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Classical Approaches to the Asset Allocation Problem

Classical Approaches to the Asset Allocation Problem

Objective: Presentation of classical models used to represent asset returns.
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Classical Approaches to the Asset Allocation Problem

The Asset Allocation Problem

? An investor wants to allocate her wealth among different assets traded in the

capital markets (typically N risky assets and a risk free asset).

Question: Find the proportion of the wealth to invest in each asset.

? Choice criterion: choosing the allocation ϕ as to maximize the expected utility u of

the future wealth Xϕ at a given time horizon (subject to some potential constraint).

Remark: There is always the constraint
∑N
i=0 ϕ

i = 1.

The Efficient Frontier (Markovitz - 1952)

The optimization problem of the investor is:

maxϕ EP[u(Xϕ, λ)]

where P stands for the prior probability measure of the investor. Depending on her

risk aversion λ, the investor chooses a portfolio on the Efficient Frontier.
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Classical Approaches to the Asset Allocation Problem

⇒ Several classical models for asset returns. Among them:

The CAPM (Sharpe 1969)

Any random asset return ri can be separated into a systematic component

and a residual component:

ri = rf + βi(rM − rf ) + εi

The APT (Ross - 1976)

The APT, unlike the CAPM, is not a consensus model as it depends on the

selection of the K factors made by each investor.

ri = E(ri) +
∑K

k=1 f
kβk,i + εi

-where K is the number of factors selected, fk stands for the centred return of

the factor k and βk,i is the loading of the asset i on the factor k.
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Factor Model Performances: Empirical Evidence

Factor Model Performances: Empirical Evidence

Objective:

⇒ To compare the performance of classical portfolios on European stock data.

⇒ Empirical evidence that none of the classical models can be fully trusted over an

extended period of time.
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Factor Model Performances: Empirical Evidence

Data and assumptions

? Daily close prices of Eurostoxx 600 constituents from Jan 2000 to April 2010.

? Cleaning process to get rid of doubtful data.

? Assumptions:

� The risk free rate is assumed to be zero (daily data),

� No transactions costs, fees and slippage are considered as it is a

comparative performance study.

? We run a back test on historical data when at each date the investor

re-balances her portfolio by re-estimating the different models over a training

window of 120 days.
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Factor Model Performances: Empirical Evidence

Different models

• A market benchmark: the equally weighted portfolio (EW)

• Two Classical Markovitz portfolios:

? The minimum variance portfolio (MN)

? The mean-variance portfolio (MV)

• The CAPM portfolio (CAPM)

• Two exogeneous factors - APT based portfolios:

? A Fundamental Factor Model portfolio (FFM)

? An External Factor Model portfolio (EFM)

• Three endogeneous factors - APT based portfolios:

? The Principal Component Analysis portfolio (PCA)

? The Independant Component Analysis portfolio (ICA)

? The Cluster Analysis portfolio (CA)
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Factor Model Performances: Empirical Evidence

Portfolio performances

Figure 1: Factor Models Returns

⇒ Very volatile performances: no model consistantly outperforms others

⇒ Evidence for model ambiguity
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Decision Under Ambiguity: Literature Review

Decision Under Ambiguity: Literature Review

Objective:

⇒ Presentation of the different models proposed in the literature to account for

ambiguity in a decision problem.

⇒ Often, those models are difficult to implement and restrictive.
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Decision Under Ambiguity: Literature Review

Knight Uncertainty (Knight - 1931) Decision makers often consider different

models, none of which they can fully trust.

⇒ Necessity to take into account uncertainty in the decision process. We focus on

the literature of Asset Allocation problem.

Subjective expected utility (Savage - 1954) The investor considers a set of

possible models Q as well as a distribution µ on these models.

The optimization problem is now:

maxϕ
∑

Q∈Q EQ[u(Xϕ)]µ(Q)

⇒ The investor has several priors as reference, but there exists no aversion towards

this uncertainty.

⇒ Aversion to model risk (or ambiguity) prevents the investors from using this

classical framework of expected utility maximization to compute optimal allocations

(Ellsberg paradox - 1961).
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Decision Under Ambiguity: Literature Review

Max-min approach (Gilboa & Schmeidler - 1989) Maximizes the

minimum expected utility over the set of models Q:

maxϕ minQ∈Q EQ[u(Xϕ)]

⇒ Too conservative as only considers the worst case scenario.

