Running Supremum, DrawDown Constraint, Azéma-Yor Processes, Max-Plus decomposition, and financial applications

jointed work with I.Karatzas (in the past), A.Meziou, J.Obloj

to Marc Yor

Geometrical Brownian motion and Running supremum

Third Lesson in the master program

Let S_t be a geometrical Brownian motion, such that S^{γ} is a martingale and $\overline{S} = \sup_{u \leq t} S_u$. it running supremum.

• By the symmetry principle, we have

$$\mathbb{P}(S_T \le K, S_T^* \ge H) = \mathbb{P}(S_T \le K, T_H \le T)$$
$$= \left(\frac{x}{H}\right)^{\gamma} \mathbb{P}\left(\frac{H^2}{x^2} S_T \le K\right) = \left(\frac{x}{H}\right)^{\gamma} \mathcal{N}\left(\delta_1\left(\frac{Kx}{H^2}, \sigma, T\right)\right),$$

and

$$\mathbb{P}(S_T \le K) = \mathcal{N}\left(\delta_1\left(\frac{x}{K}, \sigma, T\right)\right) = \mathcal{N}\left(-\delta_0\left(\frac{K}{x}, \sigma, T\right)\right).$$

Theorem

The tail function de \overline{S}_T given $\{S_T = K\}$ is given for $x, K \leq H$ by

$$\mathbb{P}(\mathbf{S}_{\mathbf{T}}^* \geq \mathbf{H} \mid \mathbf{S}_{\mathbf{T}} = \mathbf{K}) = \exp\left(-\frac{2}{\sigma^2 \mathbf{T}} \mathrm{Ln}\left(\frac{\mathbf{K}}{\mathbf{H}}\right) \mathrm{Ln}\left(\frac{\mathbf{x}}{\mathbf{H}}\right)\right)$$

- Very useful for instance in Mont Carlo simulation of Barrier Option
- The proof is not completely immediate...

Azéma-Yor Processes

Azéma-Yor Processes (1979)

As usual, $(\Omega, \mathcal{F}_t, \mathbb{P})$ is a filtered probability space, satisfying usual assumptions. **Notation and basic properties**

• The **running supremum** or maximum process of some adapted cadlag process X is defined as

$$\overline{X}_t = \sup_{u \le t} X_u.$$

Between two dates, we write $\overline{X}_{s,t} = \sup_{s < u \leq t} X_u$.

Properties

- $\Rightarrow \overline{X}_t \text{ is an increasing process, right-continuous, with the "max-additivity"}$ property $\overline{X}_t = \overline{X}_s \vee \overline{X}_{s,t}$.
- \Rightarrow When \overline{X}_t is a continuous process, for instance when the process X has only negative jumps, the process \overline{X}_t only increases when $\overline{X}_t = X_t$, that is

$$\int_0^T (\overline{X}_t - X_t) d\overline{X}_t = 0$$

Let u be a locally bounded Borel function. The primitive function $U(x) = a^* + \int_{(a,x]} u(s) \, ds$ is defined on $[a,\infty)$.

Definition of AY Process

Let X be a cadlag semimartinale with **continuous** running supremum $\overline{X}_t = \sup_{u \leq t} X_u$, and u a locally bounded function. The (U, X)-Azéma-Yor process is defined by one of these two equations

$$M_t^U(X) = U(\overline{X}_t) + u(\overline{X}_t)(X_t - \overline{X}_t)$$
(1)

or
$$= a^* + \int_0^t u(\overline{X}_t) dX_s$$
 (2)

If X is a local martingale, M_t^U is also a local martingale.

Main properties

 \Rightarrow The equivalence between the two equations is straightforward when U is a regular function, since from Itô's formula

$$dM_t^U(X) = u(\overline{X}_t)d\overline{X}_t + u(\overline{X}_t)(dX_t - d\overline{X}_t) + (X_t - \overline{X}_t)u'(\overline{X}_t)d\overline{X}_t$$
$$= u(\overline{X}_t)dX_t$$

⇒ The case of locally integrable function u can be attained for continuous local martingale X (Obloj,Yor 2004)

Bachelier equation

Non decreasing transformation

Let \mathcal{U}_m be the set of primitive function U of non negative locally bounded functions u, and \mathcal{G}_m the subgroup of increasing functions U s.t. the increasing inverse function V of U, with first right-hand derivative V' := v is in \mathcal{U}_m .

• Let U be in \mathcal{U}_m , X be a max-continuous semimartingale. The (U,X)-Azéma-Yor process $(M_t^U(X))$ is a max-continuous semimartingale since,

$$\overline{M_t^U(X)} = \overline{U(\overline{X}_t)} = U(\overline{X}_t),$$

- Pick F in \mathcal{U}_m . Then, $\mathbf{M}_{\mathbf{t}}^{\mathbf{U}}(\mathbf{M}^{\mathbf{F}}(\mathbf{X})) = \mathbf{M}_{\mathbf{t}}^{\mathbf{U} \circ \mathbf{F}}(\mathbf{X})$.
- Moreover, the processes $M^U(X)$ associated with $U \in \mathcal{G}_m$ is a group under the multiplication \otimes defined by

$$M^U \otimes M^F := M^{U \circ F}$$

- If u is only defined on [a, b), M^U(X) may be defined up to the exit time T_b of [a, b) by X.
- If u is non negative, $\overline{M^U(X)}_{t \wedge T_b} = U(\overline{X}_{t \wedge T_b})$

Bachelier equation

• By the property of the inverse, $u \circ V = 1/V' = 1/v$

• Since
$$\overline{M}_t^U = U(\overline{X}_t), u(\overline{X}_t) = u \circ V(U(\overline{X}_t)) = (1/v)(\overline{M}_t^U).$$

The AY-process is a solution of

$$dM_t^U = (1/v)(\overline{\mathbf{M}}_{\mathbf{t}}^{\mathbf{U}})dX_t$$

Such equations were first introduced by Bachelier in 1906.

Definition: Let $\phi : [a^*, \infty)$ be a locally bounded away from 0 function and X as below. The Bachelier equation is

$$dY_t = \phi(\overline{Y}_t)dX_t, \qquad Y_0 = a^*$$

Existence

- $\Rightarrow M_t^U$ is a solution associated with $\phi = 1/\mathbf{v}$.
- ⇒ Conversely, given $\phi : [a^*, \infty) \to (0, \infty)$ be a Borel function locally bounded away from zero, $v = 1/\phi$ and V a primitive of v. Then the inverse function U of V is defined on $(a^*, V(\infty))$.
 - $Y_t = M_t^U(X)$ is a solution of the Bachelier equation on $(0, T_{V_{\infty}})$.

