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Probability Distortion: Experimental Evidence

First decision: Choose between

A: Win £5000 with 0.1% chance
B: Win £5 with 100% chance

A was more popular (lottery)

Second decision: Choose between

C: Lose £5000 with 0.1% chance
D: Lose £5 with 100% chance

D was more popular (insurance)

People tend to exaggerate, intentionally or unintentionally,
small probabilities of both winning big and losing big

Exaggerating small probability of huge gains - risk seeking
Exaggerating small probability of huge losses - risk aversion
Present simultaneously
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Probability Distortion: Yaari’s Dual Theory

Non-linear transformation of the decumulative distribution
function

V (X) =
∫

R+ w(P (X > x))dx ≡
∫

R+ xd[−w(1 − FX(x))]
=

∫

R+ xw′(1− FX(x))dFX (x)
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Probability Distortion: Yaari’s Dual Theory

Non-linear transformation of the decumulative distribution
function

V (X) =
∫

R+ w(P (X > x))dx ≡
∫

R+ xd[−w(1 − FX(x))]
=

∫

R+ xw′(1− FX(x))dFX (x)

Risk averse when w(·) is convex (overweighting small payoff
and underweighting large payoff)

Risk seeking when w(·) is concave

Risk-attitude reflected in the nonlinear weighting of the
decumulative distribution rather than the utility of payoff

V (X) ≡
∫

R+(w ◦ P )(X > x)dx: Choquet expectation under
capacity w ◦ P - non-expected utility

Kahneman and Tversky (1979) - prospect theory; Yaari (1987) -

dual theory of choice; Lopes (1987) - SP/A theory; insurance

literature ...
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Distortion (Weighting) Functions

Kahneman and Tversky (1992) distortion

w(p) =
pγ

(pγ + (1− p)γ)1/γ
,

Tversky and Fox (1995) distortion

w(p) =
δpγ

δpγ + (1− p)γ
,

Prelec (1998) distortion

w(p) = e−δ(− ln p)γ

Jin and Zhou (2008) distortion

w(p) =







yb−a
0 keaµ+

(aσ)2

2 Φ
(

Φ−1(p)− aσ
)

, p ≤ 1− z0,

C + kebµ+
(bσ)2

2 Φ
(

Φ−1(p)− bσ
)

, z ≥ 1− z0
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Distortion Functions (Cont’d): Reverse S-Shaped
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A Model of Distorted Optimal Stopping
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A Model of Distorted Optimal Stopping

An asset’s (discounted) price follows GBM on
(Ω,F , P ; {Ft}t>0):

dPt = µPtdt+ σPtdBt, P0 = P0

U(·) : R+ 7→ R
+ (payoff/utility) non-decreasing,

w(·) : [0, 1] 7→ [0, 1] (probability distortion/weighting) smooth,
increasing with w(0) = 0 and w(1) = 1

T : set of {Ft}t>0-stopping times τ with P(τ < +∞) = 1

Problem: To maximise “distorted” mean payoff/utility

J(τ) :=

∫ ∞

0
w(P(U(Pτ ) > x)) dx (1)

over τ ∈ T

If w(x) ≡ x, then J(τ) = E[U(Pτ )]
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Application Examples

Stock selling (liquidation)

Perpetual American option

Irreversible investment

... all with probability distortions
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Optimal Stopping: Literature

Huge literature: Shiryaev (1978), Peskir and Shiryaev (2006)
...

Shiryaev, Peskir, etc. (2000–): stopping a Brownian motion
closest to maximum

Shiryaev, Xu, Zhou (2008): stopping a GBM to minimise the
relative error with respect to the maximum

Henderson (2009): liquidating a stock with prospect theory
payoff/utility (but no distortion); disposition effect

Nishimura and Ozaki (2007), Riedel (2010): optimal stopping
with ambiguity
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Mathematical Challenges with Probability Distortions

Conventional approaches in optimal stopping

Martingale: optional sampling, change of time, change of
measure
Dynamic programming: variational inequality/HJB equation,
free boundary

Distorted optimal stopping

Nonlinear expectation with Choquet integration: martingale
approach fails
Time inconsistency: dynamic programming and HJB fail
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Barberis (2010): exit strategy in casino gambling with
prospect theory preferences
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Barberis’s Casino Gambling Model

Barberis (2010): exit strategy in casino gambling with
prospect theory preferences

Discrete time

Time-inconsistency (due to probability distortions) highlighted

Three types of gamblers analysed

“naive”: keep changing strategies
“sophisticated”: aware of time-inconsistency but unable to
commit
“sophisticated and disciplined”: aware of time-inconsistency
and able to commit