Penalized max-min approach (Maccheroni, Marinacci & Rustichini -

2006) Penalizes each model differently, using a penalty function α:

maxϕ minQ∈Q{EQ[u(Xϕ)]− α(Q)}

Other references: Hansen and Sargent (2001) (entropic penalty function),

Garlappi, Uppal and Wang (2007) and Epstein and Schneider (2007)

(constrained optimization).

⇒ How to choose the penalty function? Often expressed in terms of a

reference model: how to choose the reference?
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Decision Under Ambiguity: Literature Review

Integrated approach (Klibanoff, Marinacci and Mukerji (KMM) -

2005)

The idea is to develop a generalized model, by introducing a function Ψ

characterizing the ambiguity aversion of the investor through a parameter γ.

The optimization problem is then:

maxϕ

∑
Q∈Q Ψ (EQ[u(Xϕ)], γ)µ(Q)

⇒ Almost impossible to implement (calibration, dimension...), especially

when some additional constraints are added.

⇒ Our objective: To introduce a simple (practical and easily implementable)

approach to account for model risk in a robust way (i.e. independent of the

considered class of models and of the optimization criterion).
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A Robust Alternative Approach to Model Ambiguity

A Robust Alternative Approach to Model Ambiguity

Main idea:

⇒ A novel and general method is proposed to account for ambiguity, simple to

implement and very flexible.

⇒ The objective is to find a trade-off between optimization and robustness.
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A Robust Alternative Approach to Model Ambiguity

⇒ A new approach to model ambiguity that is more flexible, easier to

compute, and more tractable than the previous methods.

⇒ Independent of the set of models considered Q, as well as of the choice

criterion.

General principle

The ambiguity robust adjustment is a two-step procedure, introducing a

distinction between two types of ambiguity aversion:

? Absolute ambiguity aversion: ambiguity aversion for a given model,

independently of the other models,

? Relative ambiguity aversion: ambiguity aversion for a given model,

relatively to the other models.
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A Robust Alternative Approach to Model Ambiguity

Two-step procedure for the ambiguity robust adjustment:

1. First solve the optimization problem for each model as if it was the ”true” one.

Then adjust the outcome using an Absolute Ambiguity Robust Adjustment

function ψ.

2. Second, aggregate the adjusted outcomes computed for each model through a

Relative Ambiguity Robust Adjustment function π.

simple optimization outcome xq ⇒ ψ(xq) ⇒
∑
q ψ(xq)π(q)

Comments:

? The decision-maker has to solve a series of simple optimization problems (with

constraints) instead of a large complex optimization problem.

? The absolute adjustment is made on the outcome of the optimization problem.

⇒ Flexibility to adjust the same model differently according to the purpose.

? Adding a new model simply modifies the second step.
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A Robust Alternative Approach to Model Ambiguity

In the case of the portfolio allocation problem:

1. First, for each model Q ∈ Q, get the desired weights ϕQ
i , for instance by solving

the optimization problem

ϕ → max
ϕ

EQ[u(Xϕ)] and ϕQ ≡ argmaxEQ[u(Xϕ)]

Then adjust the weights using the function ψ:

ψ
(
ϕQ
i

)
2. Finally, the ambiguity adjusted weights are obtained as:

ϕARAi ≡
∑

Q∈Q ψ
(
ϕQ
i

)
π(Q)
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A Robust Alternative Approach to Model Ambiguity

Absolute ambiguity robust adjustment

Idea: Scaling down the optimal weights generated by each model.

Axiomatic characterization of the function ψ:

? Universality: ψ is identical across all models, but parametrized by an ambiguity

aversion parameter γ that may vary and be model specific.

? Monotonicity: ψ preserves the relative order of the optimal weights obtained for

any given model Q.

The relative preference of the investor towards the different risky assets for a

given model Q is preserved through the transformation ψ.

? Convexity: The function ψ is concave and then convex, so that ψ reduces more

the (absolute) largest weights for each model considered (shrinking effect).

+ Some additional properties (Symmetry, Invariant point, Limit behaviour)
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A Robust Alternative Approach to Model Ambiguity

An example for the function ψ is:

ψ(x, γ) ≡


1−exp−γx

γ
, 0 ≤ x ≤ 1

expγx −1
γ

,−1 ≤ x ≤ 0

Figure 2: ψ for different values of the ambiguity aversion parameter γ
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A Robust Alternative Approach to Model Ambiguity

Relative ambiguity robust adjustment

Characterization of the function π:

• Second step of the procedure: after an independent computation and adjustment

of the allocation (through ψ), aggregation across all models.