Example

- X is a geometrical Brownian motion with volatility σ ,
- U is the power function $U(x) = x^{\gamma}, \gamma < 1$

Then,

 $\Rightarrow \text{ The AY Process } \mathbf{Y}_{\mathbf{t}} = \mathbf{M}^{\mathbf{U}}(\mathbf{X}_{\mathbf{t}}) = \overline{X}_{t}^{\gamma}(1-\gamma) + \gamma(\overline{X}_{t})^{\gamma-1}X_{t} \text{ is also given by} \\ Y_{t} = \overline{Y}_{t} \left[(1-\gamma) + \gamma \left(\frac{Y_{t}}{\overline{Y}_{t}} \right)^{1/\gamma} \right]$

 \Rightarrow The process $Z_t = X_t^{\gamma}$ is a supermartingale, with dynamic

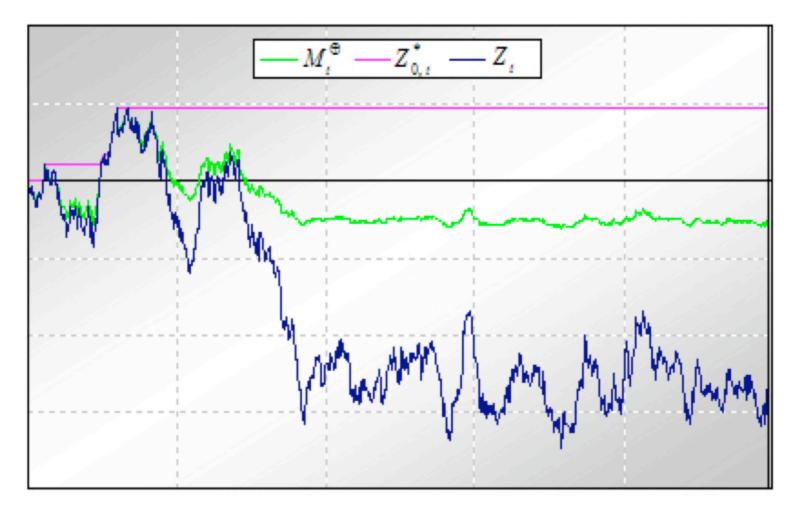
$$dZ_t = \gamma Z_t \left(\frac{dX_t}{X_t} - \frac{1}{2}(1-\gamma)\sigma^2 dt\right)$$

The martingale $\mathbf{Y}_{\mathbf{t}}$ is still **above** the supermartingale Z

 \Rightarrow The Bachelier equation becomes

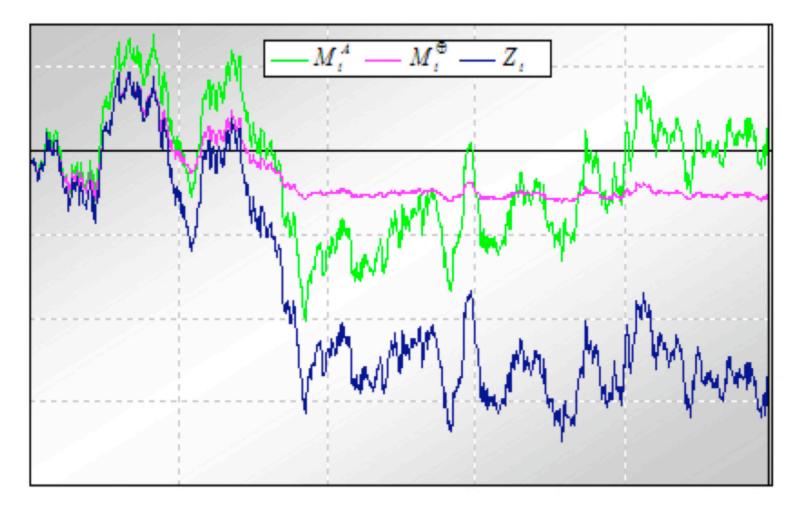
$$dY_t = \gamma(\overline{Y}_t)^{1-1/\gamma} dX_t$$

Bachelier equation with power function



In green the AY process Y, in blue the path of Z, in red the running supremum of Y

Bachelier equation with power function



In red the AY process Y, in blue the path of Z, in green the martingale part of Z

Drawdown properties of the Bachelier equation

Def: Given a cadlag process X, and a (increasing) function w such that w(s) < s, a **DD constraint** is a constraint of the type, $X_t \ge w(\overline{X}_t)$.

AY process and DD Constraints

Let X be a non negative max-continuous semimartingale and u a non negative function, U its primitive, and V the inverse function of U.

⇒ The AY-process $M_t^U = U(\overline{X}_t) - u(\overline{X}_t)(\overline{X}_t - X_t)$ satisfies the DD Constraint $M_t^U \ge w(\overline{M}_t^U)$, where the function w is given by

$$w(y) = (U - Id.u)oV(y) = y - \frac{V(y)}{V'(y)} \le y$$

⇒ w is an **increasing** function if and only if U(x) (V(y)) is a **concave**(convex) function.

$$\Rightarrow$$
 Then $M_t^U \ge U(X_t) = Z_t = U(M^V(Y_t))$

DD and **Bachelier** equation

- ⇒ In terms of Bachelier equation associated with $\phi(y) = \frac{1}{V'(y)}$, we have: The solution Y satisfies the DD constraint with the function w obtained by
 - Taking a primitive V of $V'(y) = 1/\phi(y)$ and

• Putting
$$w(y) = y - \frac{V(y)}{V'(y)}$$

• Conversely, given a function w, put $\phi(y) = (V'(y))^{-1}$, where V is a solution of the ODE equation

$$\frac{V'(y)}{V(y)} = \frac{1}{y - w(y)}$$

Dynamic strategy with drawdown constraints

Grossmann-Zhou(93), Cvitanic -Karatzas(95), Uryasev & alii(05), Elie& Touzi (2006-2008), Roche(06).....

- Why DD constraints?
 - Hedge funds : The final decision of a client into opening an account with a manager is most likely based on his account's drawdown sizes and duration.
 - Client would not tolerate drawdown for a long time period.
 - In an investment bank setup, for proprietary trading, warming drawdown level are generally fixed to 20%

Strategy with Drawdown Constraints

Problem : To find a portfolio strategy based on a reference asset satisfying some drawdown constraints on the discounted prices at any time.

Framework

- the reference asset is the **discounted value** S_t of some strategic portfolio. There exists a probability measure Q such that S_t is a Q local martingale.
- the discounted value of any portfolio strategy π evolves as: $dX_t^{\pi} = \pi_t \frac{dS_t}{S_t}, \quad X_0^{\pi} = x$
- Drawdown constraints C.K (1995): $X_t^{\pi} > \alpha \overline{X}_t^{\pi}$, $\forall t$, $0 < \gamma < 1$.
- More generally, let **w** be a positive **increasing** function such that $\mathbf{w}(\mathbf{x}) < \mathbf{x}$. The DD-constraint becomes $X_t^{\pi} \geq \mathbf{w}(\overline{X}_t^{\pi,*}) \quad \forall t$.

Portfolio Point of view

The AY-Martingale $M^U(S)_t$, associated with some well-chosen function U is an admissible portfolio, if the budget constraint is satisfied.

