

Time-Consistent Supervisory Accounting: the Cases of Insurance and Banking

Ph. Artzner¹ and K.-Th. Eisele

Université de Strasbourg

Modeling and managing financial risks, Paris, January 10, 2011

¹) Partial support from AERF/CKER, The Actuarial Foundation is gratefully acknowledged.

Aims of Talk

▲ adapt theory of multiperiod risk measures (of "net"positions) to the specifics of situation:

- liquid assets,
- illiquid obligations,
- a typical insurance framework;

 explore application to illiquid assets, as in banking under duress conditions. **Tool Box**

$$(\Omega, \mathcal{F}_1, \mathcal{F}_2, \mathbb{P})$$

a numéraire / benchmark / "risk-free" investment tool $r = (1, r_1, r_2), r_{12} = r_2/r_1.$

 \mathcal{M} set of neutral pricing measures

 N_1 date 0, zero cost portfolios,

 N_2 date 1, zero cost portfolios,

Supervisory Risk Assessment

(change sign w.r.t. risk measures).

regard an adapted process (X_1, X_2) of (cumulative) amounts of date 1 and date 2 money.

Expressions $\Psi_0(X_1, X_2)$, $\Psi_1(X_2)$ with many properties like:

- measurability,
- cash invariance:

 $\Psi_0(X_1 + a \cdot r_1, X_2 + a \cdot r_2) = \Psi_0(X_1, X_2) + a,$

• time consistency:

 $\Psi_0(X_1, X_2) = \Psi_0(X_1, \Psi_1(X_2) \cdot r_{12})$

Acceptability

acceptability:

at date 0:
$$\Psi_0(X_1, X_2) \ge 0$$

at date 1: $\Psi_1(X_2) \ge 0$.

notice

$$(X_1 - \Psi_0(X_1, X_2)r_1, X_2 - \Psi_0(X_1, X_2)r_2)$$
 is 0-acceptable
 $(X_2 - \Psi_1(X_2) \cdot r_{12})$ is 1-acceptable.

Links between market and risk assessment

∧ Liaisons dangereuses: case of $\Psi_0(X_1, X_2) < 0$ but $\Psi_0(X_1 + D_1, X_2 + D_1 \cdot r_{12} + D_2) \ge 0$ for some $D_1 \in N_1, D_2 \in N_2.$

 $\label{eq:market_consistency} \begin{gathered} \textbf{B} \mbox{ Market consistency (hedgeable components, CFK):} \\ \mbox{ for functionals } \Phi_0, \Phi_1 : \end{gathered}$

$$\begin{split} \Phi_0(X_1 + D_1, X_2 + D_1 \cdot r_{12} + D_2) &= \Phi_0(X_1, X_2) \\ \text{for all } D_1 \in N_1, D_2 \in N_2. \\ \text{Similarly for } \Phi_1. \end{split}$$

Two-sided Supervisory Accounting for Insurance right side:

an exogenous, illiquid obligation cash-flow process:

$$Z=(0,Z_1,Z_2)$$

with "value" process (with $\mathbb{Q} \in \mathcal{M}$):

$$\overline{Z}_0 = \mathbb{E}_{\mathbb{Q}}[Z_1/r_1 + Z_2/r_2], \overline{Z}_1 = \mathbb{E}_{\mathbb{Q}}[Z_2/r_{12}|\mathcal{F}_1], \overline{Z}_2 = 0$$

left side:

"self-financed" asset process, combined with the obligations, provides a current asset value process C:

$$C_0, \ C_1 = C_0 r_1 + D_1 - Z_1, \ C_2 = C_1 r_{12} + D_2 - Z_2,$$

 $\textit{D}_1 \in \textit{N}_1, \ \textit{D}_2 \in \textit{N}_2, \ \Delta\textit{C} = \textit{D} - \textit{Z} \ (\text{as flows})$

D "trading risk exposure" process, $C \simeq (C_0, D_1, D_2)$.

Acceptability of a Business Plan

given: $(C_0, D_1, D_2), Z$:

0-acceptability via the risk assessment condition:

$$\Psi_0(\mathcal{C}-\overline{\mathcal{Z}})\geq 0$$

 $\Psi_0(C - \overline{Z}) =: F_0(C, Z)$ is called the free capital since $(C - F_0(C, Z) \cdot r, Z)$ is also acceptable.

Remark: Industry speaks of solvency rather than

acceptability, and defines it in a "bottom-up" way.

Cornerstone Concepts: Supervisory Provision and Optimal Replicating

Portfolio

Supervisory cover of Z by C: $\Psi_0(C - \overline{Z}) \ge 0$

Cheapest cover:

• in absolute:

 $SP_0(Z) := \inf \left\{ C_0 \left| (C_0, D_1, D_2), \Psi_0(C - \overline{Z}) \ge 0, \right. \right\}$ called supervisory provision.

• given $D_1, D_2, (C - F_0(C, Z) \cdot r, Z)$ is acceptable:

$$C_0-F_0((C_0,D_1,D_2),Z)\geq SP_0(Z).$$

- given ${\cal C}_0,$ find special trading risk exposures D_1^*, D_2^* with

$$C_0 = F_0((C_0, D_1^*, D_2^*), Z) + SP_0(Z)$$

(seen as maximization of free capital).

• Some extra condition on Ψ_0, Ψ_1 will ensure existence of such optimal trading-risk exposure together with the hereditary property $C_1^* = F_1(C^*, Z) + SP_1(Z)$

Acceptability of a Solvable Company via Rebalancing

Remark: for an ORP (C_0, D_1^*, D_2^*) , acceptability reduces to $C_0 \geq SP_0(Z)$.