• The relative ambiguity robust adjustment function π represents how trustworthy

each model is according to the investor’s anticipations and relatively to the other

models of the class Q.

It measures the relative ambiguity aversion the investor displays towards each

model Q among the models in Q.

• The function π : Q → [0; 1] can be seen as a model weighting function.

Comments: π is not necessarily normalized.

∀Q ∈ Q, 0 ≤ π(Q) ≤ 1 and
∑
Q∈Q

π(Q) ≤ 1.

If
∑

Q∈Q π(Q) < 1, the investor believes that the set Q does not give a full

understanding of the situation: 1−
∑

Q∈Q π(Q) represents the global aversion for Q.
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A Robust Alternative Approach to Model Ambiguity

Role of the risk-free asset

? The risk-free asset can be seen as a refuge value.

The more the investor is averse to ambiguity, the bigger her proportional asset

allocation in the risk free asset.

The ambiguity aversion leads the investor to invest less in risky (ambiguous) assets.

⇒ The ”desinvested” risky investment value due to the presence of ambiguity is

transferred into the risk-free asset.

? After the ambiguity adjustment, the weight of any risky asset is ϕARAi and the

weight of the risk-free asset is:

ϕARA0 = 1−
N∑
i=1

ϕARAi
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Evidence from Empirical Study : Outperformance of the ARA Portfolio

Evidence from Empirical Study : Outperformance of the

ARA Portfolio

Objective: Empirical evidence that the ARA methodology enhances portfolio

performances.
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Evidence from Empirical Study : Outperformance of the ARA Portfolio

Ambiguity robust adjustment - Calibration

? Dynamic aversion to ambiguity: Depending on the considered period, the investor

will be more or less confident about the overall set of models she considers (the

ambiguity aversion does not necessarily decrease over time).

? Simple empirical calibration methodology, taking into account the relative

historical performance of the different models to calibrate the functions ψ and π:

• First, we compute historical time series of some performance measure for the

different models and the problem we consider.

• The ambiguity aversion parameter γ can be calibrated as the inverse of the

performance measure.

• The measure π can then be computed as a weighted average of the performance

measure.
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Evidence from Empirical Study : Outperformance of the ARA Portfolio

⇒ Same data used as in previous empirical study.

⇒ Several performance measures used to calibrate and test portfolios:

Performance measures used for calibration

• Sharpe ratio: ratio of the mean return of a portfolio over its standard deviation.

• Sortino Price ratio: ratio of the mean return of a portfolio over the standard

deviation of its negative returns.

• Gain Loss ratio: ratio of total positive returns over total negative returns.

• Winner Loser ratio: ratio of the number of total positive returns over the

number of total negative returns.

Performance measures used to compare models

• Certainty equivalent ratio: equivalent risk-free return (portfolio return

adjusted for its risk): the higher, the better.

• Turnover: change in portfolio weights from one re-balancing period to the

next: the lower, the better.
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Evidence from Empirical Study : Outperformance of the ARA Portfolio

Single portfolio performances

Figure 3: Strategies Returns
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Evidence from Empirical Study : Outperformance of the ARA Portfolio

Figure 4: ARA Strategies Returns
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Evidence from Empirical Study : Outperformance of the ARA Portfolio

ARA SEU Diff(%)

µ(%) 63.34 55.32 14.51

µ(Bps) 2.43 2.12 14.51

σ(%) 9.23 9.30 −0.71

max(µ)(Bps) 656.03 656.03 0.00

min(µ)(Bps) −408.09 −408.09 0.00

Sharpe 0.66 0.57 15.32

Sortino 0.81 0.69 17.51

GainLoss(%) 53.20 52.73 0.88

WinLose(%) 52.91 53.58 −1.24

CER(Bps) 2.25 1.94 15.92

T/O(%) 99.84 113.38 −11.94

Table 1: SEU and RA Sharpe Strategies Comparison

⇒ The ARA portfolio beats the SEU portfolio in terms of Sharpe, Sortino and CER

by more than 15%.
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Nonlinear Relative Ambiguity Adjustment

Nonlinear Relative Ambiguity Adjustment

Objective: Accounting for some none linear effects further improves the ARA

portfolio performances empirically.
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Nonlinear Relative Ambiguity Adjustment

Motivation

We would like to take into account some additional features such as:

? Non-linear effect when mixing models: e.g, when model A performs well, model B

tends to perform even better.

? If the various models disagree particularly on a specific asset, this asset should be

even more penalized and vice versa.