⇒ Given a increasing DD-function w, with w(x) < x, let V be a positive solution of the ODE

$$\frac{V'(y)}{V(y)} = \frac{1}{y - w(y)}$$

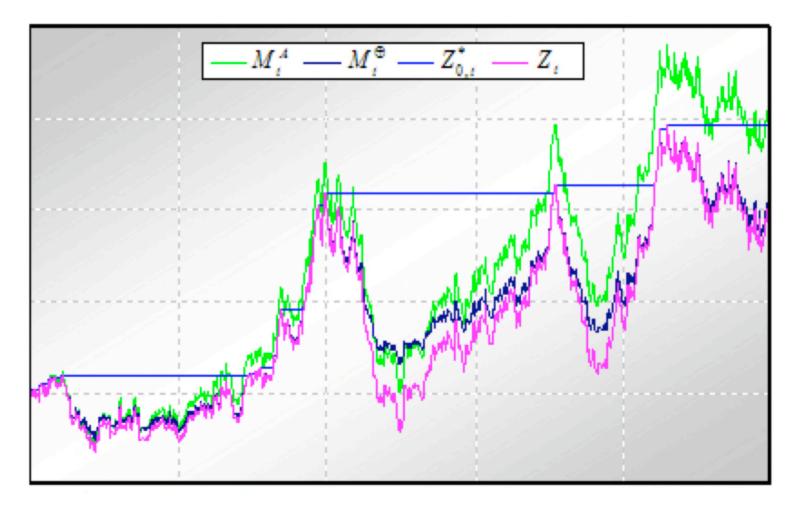
- \Rightarrow Then V is **convex** and its inverse function U is **concave** increasing.
- \Rightarrow Then $Y = M^U(S)$ is a self-financing strategy such that

$$dM_t^U = \left(\mathbf{M}_t^{\mathbf{U}} - \mathbf{w}(\overline{\mathbf{M}}_t^{\mathbf{U}})\right) \frac{dS_t}{S_t}$$

• The portfolio strategy is very simple: at any time the amount invested in the risky asset is the distance to drawdown, and the amount invested in cash is $w(\overline{M}_t^U)$.

- There is a floor process $Z_t = U(S_t)$, which is a supermartingale.
- The existence of the floor implies a budget constraint that $\mathbf{x} \geq \mathbf{U}(\mathbf{S}_0)$.
- The initial condition $M_0^U = x$ is satisfied if the function V is chosen such that $V(x) = S_0$.
- When $w(y) = (1 \gamma)y$, $\mathbf{U}(\mathbf{x}) = \mathbf{C}\mathbf{x}^{\gamma}$

Bachelier solution of a power function



In black the AY process Y, in red the path of Z, in green the martingale part of Z, in blue the Z running supremum

American Call options, and AY-martingales

Darling, Ligget, Taylor Point of View, (1972)

- Z is a supermartingale on $[0, \zeta]$ and $\mathbb{E}[|\overline{Z}_{0,\zeta}|] < +\infty$
- Assume Z to be a conditional expectation of some running supremum process $\overline{L}_{s,t} = \sup_{\{s \le u \le t\}} L_u$, such that $\mathbb{E}[|\overline{L}_{0,\zeta}|] < +\infty$ and $\mathbf{Z}_t = \mathbb{E}[\overline{L}_{t,\zeta}|\mathcal{F}_t]$

American Call options Let $C_t(Z, m)$ be the American Call option with strike m, $\mathbf{C_t}(\mathbf{Z}, \mathbf{m}) = \operatorname{ess\,sup}_{t \leq S \leq \zeta} \mathbb{E}[(\mathbf{Z_S} - \mathbf{m})^+ | \mathcal{F}_t].$ Then

$$\mathbf{C_t}(\mathbf{Z},\mathbf{m}) = \mathbb{E}ig[ig(\overline{\mathbf{L}}_{\mathbf{t},\zeta} ee \mathbf{Z}_{\zeta} - \mathbf{m}ig)^+ | \mathcal{F}_{\mathbf{t}}ig]$$

and the stopping time $\mathbf{D}_{\mathbf{t}}(\mathbf{m}) = \inf\{s \in [t, \zeta]; L_s \ge m\}$ is optimal.

Proof

- $\Rightarrow \mathbb{E}\left[\left(\overline{L}_{t,\zeta} m\right)^+ | \mathcal{F}_t\right] \text{ is a supermartingale dominating } \mathbb{E}\left[\overline{L}_{t,\zeta} | \mathcal{F}_t\right] m = Z_t m,$ and so $C_t(Z,m)$
- ⇒ Conversely, since on $\{\theta = D_t(m) < \infty\}$, $\overline{L}_{\theta,\zeta} \ge m$, at time $\theta = D_t(m)$, we can omit the sign +, and replace $(\overline{L}_{\theta,\zeta} m)$ by its conditional expectation $Z_{D_t(m)} m$, still nonnegative.

Perpetual American Call Options and Azéma Yor martingales

Framework

- (N_t) is a positive local martingale, which tends to 0 as t goes to ∞ .
- g is a continuous increasing function on R⁺ whose increasing concave envelope
 U is finite.
- the underlying process of the option is $\mathbf{Y}_t = g(N_t)$, and we assume that $\mathbb{E}[\sup_{0,\infty} |g(N_t)|] < \infty.$

Galtchouk, Mirochnitchenko Result (1994): The process $\mathbf{Z}_{\mathbf{t}} = U(N_t)$ is the Snell envelope of Y,

• $\overline{Z}_t = U(\overline{N}_t)$ is the running supremum of Z, and $\overline{Z}_{s,t} = \sup_{s \le u \le t} Z_u$ is the running supremum between s and t.

• $M_t^U = U(\overline{N}_t) - u(\overline{N}_t)(\overline{N}_t - N_t)$ is the Azéma Yor martingale associated with <u>U. Observe that the concavity of U implies that at any time $t, M_t^{AY} \ge Z_t$.</u> NEK, UPMC/CMAP

Main Result

Theorem Under the previous assumption, Z is the conditional expectation of the running supremum $h(\overline{N}_{t,\infty})$ where $\mathbf{h}(\mathbf{y}) = \mathbf{U}(\mathbf{y}) - \mathbf{yu}(\mathbf{y})$ is a nondecreasing function on \mathbb{R}^+ .

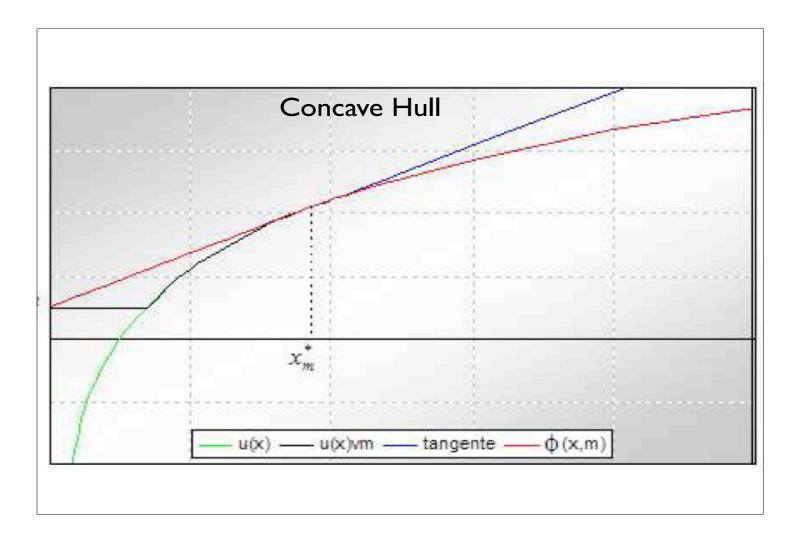
- The American Call option $C_t(Z, m)$ is optimally stopped at the time $D_t(m) = \inf\{s \in [t, \infty]; h(N_t) \ge m\}.$
- The Call price at time t is given by

$$C_t(Y,m) = \mathbb{E}[(h(\overline{N}_{t,\infty}) - m)^+ | \mathcal{F}_t] = \mathbf{V}(N_t,m) = \phi(N_t) - m$$

where $\mathbf{V}(z,m)$ is the concave envelope of $(g(z) - m)^+$.

