximum of OU process.
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Main Theorem

Theorem (Peskir) Assume ¢(z) = z.
The OSMP problem has an optimal solution with finite value function iff there

exists a maximal solution g, of

(s) = !
57 2¢(g(s) (s — &(s))

which stays strictly below the diagonal in R? (g.(s) < s).

The Azéma-Yor stopping time
T = inf{t < 0|B; < g.(5:)}
is then optimal whenever it satisfies the integrability constraint.

The theorem will be proved for the geometrical Brownian motion.
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Some extensions

1. If =1, 7, satisfies E s)ds) < 400 whenever there exists a stopping
0

time which satisfies this constraint.

2. (Meilijson). Let us assume c(x) = ¢, ¢ constant on some interval [xg,c0) and
H(z) =sup, E(¢(z + S;) — c7).
Then g*(z) =z — #, and H(x) is the unique solution that equals ¢ on
[xo, 00) of the differential equation,

1

H(z) — —(H'(2))” = ¢(x) (7)

3. In the general case, V, = ¢(0) — 2 f¢ 1((03(0» uc(u)du,

where ¢! is a function expllcltly given in Peskir?2.
Furthemore, if there exists a solution o, of the optimal stopping problem, then

P(7. < 04) =1 and 7, satisfies the constraint.

4. If there is no maximal solution, then V., = oo and tno optimal stopping time.
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Skorokhod problem, and OSMP

Consider the following converse problem:

Given a centered probability measure p, find a pair of functions (¢, ¢) such that the
optimal stopping problem 7, solves the PMOSM (¢, ¢)-problem and embeds pu, i.e.
B, ~ pu.

o (Peskir). If ¢(x) = x, then

with G, (z) = p(|z, +00)).
e (Meilijson). Conversely if ¢ is fixed, we can determine ¢ by

H'(x) = 2c(z — 4, (z)),

where 1), is the barycenter function of the measure pu.
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Back to AY Framework in portfolio insurance
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Portfolio Insurance in AY Framework

Same framework than for DD-Constraints.

Theorem:
® [/ is a concave increasing function and ¢ its inverse function;

® the floor process Z; = U(S;) is a function of the reference asset. This specific

assumption makes sense in benchmarked management

® The floor process is a supertingale with martingale part

dMZ = St’LL(St) %St
t

MZ satisfies the floor constraint.

® The AY-martingale M = U(S;) + u((S¢) (St — St), Mo = u(Sp) is an

admissible strategy satisfying also the floor constraint,

M > U(Sy)
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Portfolio Insurance in AY Framework
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. w il = — . . .
e Since M, = U(S;) = Zi, the running supremum of the martingale MV is less
than the running supremum of any martingale U; dominating Z;, and with the

same initial value.

e MY is optimal is optimal for the concave order of the terminal value of any
martingale X; dominating Z; :

given an increasing concave function g, E[g(MY)] < E[g(Xs)]

Proof Since g is concave, we only have to study
Elg' (M) (Mg, — Xoo)] = E[g' (M(Noo) (Mg, — Xoo)]
E[/OOO g (MN)d(M — X)) + E[/OOO(MtU — X1)g" (h(N))dh(N:)
® The first term is the difference of two martingales, and so has a null expectation

e For the second integral, N; only increases when N; = N;, on which
MU =31 =7, < X,

® as g is concave we obtain the inequality
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Some pictures

==}

——Plancher AL

In black a path of the floor, in red the associated path of the AY-martingale
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Comparison Azema-Yor and Doob Meyer
martingales

g T PR

— AT M ™ — Plancher

In red the associated path of the AY-martingale, in green the Doob Meyer
Martingale.
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Consumption optimization problem under storage
constraints

by P.Bank

Ph Thesis Berlin 2000
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Durable vs. perishable goods

perishable good

durable good

e chocolate, gas, electricity, ...

e physically destroyed in process of con-

sumption

e affects utility at time of consumption

only
e typically bought continually

e Merton, Karatzas et al.

Economic Problem:

clothes, cars, console, ...

not destroyed, but possibly wears ou

when consumed

provides service flow over extended pe

riods of time
typically bought periodically
Hindy, Huang, Kreps et al.

Study the joint impact of durable and perishable goods on life time con-

sumption plans!
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Preferences for durable & perishable goods
Consumption plan ...

® For perishable good C': nonnegative, absolutely continuous process with

optional density c;
® For durable good D: nonnegative, right continuous, increasing, optional process

Utility functional:

A

T
U(C, D) :E/ U(t,Ct,Dt> dt
0

e 7 denotes agent’s time horizon

® u(t,.,.) is his time ¢ period utility function: strictly concave, increasing,

satisfying Inada conditions
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Preferences for durable & perishable goods

e Example : Cobb-Douglas Utility

u(t,c,d) = e_pt(%cv)(

1
5d5) withy,0 >0, y +d < 1.
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The agent’s optimization problem

Price of consumption plan (C,D):

(CD / HtCtdt+E/ thDt

where Hy, fIt > ( are state price density processes for durable & perishable

goods.

agent’s budget: w > 0

Utility maximization problem:

Maximize U(C, D) over all consumption plans (C, D) satisfying the budget
constraint m(C, D) < w.
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First order conditions for optimality

A consumption plan (C*, D*) is cost efficient iff there exists a Lagrange parameter
M > 0 such that

= VoU(C*, D*)y < MH, for all t € [0,T] with =" whenever ¢ > 0,
— VpU(C*,D*); < M H, with =" whenever dD; > 0

where the gradients are given by
VCU(C, D)t = acu(t, Ct¢, Dt) (O <t< T)

and

~

T
VpU(C,D); = E(/ 6du(s,cS,DS)ds].7:t>
t
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Solution of first order conditions
Step 1 Solve in (i) for C*:

¢t =i.(t, MH,,D}) wherei.(t,.,d) = (deu(t,.,d)) "

Step 2 Employ this in (ii) to obtain a condition involving D* only:

2

_E(ft (s, D¥) ds\]:t) < MH,

7 (A, - v7)D; =0

\

where f(s,l) = Oqu (s,i.(s, MHg,1),1).

Step 3 Find the solution by using Skorohod—type representation theorem
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Representation theorem

Theorem:
Let f be a continuous, strictly decreasing function.
For a given optional process X, there exists an adapted process LY with

upper-right continuous paths such that

XT:E[/ f(t, sup L£)|.7:T}
(T, 4o00]

ve[T,t)
for any stopping time T" € 7. Then
= D} =supg<,<; L] where L = (L) ., is a storage index determined by

fs sup L )ds\]:t):Mﬁt 0<t<T).

vEts
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