⇒ Model the Relative Ambiguity Robust Adjustment as a non-linear function.
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Nonlinear Relative Ambiguity Adjustment

The Support Vector Machines

? A nonlinear, non-parametric method to estimate π, the SVM separate non linearly

transformed data into hyperplanes:

f(x) =< ω, π(x) > +ω0

where π is defined by a non linear kernel k: k(x, y) ≡< π(x), π(y) >, and ω is the

support vector.

Backtest

? We run a back test on historical data, where SVM predicts the sign of the next

day return:

? Some issues:

• Better in some periods than SEU or ARA with linear π, but much worse other

times. Also, more volatile.

• Heavy in terms of computation.
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Nonlinear Relative Ambiguity Adjustment

Figure 5: SEU, ARA and SVM strategies Hit ratios
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Nonlinear Relative Ambiguity Adjustment

A more ad hoc method to calibrate π

? Start from a list of desired nonlinear properties to construct an ad hoc function π:

• The weight dispersion: If vi < vj (meaning that the models disagree more on

asset j than on asset i), then the final ARA weight φi,ARA should be closer

relatively to the mean µi than the weight φj,ARA to the mean µj .

• The precautionary principle: The investor is able to set a threshold, vmax, such

that if the dispersion of the different models considered is above this threshold

for a given asset, the final robust ARA weight should be set to zero.

• The global ambiguity aversion: Represented by a cash buffer or an overall cap

on the sum of total asset allocations for the ARA portfolio.

More specifically, considering a cap value of 1 and the variance as dispersion

measure, the final nonlinear ARA allocation can be defined as:

∀i ∈ [1, N ], φARA,i ≡ max{1, µQ∈Q[ψ(φQ,i,γQ)]

σ2
Q∈Q[ψ(φQ,i,γQ)]

}.
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Nonlinear Relative Ambiguity Adjustment

Figure 6: Ad hoc nonlinear Sharpe ARA strategy versus linear Sharpe ARA

strategy
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Nonlinear Relative Ambiguity Adjustment

non linear sharpe

µ(%) 85.88 63.34

µ(Bps) 3.29 2.43

σ(%) 12.18 9.23

max(µ)(Bps) 820.39 656.03

min(µ)(Bps) −504.85 −408.09

Sharpe 0.67 0.66

Sortino 0.86 0.81

GainLoss(%) 53.43 53.20

WinLose(%) 52.84 52.91

CER(Bps) 3.23 2.39

T/O(%) 104.32 99.84

Table 2: Non Linear Strategy Performance

⇒ The ad hoc nonlinear form for π greatly enhance the ARA portfolio.
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Conclusion and further research

Conclusion and further research

? ARA is a new method to account for ambiguity in a decision problem.

? Applied to the specific asset allocation problem, empirical evidence that the

ARA methodology enhance portfolio performances.

? Further research areas include:

• Calibration of the absolute and relative ambiguity aversion parameters.

• Other forms for the RARA function.

• Application of the ARA methodology on other fields.
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Appendix

Appendix

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

EW 1.54 −0.58 −1.13 1.76 2.45 1.57 0.42 −3.69 1.98 −0.44

MN 0.75 0.00 −0.77 0.75 2.82 2.49 1.52 −1.51 0.98 −0.04

MV 0.01 −1.28 −1.30 0.87 2.46 2.10 1.57 −0.42 1.28 0.23

CAPM −1.88 −0.01 2.29 0.18 3.89 4.70 2.35 1.45 3.51 −0.57

FFM −2.07 0.17 2.03 −0.13 1.21 2.63 2.08 1.82 0.82 −0.28

EFM −2.15 −1.88 0.84 −0.32 0.18 0.36 0.55 1.75 −0.45 0.10

PCA −3.55 −0.09 1.06 −0.84 2.36 2.26 1.52 3.93 1.40 −0.26

ICA −2.11 −1.97 0.63 −0.05 −0.12 1.15 0.28 1.32 0.06 0.52

CA −2.47 2.18 1.90 1.07 4.36 4.42 3.85 2.02 4.10 1.45

Table 3: Sharpe per Strategy per Period no Transaction Costs
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Appendix