Define "solvability" of (C_0, Z) by: $C_0 \ge SP_0(Z)$.

take an ORP C^* with $C_0^* = C_0$ (given C_0 , do your best with (D_1^*, D_2^*)).

apply remark.

Transfer of the Obligations of an Insolvable Company Case of $C_0 < SP_0 = SP_0(Z)$

- Goal: Find investors accepting to provide resources A = A(Z) as "Eigen"-capital to cover Z by a minimal company with ORP and $C_0^* = SP_0$,
- A is the "regulated" price of $(C_2^*)^+$,
- means: provide investors with "Fremd"-capital $SP_0 A$, taken, if possible, from old C_0 ,

 $SP_0 - A - Z$

• Rule of thumb:

$$q \cdot A$$

cost-of-capital ratio

additional "Fremd"-capital over \overline{Z} = costs of the "Eigen"-capital A

 $A = (1 + q) \cdot (SP_0 - \overline{Z}).$

• Supervisory tool: "Fremd"-capital $SP_0(Z) - A$ defined as "technical provision" $TP_0 = TP_0(Z)$:

$$TP_0 := rac{q}{1+q} \cdot SP_0 + rac{1}{1+q} \cdot \overline{Z}.$$

Finally: if $C_0 \ge TP_0$ the transfer will be possible (via ORP!).

Rephrasing of Acceptability of $((C_0, D_1, D_2), Z)$

$\overline{Z}_0 \leq TP_0 \leq SP_0$

- The "Fremd"-capital is $TP_0(Z) =: \overline{Z}_0 + RM_0(Z)$.
- The "Eigen"-capital is $AC_0 := C_0 - TP_0(Z) =: C_0 - \overline{Z}_0 - RM_0(Z).$
- Benchmark for "Eigen"-capital, given D:

 $SCR_0(D,Z) := \inf \left\{ C_0 - TP_0(Z) \middle| \Delta C = D - Z, (C,Z) \text{ acceptable} \right\}$

(given (D_1, D_2) , be reasonable in terms of C_0).

• Condition for acceptability becomes

 $SCR_0(D, Z) \le AC_0$ (available/ "Eigen"-capital)

Summary:

given Z, the financial market (by \mathcal{M} or (N_1, N_2)) and (Ψ_0, Ψ_1) determine $SP_0(Z), SP_1(Z)$.

 $SP_0(Z), SP_1(Z)$ determine:

- ORP as **D**₁^{*}, **D**₂^{*},
- *TP* via (*C*^{*}₂)⁺, *RM*,
- AC, to be compared with SCR(D, Z), thus stating acceptability in terms of "Eigen"-capital,
- but SPs do not show up in balance sheet!

Supervisory Accounting for a Bank Modeling a bank:

• owns a loan portfolio with (exogeneously given) inflow-process

$$V = (0, V_1, V_2) \ge 0,$$

• owes deposits with outflow-process

$$U=(0,\,U_1,\,U_2),$$

Successive liquid asset values:

Acceptability of a Bank

The value processes \overline{V} and \overline{U} of the respective future flows are defined in analogy to \overline{Z} .

The business plan (C, V, U) is acceptable if

$$\Psi_0\left(\mathcal{C}_1+\overline{\mathcal{V}}_1-\overline{\mathcal{U}}_1,\mathcal{C}_2\right)\geq 0$$

Supervisory Credit

Owning the loan process V and assuming U = 0the bank is allowed to borrow SC_0 at r where

$$egin{aligned} SC_0(V) &:= \sup igg\{ - C_0 ig| ext{ there exists } (D_1, D_2) ext{ s.t.} \ & \Psi_0 \Big(C_0 r_1 + D_1 + V_1 + \overline{V}_1, \ & (C_0 r_1 + D_1 + V_1) r_{12} + D_2 + V_2 \Big) \geq 0 igg\} \end{aligned}$$

One shows that

$$SC_0 \ge 0$$
 and $SM_0 := \overline{V}_0 - SC_0 \ge 0.$

Transfer of a loan process

A loan process \boldsymbol{V} can be sold to another bank for an amount

$$A:=A(V)\in (SC_0,\overline{V}_0).$$

Investors are ready to build a (new) bank owning V and borrowing SC_0 , for a price A between SC_0 and \overline{V}_0 :

- money borrowed by the new bank SC_0 (to be reimbursed at T),
- contributed "Eigen"-capital: $A SC_0$.

There is a gain (on average) of $\overline{V}_0 - A$, hence the regulator picks a cost-of-capital ratio q_0 :

$$\overline{V}_0 - A = q_0 (A - SC_0).$$

This defines \boldsymbol{A} as

$$A = SC_0 + rac{1}{1+q_0}SM_0, \qquad SM_0 = \overline{V}_0 - SC_0.$$

The old bank has now the liquid asset value $C_0 + A$ to guarantee the deposits U: We are back in a kind of insurance problem.

References

[1] P. Artzner and K.-T. Eisele.

Supervisory accounting: mathematics for provision – and solvency capital – requirements.

to appear in ASTIN Bulletin,

(see: http://www-irma.u-strasbg.fr/~eisele/), 2010.

[2] K.-T. Eisele and P. Artzner.

Time-consistent supervisory accounting.

Technical report, Paper presented at Risk Day 2010, ETH Zurich (see: http://www-irma.u-strasbg.fr/~eisele/), 2010.