Proof: We only have to observe that $Z_t = U(N_t) = \mathbb{E}[h(\overline{N}_{t,\infty})|\mathcal{F}_t].$

The concave envelop of $u(y) \lor m$



American Call Options for Supermartingales with Independent Increments

Continuous case Let N be a geometric Brownian motion with return=0 and volatility to be specified. Let Z be a supermartingale defined on $[0, \infty]$ such that

- a geometric Brownian motion with negative drift, $\frac{dZ_t}{Z_t} = -rdt + \sigma dW_t, \quad Z_0 = z > 0.$
- Setting $\gamma = 1 + \frac{2r}{\sigma^2}$, $N_t = Z_t^{\gamma}$ is a local martingale, with volatility $\gamma \sigma$
- $Z_t = U(N_t)$ where U is the increasing concave function $U(x) = x^{1/\gamma}$.
- $h(x) = U(x) x u(x) = \frac{\gamma 1}{\gamma} x^{1/\gamma} = \frac{\gamma 1}{\gamma} z$,
- the optimal boundary for American Call options, is given by $\mathbf{y}^*(\mathbf{m}) = \frac{\gamma}{\gamma 1} \mathbf{m}$, where $\frac{\gamma}{\gamma - 1} = \mathbb{E}[\overline{Z}_{\infty}/Z_0].$

- Let Z be a **Brownian motion** with negative drift $-(r + \frac{1}{2}\sigma^2) \ge 0$ $dZ_t = -(r + \frac{1}{2}\sigma^2)dt + \sigma dW_t, \quad Z_0 = z.$ Then $Z_t = \frac{1}{\gamma}\ln(N_t), h(z) = z - \frac{1}{\gamma}$ and the Call American boundary is $y^*(m) = m + \frac{1}{\gamma}.$
- the exponentional of a Lévy process with jumps

Assume Z to be a supermartingale with a continuous and integrable supremum. Then the same result holds with a modified coefficient γ_{Levy} , such that $Z_t^{\gamma_{Levy}}$ defines a local martingale that goes to 0 at ∞ .

• Finite horizon T without Azéma-Yor martingale

Same kind of solution: we have to find a function b(.) such that at any time t

$$Z_t = \mathbb{E}\Big[\sup_{t \le u \le T} \mathbf{b}(\mathbf{T} - \mathbf{u}) Z_u \big| \mathcal{F}_t\Big]$$

Universal Boundary and Pricing Rule

Framework: Let Z = U(N) be a increasing concave function of the cadlag local martingale N going to 0 at infinity, with continuous running supremum. Assume $\mathbb{E}[|\overline{Z}_{0,\infty}|] < +\infty.$

• Let V be the increasing convex, inverse function of U, such that V(Z) = N is a local martingale and $w(z) = h \circ V(z) = z - \frac{V(z)}{V'(z)}$. Then

$$Z_t = \mathbb{E}[w(\overline{Z}_{t,\infty})|\mathcal{F}_t], \qquad C_t^Z(m) = \mathbb{E}[(w(\overline{Z}_{t,\infty}) - m)^+|\mathcal{F}_t]$$

• Optimal boundary and price of the American Call options are given by the universal rule

$$y^{*}(m) = w^{-1}(m) = m + \frac{V(y^{*}(m))}{V'(y^{*}(m))}$$

$$C_{t}^{Z}(m) = \begin{cases} (Z_{t} - m) & \text{if } Z_{t} \ge y^{*}(m) \\ \frac{y^{*}(m) - m}{V(y^{*}(m))} \varphi(Z_{t}) & \text{if } Z_{t} \le y^{*}(m) \end{cases}.$$

Max-Plus decomposition

Azéma-Yor martingales are well adapted to get very easily explicit formulae for optimal strategies in portfolio insurance.

The same ideas may be used in ageneral case, based on a new decomposition of general supermartingale.

Max-Plus Supermartingale Decomposition

Let Z be a càdlàg supermartingale in the class (\mathcal{D}) defined on $[, \zeta]$.

• There exists $L = (L_t)_{\leq t \leq \zeta}$ adapted, with upper-right continuous paths with **running supremum** $L_{t,s}^* = \sup_{t \leq u \leq s} L_u$, s.t.

$$\mathbf{Z}_{\mathbf{t}} = \mathbb{E}\left[(\sup_{t \le u \le \zeta} L_u) \lor Z_{\zeta} | \mathcal{F}_t\right] = \mathbb{E}\left[L_{t,\zeta}^* \oplus Z_{\zeta} | \mathcal{F}_t\right] = \mathbb{E}\left[\oint_{\mathbf{t}}^{\zeta} \mathbf{L}_{\mathbf{u}} \oplus \mathbf{Z}_{\zeta} | \mathcal{F}_{\mathbf{t}}\right]$$

• Let M^{\oplus} be the martingale: $\mathbf{M}_{\mathbf{t}}^{\oplus} := \mathbb{E} \left[L_{\mathbf{0},\zeta}^* \oplus Z_{\zeta} \big| \mathcal{F}_t \right) \right]$. Then,

$$M_t^{\oplus} \ge \max(Z_t, L_{\mathbf{0},t}^*) = Z_t \oplus L_{\mathbf{0},t}^* \le t \le \zeta$$

and the equality holds at times when L^* increases or at maturity ζ :

$$M_S^{\oplus} = \max(Z_S, L_{\mathbf{0},S}^*) = Z_S \oplus L_{\mathbf{0},S}^* \quad \text{for all stopping times } S \in \mathcal{A}_{L^*} \cup \{\zeta\}.$$

Martingale optimization problem

The optimization problem

Set
$$\mathcal{M}(x) = \left\{ (M_t)_{t \ge 0} \text{ u.i.martingale} | M_0 = x \text{ and } \mathbf{M}_t \ge \mathbf{Y}_t \ \forall t \in [0, \zeta] \right\}$$

• We aim at finding a martingale (M_t^*) in $\mathcal{M}(x)$ such that for all martingales (M_t) in $\mathcal{M}(x)$

$$\mathbf{M}^*_{\zeta} \leq_{\mathbf{cx}} \mathbf{M}_{\zeta}$$

• The initial value of any martingale dominating Y must be **at least** equal to the one of the Snell envelope $Z_0^Y = \sup_{\tau \in \mathcal{T}_{0,c}} \mathbb{E}[Y_{\tau}]$,

Z^{Y} - Max-Plus Martingale is optimal

The martingale $\mathbf{M}^{\mathbf{Y},\oplus}$ of the Z^{Y} Max Plus decomposition is the smallest martingale in $\mathcal{M}^{Y}(Z_{0}^{Y})$, with respect to the convex stochastic order on the terminal value. In particular, $M_{\zeta}^{Y,\oplus}$ is less variable than $M_{\zeta}^{A}(Y)$.