Numerical (exhaustive) solutions
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Our Goal

Find pre-committed optimal stopping strategies (in continuous
time)

Key idea to overcome the difficulty of time-inconsistency

Economical: Consider selling price instead of selling time
Mathematical: Take distribution/quantile of selling price as
decision variable

Finding the best selling price: quantile/distribution
formulation
Recovering optimal selling time: Skorokhod embedding

Xunyu Zhou Distorted Optimal Stopping



Skorokhod Embedding

Skorokhod embedding problem: Given a standard Brownian
motion Bt and a probability measure m with 0 mean and
finite second moment, find an integrable stopping time τ such
that the distribution of Bτ is m

Introduced and solved by Skorokhod (1961)

Great number of variants, generalisations and applications

Ob lój (2004): a very nice survey!
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Making Martingale

Asset price:
dPt = µPtdt+ σPtdBt

Let

β =
−2µ+ σ2

σ2
6= 0, St = P β

t .

Then Itô’s rule gives dSt = βσSt dBt, S0 = P β
0 := s (a

martingale)

Define u(x) := U(x1/β), ∀ x ∈ (0,+∞)

Problem (1) is equivalent to

J(τ) =

∫ ∞

0
w(P(U(Pτ ) > x)) dx =

∫ ∞

0
w(P(u(Sτ ) > x)) dx,

(2)
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Shape of u(·) and Quality of Asset

U(x) = (x−K)+ for some K > 0: u(x) = (xβ −K)+

If β < 0 or µ
σ2 > 0.5, asset is “good” (Shiryaev, Xu and Zhou

2008): u(·) is non-increasing and convex
If 0 < β 6 1 or 0 ≤ µ

σ2 < 0.5: u(·) is non-decreasing and
S-shaped.
If β > 1 or µ < 0, asset is “bad”: u(·) is non-decreasing and
convex

U(x) = 1
1−γx

γ , γ ∈ (0, 1). If β < 0, u(x) = 1
1−γx

γ/β is
decreasing convex. If 0 < β 6 γ, u(x) is increasing convex; If
β > 1/γ, then u(x) is increasing concave
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S-shaped Function

x

u(x)

o
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Shape of u(·) vs Quality of Asset (Cont’d)

U(x) = ln(x+ 1), u(x) = ln(x1/β + 1) is decreasing if β < 0,
increasing S-shaped if 0 < β < 1, and increasing concave if
β > 1
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Shape of u(·) vs Quality of Asset (Cont’d)

U(x) = ln(x+ 1), u(x) = ln(x1/β + 1) is decreasing if β < 0,
increasing S-shaped if 0 < β < 1, and increasing concave if
β > 1

U(x) = 1− e−αx, α > 0, u(x) = 1− e−αx1/β
is decreasing if

β < 0, increasing concave if 0 < β < 1, and increasing
S-shaped if β > 1

For a general increasing utility function U(·), u(x) = U(x1/β)
is decreasing if β < 0, and increasing if β > 0
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Thou Shalt Buy and Hold

Theorem

If u(·) is non-increasing, then (2) has the optimal value u(0+) and

lim
T→+∞

J(T ) = sup
τ∈T

J(τ). (3)

Moreover, if u(ℓ) = u(0+) for some ℓ > 0, then

τℓ = inf{t > 0 : St 6 ℓ} (4)

is an optimal stopping. If u(ℓ) < u(0+) for every ℓ > 0, then (2)
has no optimal solution.

u(·) being non-increasing corresponds to β < 0 (asset is good)
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Thou Shalt Buy and Hold

Theorem

If u(·) is non-increasing, then (2) has the optimal value u(0+) and

lim
T→+∞

J(T ) = sup
τ∈T

J(τ). (3)

Moreover, if u(ℓ) = u(0+) for some ℓ > 0, then

τℓ = inf{t > 0 : St 6 ℓ} (4)

is an optimal stopping. If u(ℓ) < u(0+) for every ℓ > 0, then (2)
has no optimal solution.

u(·) being non-increasing corresponds to β < 0 (asset is good)

One should hold the asset perpetually

Consistent with the traditional investment wisdom

Consistent with Shiryaev, Xu and Zhou (2008)
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Distribution/Quantile Sets

Henceforth we assume u(·) is non-decreasing

For simplicity, we further assume that u(·) is absolute
continuous with u(0) = 0

Define distribution set D and quantile set G:

D :=
{

F : R+ 7→ [0, 1]
∣

∣

∣
F is CDF of Sτ , for some τ ∈ T

}

, (5)

G :=
{

G : [0, 1] 7→ R
+

∣

∣

∣
G = F−1 for some F ∈ D

}

. (6)
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Distribution/Quantile Formulation

Lemma

For any τ ∈ T ,

J(τ) = JD(F ) :=

∫ ∞

0
w (1− F (x)) u′(x) dx, (7)

J(τ) = JQ(G) :=

∫ 1

0
u (G(x))w′(1− x) dx, (8)

where F and G are the distribution function and quantile function
of Sτ , respectively. Moreover,

sup
τ∈T

J(τ) = sup
F∈D

JD(F ) = sup
G∈G

JQ(G). (9)
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Symmetry

Notice certain symmetry – or duality – between the two
formulations
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Symmetry

Notice certain symmetry – or duality – between the two
formulations

w(·) and u(·) play symmetric roles in the two formulations

In the context of utility theory both a probability distortion
function and a utility function describe an investor’s preference
towards risk – they do play some dual roles (Yaari 1987)
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Symmetry

Notice certain symmetry – or duality – between the two
formulations

w(·) and u(·) play symmetric roles in the two formulations

In the context of utility theory both a probability distortion
function and a utility function describe an investor’s preference
towards risk – they do play some dual roles (Yaari 1987)

Freedom to choose the convenient formulation
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Optional Sampling

Let F ∈ D: F is CDF of Sτ for some τ ∈ T
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Optional Sampling

Let F ∈ D: F is CDF of Sτ for some τ ∈ T

Since St is a nonnegative martingale, optional sampling
theorem and Fatou’s lemma yield, necessarily,
∫∞

0 (1− F (x)) dx ≡ E[Sτ ] 6 s
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Optional Sampling

Let F ∈ D: F is CDF of Sτ for some τ ∈ T

Since St is a nonnegative martingale, optional sampling
theorem and Fatou’s lemma yield, necessarily,
∫∞

0 (1− F (x)) dx ≡ E[Sτ ] 6 s

This inequality is also sufficient for a CDF to be that of Sτ for
some τ ∈ T !
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Characterising Distribution/Quantile Sets

Theorem

We have the following expressions of the distribution set D and
quantile set G:

D =

{

F

∣

∣

∣

∣

F is a CDF,

∫ ∞

0

(1− F (x)) dx 6 s

}

, (10)

G =

{

G

∣

∣

∣

∣

G is a quantile,

∫ 1

0

G(x)dx 6 s

}

. (11)

In particular, both D and G are convex
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Solution Scheme

Step 1: Choose either distribution or quantile formulation
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Solution Scheme

Step 1: Choose either distribution or quantile formulation

Step 2: Obtain the optimal distribution or quantile function
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Solution Scheme

Step 1: Choose either distribution or quantile formulation

Step 2: Obtain the optimal distribution or quantile function

Step 3: Recover optimal stopping via Skorokhod embedding
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Quantile Formulation: History

In the realm of portfolio selection
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Quantile Formulation: History

In the realm of portfolio selection

Dybvig (1988), Schied (2004, 2005), Dana (2005), Carlier and
Dana (2005), Jin and Zhou (2008)
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Quantile Formulation: History

In the realm of portfolio selection

Dybvig (1988), Schied (2004, 2005), Dana (2005), Carlier and
Dana (2005), Jin and Zhou (2008)

A general framework developed in He and Zhou (2009) for
possibly non-concave utility function and non-convex/concave
distortions
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Solutions Based on Shapes of u(·) and w(·)

w(·):
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Xunyu Zhou Distorted Optimal Stopping



Solutions Based on Shapes of u(·) and w(·)

w(·):

convex (risk averse)
concave (risk seeking)

Xunyu Zhou Distorted Optimal Stopping



Solutions Based on Shapes of u(·) and w(·)

w(·):

convex (risk averse)
concave (risk seeking)
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w(·):

convex (risk averse)
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Solutions Based on Shapes of u(·) and w(·)

w(·):

convex (risk averse)
concave (risk seeking)
reverse S-shaped (hope and fear simultaneously)

u(·):

convex (intermediate/bad asset)
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Solutions Based on Shapes of u(·) and w(·)

w(·):

convex (risk averse)
concave (risk seeking)
reverse S-shaped (hope and fear simultaneously)

u(·):

convex (intermediate/bad asset)
concave (bad asset)
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Convex w(·): Distribution Formulation