EW MN MV CAPM FFM EFM PCA ICA CA

µ 60.83 −40.36 −23.04 −3.06 −29.52 −97.29 −39.33 −90.69 32.07

µ 2.33 −1.55 −0.88 −0.12 −1.13 −3.72 −1.51 −3.47 1.23

σ 13.69 12.91 12.50 6.30 8.14 12.06 7.14 12.57 6.29

max(µ) 656.03 805.77 766.45 373.50 539.07 643.67 503.37 640.99 361.20

min(µ) −505.07 −710.86 −948.33 −380.61 −367.13 −560.71 −355.11 −510.23 −295.45

Sharpe 0.43 −0.30 −0.18 −0.05 −0.35 −0.77 −0.53 −0.69 0.49

Sortino 0.48 −0.37 −0.22 −0.06 −0.48 −1.07 −0.71 −0.95 0.68

GainLoss 52.13 48.51 49.09 49.77 48.31 46.23 47.42 46.59 52.43

WinLose 55.35 50.98 48.66 47.90 46.69 46.11 47.40 45.75 50.47

CER 1.95 −1.88 −1.19 −0.20 −1.26 −4.02 −1.61 −3.79 1.15

T/O 19.33 114.29 108.03 143.49 150.36 148.89 148.60 148.88 150.53

Table 4: Strategies Performances 3bps Transaction Costs
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Appendix

sharpe sortino gainloss winlose

µ(%) 55.32 51.28 47.80 49.10

µ(Bps) 2.12 1.96 1.83 1.88

σ(%) 9.30 9.04 9.26 9.31

max(µ)(Bps) 656.03 656.03 656.03 656.03

min(µ)(Bps) −408.09 −408.09 −408.09 −408.09

Sharpe 0.57 0.54 0.49 0.50

Sortino 0.69 0.66 0.60 0.61

GainLoss(%) 52.73 52.62 52.39 52.44

WinLose(%) 53.58 53.48 52.96 53.12

CER(Bps) 1.94 1.80 1.66 1.71

T/O(%) 113.38 115.09 117.08 116.84

Table 5: SEU Strategies Performances 3 bps Transaction Costs
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Appendix

sharpe sortino gainloss winlose

µ(%) 63.34 57.65 55.12 58.30

µ(Bps) 2.43 2.21 2.11 2.23

σ(%) 9.23 8.75 9.69 9.91

max(µ)(Bps) 656.03 656.03 656.03 656.03

min(µ)(Bps) −408.09 −408.09 −408.09 −430.06

Sharpe 0.66 0.63 0.54 0.56

Sortino 0.81 0.79 0.66 0.69

GainLoss(%) 53.20 53.10 52.69 52.77

WinLose(%) 52.91 52.77 52.91 52.83

CER(Bps) 2.25 2.05 1.92 2.04

T/O(%) 99.84 104.60 108.21 107.42

AAA 0.70 0.62 0.91 0.92

RAA 0.59 0.53 0.73 0.73

Table 6: ARA Strategies Performances 3 bps Transaction Costs
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Appendix

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

EW 1.41 −0.71 −1.25 1.68 2.34 1.50 0.35 −3.75 1.94 −0.50

MN −0.28 −0.62 −1.25 −0.75 1.76 1.36 0.34 −1.88 0.38 −0.98

MV −1.02 −2.32 −1.90 0.20 1.62 0.82 0.37 −1.06 0.74 −0.79

CAPM −3.65 −1.88 1.04 −1.28 0.08 1.46 −0.39 0.41 2.19 −3.41

FFM −3.70 −1.38 0.60 −1.42 −1.68 1.30 0.28 0.92 −0.22 −1.89

EFM −3.45 −3.01 −0.20 −1.33 −1.65 −0.65 −0.37 1.17 −1.12 −0.52

PCA −5.49 −1.84 −0.13 −2.13 −1.08 −0.22 −1.16 2.72 0.39 −2.43

ICA −3.39 −3.18 −0.37 −1.08 −1.90 0.19 −0.64 0.75 −0.54 −0.12

CA −4.50 0.25 0.55 −0.43 0.49 1.53 1.21 0.91 2.69 −1.03

Table 7: Sharpe per strategy per periods 3 bps Transaction Costs

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

sharpe 0.53 −1.52 0.03 −0.97 1.94 1.59 0.21 0.68 1.48 −1.19

sortino 0.51 −1.54 −0.03 −0.99 1.98 1.73 0.26 0.53 1.60 −1.32

gainloss 0.29 −1.30 1.07 −0.69 1.73 1.11 −0.12 0.63 1.36 −1.25

winlose 0.36 −1.26 1.15 −0.80 1.75 0.98 −0.03 0.68 1.34 −1.11

Table 8: Sharpe per ARA strategy per periods
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