Sketch of proof: Let M be in $\mathcal{M}^Y(Z_0^Y)$. Since M dominates Z^Y , the American Call option $C_t(M, m)$ also dominates $C_t(Z^Y, m)$. By convexity,

$$C_t(M,m) = \mathbb{E}\left[(M_{\zeta} - m)^+ | \mathcal{F}_S \right] \ge \mathbb{E}\left[(L_{S,\zeta}^{Y,*} \vee Y_{\zeta} - m)^+ | \mathcal{F}_S \right] \quad \forall S \in \mathcal{T}.$$

More generally, this inequality holds true for any convex function g, and

$$\mathbb{E}\left[g\left(M_{\zeta}\right)\right] \geq \mathbb{E}\left[g\left(L_{0,\zeta}^{Y,*} \lor Y_{\zeta}\right)\right] = \mathbb{E}\left[g\left(M_{\zeta}^{Y,\oplus}\right)\right]$$

Initial condition $x \ge Z_0^Y$ Same result by using $L^{Y,*}S, \zeta \lor m$ in place of $L_{S,\zeta}^{Y,*}$.

Second lecture

Paris, January 2011

and Skorohod embedding problems

Maximum distribution of the non negative martingale

and Skorohod embedding problems

AY Process, Definition

Let u be a locally bounded Borel function. The primitive function $U(x) = a^* + \int_{(a,x]} u(s) \, ds$ is defined on $[a,\infty)$.

Definition of AY Process

Let X be a cadlag semimartinale with **continuous** running supremum $\overline{X}_t = \sup_{u \leq t} X_u$, and u a locally bounded function. The (U, X)-Azéma-Yor process is defined by one of these two equations

$$M_t^U(X) = U(\overline{X}_t) + u(\overline{X}_t)(X_t - \overline{X}_t)$$
(3)

or
$$= a^* + \int_0^t u(\overline{X}_t) dX_s$$
 (4)

If X is a local martingale, M_t^U is also a local martingale.

Maximum distribution

Let us come back to AY Martingale, written on a process (N_t) , $N_0 = 1$ which is a max-continuous non-negative local martingale such that $N_t \to 0$ a.s. when $t \to \infty$. The typical example is the Geometrical Brownian Motion (GBM).

• Well-known result. Assume that $N_0 = 1$. The running supremum ${}^ovlN_{\infty}$ is distibuted as the inverse of uniform r.v.:

 $1/N_{\infty}^*$ has a uniform distribution on [0,1].

- Moreover if there exists a constant $b \ge 1$ and a stopping time ζ s.t $N_{\zeta} \in \{0, b\}$, then given the event $\{\overline{N}_{\zeta} < b\} = \{\overline{N}_{\zeta} = 0\} \ \mathbf{1}/\overline{\mathbf{N}}_{\zeta}$ is uniformly distributed on (1/b, 1] and $\mathbb{P}(\overline{N}_{\zeta} = b) = 1/b$
- True also for \mathcal{F}_t -conditional distribution, $1/\overline{N}\infty \sim (1/m) \wedge (1/x)U$, where U is uniform, and m and x hold for $m = \overline{N}_t$ and $x = N_t \leq m$

Proof: Let u(x) = (K - x)+ the "Put "function. Then, $M^U(N)$ is bounded and u.i. martingale, such that

$$\mathbb{E}\left((K-\overline{N}_{\infty})^{+}+\mathbf{1}_{\{K>\overline{N}_{\infty}\}}\overline{N}_{\infty}\right)=K\mathbb{P}(K\geq\overline{N}_{\infty})=K-1$$

Analytic result

Given a U function we define the function h as h(x) = U(x) - x u(x). **Analytic lemma** Let h be a function defined on $(0, \infty)$, such that $\frac{|h(x)|}{x^2}$ is integrable away from 0, then

• the solution of equation

$$U(x) - xU'(x) = h(x), \quad \text{is } U(x) = x \int_{x}^{\infty} \frac{h(u)}{u^2} du = \int_{0}^{1} h(\frac{x}{u}) du$$

- When h is increasing, then U is concave.
- If h_m is the function $h(. \lor m)$, constant on (0, m), then the associated function $U_{\infty}(m, x)$ is affine on (0, m),

$$U_{\infty}(m, x) = U_{\infty}(m) - xU'_{\infty}(m)(m-x), \text{ if } x < m$$

and $U_{\infty}(m, x) = U_{\infty}(x)$ if $x \leq m$.

This analytical lemma allows us to characterize Azema-Yor martingales from their terminal values.

Characterization from terminal value

Let h such that $h(x)/x^2$ is integrable away from 0, and U_{∞} the solution of the previous ODE.

Let N be a max-continuous non negative local martingale, going to 0 at ∞ and $\zeta = T_0(N)$.

- Then, $h(\overline{N}_{\zeta})$ is an integrable random variable and the closed martingale $H_{t\wedge\zeta} = \mathbb{E}(h(\overline{N}_{\zeta})|\mathcal{F}_{t\wedge\zeta})$ is the Azema-Yor martingale $M^{U_{\infty}}(N)$.
- The semimartingale $U_{\infty}(N_{t\wedge\zeta}) = \mathbb{E}(h(\overline{N}_{t,\zeta})|\mathcal{F}_{t\wedge\zeta})$

Skohorod Embedding problem

Analytical Result

Let μ be a centered probability measure on \mathbb{R} .

- $\overline{\mu}(x) = \mu([x,\infty))$ is the right continuous tail distribution function.
- Let $\overline{q} : [0,1] \to \mathbb{R}$ is the tail quantile function that is the left-continuous inverse of $\overline{\mu}, \overline{\mu}(x) < y$ iff $\overline{q}(y) < x$.
- If $q(0^+) = \infty$, the solution U_{μ} of the previous equation with $h(x) = \overline{\mu}(1/x)$ verifies

$$U_{\mu}(1/x) = \int_0^1 \overline{q}(ux) du = 1/x \int_0^x \overline{q}(x) du := AVaR(x)$$

 $U_{\mu}(1/x)$ is the average value at risk (AVaR) of μ .

• The barycentre function $\Psi_{\mu}(.)$ is defined as

$$\Psi_{\mu}(x) = \frac{1}{\overline{\mu}(x)} \int_{[x,\infty)} s \,\mu(\mathrm{d}s).$$

For a.e x, $AVaR(x) = \psi_{\mu}(\overline{q}(x))$

• Let w_{μ} be the increasing draw-down function associated with μ by $w_{\mu}(U_{\mu}(x)) = \overline{q}(1/x)$ or equivalently $w_{\mu}(\text{AVaR}(x)) = \overline{q}(x)$. The inverse function of w is a.e. equal to the barycentre function ψ_{μ} .

Corollary

Let U be the solution of ODE associated with $h(x) = \overline{q}(1/x)$, and $Y_{\mu} = M^{U_{\mu}}(N)$ be the Azema-Yor martingale associated.

- Then $Y_{\zeta} = \overline{q}(1/\overline{N}_{\zeta})$ is distributed according to μ .
- Since $\overline{Y}_{\zeta} = U(\overline{N}_{\zeta})$, $Y_{\zeta} = w(\overline{Y}_{\zeta})$ and ζ is the first time where the DD constraint $Y_t \leq w(\overline{Y}_t)$ does not hold.
- Since w^{-1} is the barycentre function Ψ_{μ} , ζ is the first time where $\Psi_{\mu}(Y_t) \leq \overline{Y}_{\zeta}$, which is the definition of the Azema-Yor stopping time.
- $\overline{Y}_{\zeta} = U(\overline{N}_{\zeta}) = AVaR_{\mu}(1/\overline{N}_{\zeta})$ is a Hardy and Littlewood maximal r.v. associated with μ . (Gilat and Meilijson), that is a r.v. $X^* = AVaR_{\mu}(\xi)$ where ξ is uniformly distributed on [0, 1].

Skohorod embedding:AY Solution

Let (X_t) be a continuous local martingale, $X_0 = 0$, $\langle X \rangle_{\infty} = \infty$ a.s. and μ a centered probability measure on \mathbb{R} : $\int |x| \mu(\mathrm{d}x) < \infty$, $\int x \mu(\mathrm{d}x) = 0$. Then $(X_{t \wedge T_{\psi}})$

is a UI martingale and $X_{T_{\psi}} \sim \mu$, where T_{ψ} is defined via (??)-(??). Moreover, $\overline{Y}_{T_{\psi}}$ is distibuted as V(1/U)

Skorokhod embedding problem : Other formulation

- Given a strictly increasing function g, such that $\forall s \ g(s) < s$, our goal is to study the distribution of M_{τ_q} where

$$\tau_g = \inf\{t \ge 0 | M_t \le g(S_t)\}.$$

Proposition. Assume that $(M_{t \wedge \tau_g})$ is a u.i. martingale.

a) Denote by μ^S the law of S_{τ_g} , and by $G^S(x) = \mathbb{P}(S_{\tau_g} \ge x)$ the hazard function.

$$\mu^{S}(dy) = \frac{G^{S}(y)}{y - g(y)} dy$$

b) Denote by μ^M the law of M_{τ_g} , and by $G^M(x) = G^S(g^{-1}(x))$ its tail function. Then

$$g^{-1}(x) = \frac{1}{\mu^M([x, +\infty))} \int_{[x, +\infty)} y \mu^M(dy)$$

is the barycenter function of the measure μ .

Local Volatility

B.Dupire (95), E.Derman& Kani(95)

Implied Diffusion

Which Model

- ⇒ How to, extend Black-Scholes model to make it compatible with market option prices?
- ⇒ To price and hedge with vanilla options exotics options, as barrier, start forward options, basket, asian, with early exercice....
- \Rightarrow For easy implementation, we are looking for a Markovian diffusion,

$$\frac{dS_t}{S_t} = rdt + \sigma^{\mathrm{Dup}}(t, S_t)dW_t$$

fitting market data

$$\mathbb{E}[e^{rT(S_T-K)^+}] = C^{\mathrm{Mar}}(T,K)$$

 \Rightarrow Are there several solutions?

Dupire ANSWER: One and only one way to do it.

PDE forward and Dupire formula

No interest rate, no dividend

Dupire formula $C(0, K) = (S_0 - K)^+$, and

$$\partial_T C(T, K) = \frac{1}{2} K^2 (\sigma^{\text{Dup}})^2 (T, K) C_{KK}''(T, K)$$

That is the dual PDE integrated twice. From probabilistic point of view, the simplest proof is the following

- 1. Assume that S is driven by a stochastic volatility γ_t
- 2. Apply Itô's formula to $((S_T K)^+)^2$, take the expectation, and consider the first derivative with respect to T.

$$\partial_T Call^{\text{square}}(T,K) = \mathbb{E}\left(\gamma_t^2 \mathbf{1}_{\{S_T \ge K\}} S_T^2\right) = \mathbb{E}\left(\mathbb{E}(\gamma_T^2 | S_T) \mathbf{1}_{\{S_T \ge K\}} S_T^2\right)$$

3. Then, take the derivative w.r to K

 $2\partial_T Call(T,K) = \sigma^2(T,K)K^2C_{KK}''(T,K), \ \sigma^2(\mathbf{T},\mathbf{K}) = \mathbb{E}(\gamma_{\mathbf{T}}^2|\mathbf{S}_{\mathbf{T}} = \mathbf{K})$

Drawbacks, and performances

- Very sensitive to the process used to interpolate
- The local volatility surface is not very regular and process to regularize the surface are very times consuming.

If the Dupire formula is difficult to implement, the dual PDEs is a useful tool to generate a large number of Call prices from a given local volatility. It may be use to generate local volatility by fixed point argument. In particular

Other Markovian projections

Obviously we have to relax some assumptions

- \Rightarrow Dynamic "copula method":
 - Choose a BS diffusion, X. At any time, calibrate a strictly increasing function $\phi(t, x)$ s.t $\phi(t, X_t)$ has the marginal distribution of S_t .
 - Study the Markovian diffusion $Y_t = \phi(t, X_t)$, fitting the market, but not risk-neutral
- $\Rightarrow Skorohod Embedding problem$ See below

Calibration via Skorohod embedding problem

Ref: D.Madan, and M.Yor :Making Martingales meet marginals: with explicit construction.(Bernouilli 2002)

Assumptions As Madan & Yor, we use Brownian Motion in place of Geometrical BM.

• We assume marginal density g(y,t), $(y \in \mathbb{R})$ for the centered underlying, $S_t - S_0$, and assume that

$$\int |y|g(y,t)dy < \infty, \quad \int yg(y,t)dy = 0$$

• By no arbitrage assumption, Call prices are increasing in maturity, property equivalent to say that g(s, y) is smaller than g(t, y), $\forall s \leq$ for the concave order.

• Moreover, we assume that the family of barycentre functions defined by

$$\psi(x,t) = \frac{\int_x yg(y,t)dy}{\int_x g(y,t)dy}$$

are increasing in t for any x.

Necessary condition implied by the martingale property

Main result

Theorem

Under the previous assumptions on g(y,t), and the baycentre functions $\psi(x,t)$, for a standard BM B(u), there exists an increasing family of stopping times T_t , defined via the embedding theorem by

$$T_t = \inf\{u \mid \overline{B}_u \ge \psi(B_u, t)\}$$

such that

- 1. $Y_t = B(T_t)$ is a martingale
- 2. $(Y_t; t \ge 0)$ is an inhomogeneous Markov process
- 3. for any t, the density of Y_t is g(t, y)

The semigroup only depend on B, since the change of time T_t only increase when $\overline{B}_u = \psi(B_u, t)$, and so \overline{B}_u is know as function of B at this date.

A one side pure jump process

The Q_t semigroup of the Markov process may be compute from y and $m_s = \psi(x, s)$

$$Q_t f(y,s) = \alpha f(\psi^{-1}(m_s,t)) + (1-\alpha)\Psi^f(x,t)$$
$$\alpha = \frac{m_s - x}{m_s - \psi^{-1}(x,t)}$$
$$\Psi^f(x,t) = \frac{\int_{\psi^{-1}(m_s,t)} g(y,t) dy}{\int_{\psi^{-1}(m_s,t)} g(y,t) dy}$$

Optimal Stopping of the Maximum Process

Optimal Stopping problem of Maximum Processes

Framework

On the probability space $(\Omega, \mathcal{F}_t, \mathbb{P})$, we consider a Brownian motion (B_t) , and the **maximum process** $S_t = \sup_{\{0 \le u \le t\}} B_u$.

Let ϕ be a non-negative, **increasing** and continuous function and c a continuous, **positive** function.

The problem (in short OSMP) is to maximize $\mathbb{E}(\Psi_{\tau})$

$$\Psi_{\tau} = \phi(S_{\tau}) - \int_0^{\tau} c(B_s) ds \tag{5}$$

over all integrable **stopping times** such that

$$\mathbb{E}\big(\phi(S_{\tau}) + \int_0^{\tau} c(B_s) ds\big) < +\infty \tag{6}$$

Related Works

- 1. 1987 with $\phi(x) = x$ and c(x) = c: Dubins and Schwarz were the first to introduce this problem in order to obtain Doob-like inequalities.
- 2. Peskir(1995-2004) studied in many papers different versions of this problem, in general when $\phi(x) = x$.
- 3. Meilijson (1997) with a general function ϕ and c(x) = c.
- Peskir(2000) and Obloj(2004) have related this problem to the embedding Skorohod problem, and Azema-Yor stopping times
- 5. Espinoza-Touzi (2010) based on the running maximum of OU process.

Main Theorem

Theorem (Peskir) Assume $\phi(x) = x$.

The OSMP problem has an optimal solution with finite value function iff there exists a maximal solution \mathbf{g}_* of

$$\mathbf{g'}(\mathbf{s}) = rac{\mathbf{1}}{\mathbf{2c}(\mathbf{g}(\mathbf{s}))(\mathbf{s}-\mathbf{g}(\mathbf{s}))}$$

which stays strictly below the **diagonal** in \mathbb{R}^2 ($g_*(s) < s$). The **Azéma-Yor stopping time**

$$\tau_* = \inf\{t \le 0 | B_t \le g_*(S_t)\}$$

is then optimal whenever it satisfies the integrability constraint.

The theorem will be proved for the geometrical Brownian motion.

Some extensions

- 1. If $\phi \equiv 1$, τ_* satisfies $\mathbb{E}\left(\int_0^{\tau_*} c(B_s) ds\right) < +\infty$ whenever there exists a stopping time which satisfies this constraint.
- 2. (Meilijson). Let us assume c(x) = c, ϕ constant on some interval $[x_0, \infty)$ and $H(x) = \sup_{\tau} \mathbb{E}(\phi(x + S_{\tau}) c\tau)$. Then $g^*(x) = x - \frac{H'(x)}{2c}$, and H(x) is the unique solution that equals ϕ on $[x_0, \infty)$ of the differential equation,

$$H(x) - \frac{1}{4c} (H'(x))^2 = \phi(x)$$
(7)

- 3. In the general case, V_{*} = φ(0) 2 ∫^{φ⁻¹(0)}_{φ⁻¹(g^Y_{*}(0))} uc(u)du, where g^Y_{*} is a function explicitly given in Peskir2. Furthemore, if there exists a solution σ_{*} of the optimal stopping problem, then P(τ_{*} ≤ σ_{*}) = 1 and τ_{*} satisfies the constraint.
- 4. If there is no maximal solution, then $V_* = \infty$ and two optimal stopping time.

Skorokhod problem, and OSMP

Consider the following converse problem:

Given a centered probability measure μ , find a pair of functions (ϕ, c) such that the optimal stopping problem τ_* solves the PMOSM (ϕ, c) -problem and embeds μ , i.e. $B_{\tau_*} \sim \mu$.

• (**Peskir**). If $\phi(x) = x$, then

$$c(x) = \frac{G'_{\mu}(x)}{G_{\mu}(x)},$$

with $G_{\mu}(x) := \mu([x, +\infty)).$

• (Meilijson). Conversely if c is fixed, we can determine ϕ by

$$H'(x) = 2c(x - \psi_{\mu}^{-1}(x)),$$

where ψ_{μ} is the barycenter function of the measure μ .

Back to AY Framework in portfolio insurance

Portfolio Insurance in AY Framework

Same framework than for DD-Constraints.

Theorem:

- U is a concave **increasing** function and φ its **inverse** function;
- the floor process $Z_t = U(S_t)$ is a function of the reference asset. This specific assumption makes sense in benchmarked management
- The floor process is a supertingale with martingale part

$$dM^Z = S_t u(S_t) \frac{dS_t}{S_t}$$

 M^Z satisfies the floor constraint.

• The AY-martingale $M_t^U = U(\overline{S}_t) + u((\overline{S}_t)(S_t - \overline{S}_t), M_0 = u(S_0)$ is an admissible strategy satisfying also the floor constraint,

$$M_t^U \ge U(S_t)$$

,

- Since $\overline{\mathbf{M}}_{\mathbf{t}}^{\mathbf{U}} = \mathbf{U}(\overline{\mathbf{S}}_{\mathbf{t}}) = \overline{\mathbf{Z}}_{\mathbf{t}}$, the running supremum of the martingale $\mathbf{M}^{\mathbf{U}}$ is less than the running supremum of any martingale U_t dominating Z_t , and with the same initial value.
- M_{∞}^U is optimal is optimal for the concave order of the terminal value of any martingale X_t dominating Z_t :

given an increasing concave function g, $\mathbb{E}[g(M_{\infty}^U)] \leq \mathbb{E}[g(X_{\infty})]$

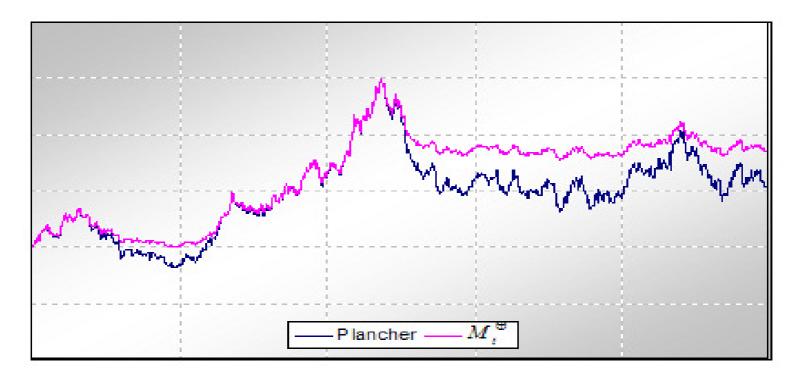
Proof Since g is concave, we only have to study

$$\mathbb{E}[g'(M_{\infty}^{U})(M_{\infty}^{U}-X_{\infty})] = \mathbb{E}[g'(h(\overline{N}_{\infty})(M_{\infty}^{U}-X_{\infty})]$$
$$\mathbb{E}[\int_{0}^{\infty} g'(h(\overline{N}_{t})d(M_{t}^{U}-X_{t})] + \mathbb{E}[\int_{0}^{\infty} (M_{t}^{U}-X_{t})g''(h(\overline{N}_{t}))dh(\overline{N}_{t})]$$

• The first term is the difference of two martingales, and so has a null expectation

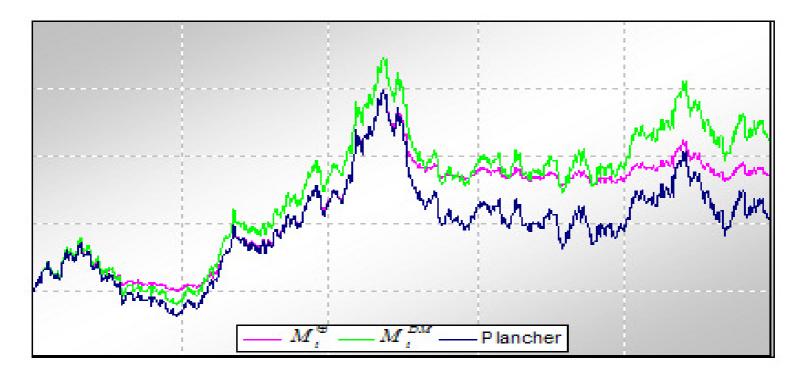
- For the second integral, \overline{N}_t only increases when $\overline{N}_t = N_t$, on which $M^U = \overline{M}^U = Z_t \leq X_t$
- as g is concave we obtain the inequality

Some pictures



In black a path of the floor, in red the associated path of the AY-martingale

Comparison Azema-Yor and Doob Meyer martingales



In red the associated path of the AY-martingale, in green the Doob Meyer Martingale.

Consumption optimization problem under storage constraints

by **P.Bank**

Ph Thesis Berlin 2000

Durable vs. perishable goods

perishable good	durable good
• chocolate, gas, electricity,	• clothes, cars, console,
• physically destroyed in process of con- sumption	• not destroyed, but possibly wears ou when consumed
• affects utility at time of consumption only	• provides service flow over extended periods of time
• typically bought continually	• typically bought periodically
• Merton, Karatzas et al.	• Hindy, Huang, Kreps et al.
Economic Problem:	

Study the **joint** impact of durable and perishable goods on life time consumption plans!

Preferences for durable & perishable goods Consumption plan ...

- For perishable good C: nonnegative, absolutely continuous process with optional density c_t
- For durable good D: nonnegative, right continuous, increasing, optional process

Utility functional:

$$U(C,D) = \mathbb{E} \int_0^{\hat{T}} u(t,c_t,D_t) \, dt$$

- \hat{T} denotes agent's time horizon
- **u**(**t**, ., .) is his time *t* period utility function: strictly concave, increasing, satisfying Inada conditions

• **Example** : Cobb-Douglas Utility

$$u(t,c,d) = e^{-\rho t} \left(\frac{1}{\gamma} c^{\gamma}\right) \left(\frac{1}{\delta} d^{\delta}\right) \text{ with } \gamma, \delta > 0, \ \gamma + \delta < 1 \,.$$

The agent's optimization problem

Price of consumption plan (C, D):

$$\pi(C,D) = \mathbb{E} \int_0^{\hat{T}} H_t c_t dt + \mathbb{E} \int_0^{\hat{T}} \widehat{H}_t dD_t .$$

where H_t , $\hat{H}_t > 0$ are state price density processes for durable & perishable goods.

agent's budget: w > 0

Utility maximization problem:

Maximize U(C, D) over all consumption plans (C, D) satisfying the budget constraint $\pi(C, D) \leq w$.

First order conditions for optimality

A consumption plan (C^\ast,D^\ast) is cost efficient iff there exists a Lagrange parameter M>0 such that

$$\Rightarrow \nabla_C U(C^*, D^*)_t \leq MH_t \text{ for all } t \in [0, \hat{T}] \text{ with '=' whenever } c_t^* > 0,$$

$$\Rightarrow \nabla_D U(C^*, D^*)_t \leq M \widehat{H}_t$$
 with '=' whenever $dD_t^* > 0$

where the gradients are given by

$$\nabla_{\mathbf{C}} \mathbf{U}(\mathbf{C}, \mathbf{D})_{\mathbf{t}} = \partial_{\mathbf{c}} \mathbf{u}(\mathbf{t}, \mathbf{c}_{\mathbf{t}}, \mathbf{D}_{\mathbf{t}}) \quad (\mathbf{0} \le \mathbf{t} \le \mathbf{\hat{T}})$$

and

$$\nabla_{\mathbf{D}} \mathbf{U}(\mathbf{C},\mathbf{D})_{\mathbf{t}} = \mathbb{E} \Big(\int_{\mathbf{t}}^{\mathbf{\hat{T}}} \partial_{\mathbf{d}} \mathbf{u}(\mathbf{s},\mathbf{c_s},\mathbf{D_s}) \, \mathbf{ds} | \mathcal{F}_{\mathbf{t}} \Big)$$

Solution of first order conditions

Step 1 Solve in (i) for \dot{C}^* :

$$\mathbf{c}_{\mathbf{t}}^{*} = i_{c}(t, MH_{t}, D_{t}^{*}) \text{ where } i_{c}(t, ., d) = (\partial_{c}u(t, ., d))^{-1}$$

Step 2 Employ this in (ii) to obtain a condition involving D^* only:

$$\begin{cases} Y_t^* := \mathbb{E}\left(\int_t^{\hat{T}} f(s, D_s^*) \, ds | \mathcal{F}_t\right) \leq M \widehat{H}_t \\ \int_t^{\hat{T}} (M \widehat{H}_t - Y_t^*) \, dD_t^* = 0 \end{cases}$$

where $f(s, l) = \partial_d u(s, i_c(s, MH_s, l), l)$.

Step 3 Find the solution by using Skorohod-type representation theorem

Representation theorem

Theorem:

Let f be a continuous, strictly decreasing function.

For a given optional process X, there exists an adapted process L^f with upper-right continuous paths such that

$$X_T = \mathbb{E}\left[\int_{(T,+\infty]} f\left(t, \sup_{v \in [T,t)} L_v^f\right) | \mathcal{F}_T\right]$$

for any stopping time $T \in \mathcal{T}$. Then

 $\Rightarrow D_t^* = \sup_{0 \le s \le t} L_s^f \text{ where } L = (L_s)_{0 \le s < \hat{T}} \text{ is a storage index determined by}$ $\mathbb{E}\Big(\int_t^{\hat{T}} f(s, \sup_{v \in [t,s]} L_v) \, ds | \mathcal{F}_t\Big) = M \widehat{H}_t \quad (0 \le t < \hat{T}).$