Let w(·) be convex (whereas u(·) may have any shape): i.e.
the agent is risk averse
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Convex w(·): Distribution Formulation

Let w(·) be convex (whereas u(·) may have any shape): i.e.
the agent is risk averse

Recall

JD(F ) :=

∫ ∞

0
w (1− F (x)) u′(x) dx, (12)

JQ(G) :=

∫ 1

0
u (G(x))w′(1− x) dx, (13)
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Let w(·) be convex (whereas u(·) may have any shape): i.e.
the agent is risk averse

Recall

JD(F ) :=

∫ ∞

0
w (1− F (x)) u′(x) dx, (12)

JQ(G) :=

∫ 1

0
u (G(x))w′(1− x) dx, (13)

Distribution formulation is easier to study than quantile
formulation
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Convex w(·): Distribution Formulation

Let w(·) be convex (whereas u(·) may have any shape): i.e.
the agent is risk averse

Recall

JD(F ) :=

∫ ∞

0
w (1− F (x)) u′(x) dx, (12)

JQ(G) :=

∫ 1

0
u (G(x))w′(1− x) dx, (13)

Distribution formulation is easier to study than quantile
formulation

Maximising a convex functional over a convex set D
(
∫ 1
0 (1− F (x))dx 6 s)
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Convex w(·): Distribution Formulation

Let w(·) be convex (whereas u(·) may have any shape): i.e.
the agent is risk averse

Recall

JD(F ) :=

∫ ∞

0
w (1− F (x)) u′(x) dx, (12)

JQ(G) :=

∫ 1

0
u (G(x))w′(1− x) dx, (13)

Distribution formulation is easier to study than quantile
formulation

Maximising a convex functional over a convex set D
(
∫ 1
0 (1− F (x))dx 6 s)

A maximum should be at “corners” of D
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Convex w(·): Results

Theorem

If w(·) is convex and u(·) is non-decreasing, then

sup
τ∈T

J(τ) = sup
0<a6s6b

[(

1− w

(

s− a

b− a

))

u(a) + w

(

s− a

b− a

)

u(b)

]

. (14)

Moreover, if (14) has an optimal pair (a∗, b∗) with a∗ > 0, then

τ(a∗,b∗) := inf{t > 0 : St /∈ (a∗, b∗)} (15)

is an optimal stopping to problem (2).
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Convex u(·): Quantile Formulation

By symmetry, if u(·) is convex, one uses quantile formulation

Theorem

If u(·) is convex, then

sup
τ∈T

J(τ) = sup
0<a6s6b

[(

1− w

(

s− a

b− a

))

u(a) + w

(

s− a

b− a

)

u(b)

]

. (16)

Moreover, if (16) has an optimal pair (a∗, b∗) with a∗ > 0, then

τ(a∗,b∗) := inf{t > 0 : St /∈ (a∗, b∗)} (17)

is an optimal stopping to problem (2).
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Convex w(·) or u(·): Cut-Loss and Take-Profit Strategy

Traditional investment wisdom/advice: one should set a
target price and a cut-loss price
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Traditional investment wisdom/advice: one should set a
target price and a cut-loss price

u(·) being convex corresponds to “intermediate” and “bad”
asset

w(·) being convex corresponds to risk aversion

Zhang (2001): cut-loss and take-profit thresholds are
exogenously set
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Convex w(·) or u(·): Cut-Loss and Take-Profit Strategy

Traditional investment wisdom/advice: one should set a
target price and a cut-loss price

u(·) being convex corresponds to “intermediate” and “bad”
asset

w(·) being convex corresponds to risk aversion

Zhang (2001): cut-loss and take-profit thresholds are
exogenously set

Here we show that this strategy is endogenous for broad
classes of problems
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Convex w(·) or u(·): Cut-Loss and Take-Profit Strategy

Traditional investment wisdom/advice: one should set a
target price and a cut-loss price

u(·) being convex corresponds to “intermediate” and “bad”
asset

w(·) being convex corresponds to risk aversion

Zhang (2001): cut-loss and take-profit thresholds are
exogenously set

Here we show that this strategy is endogenous for broad
classes of problems

It also recovers Henderson (2010) where probability distortion
is absent
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Concave u(·) and Convex w(·): Dump That Bloody Stock!

Corollary

If u(·) is concave and w(·) is convex, then

sup
τ∈T

J(τ) = u(s). (18)

Moreover, τ ≡ 0 is an optimal stopping.

For power and log utility U(·), u(·) being concave corresponds
to bad asset
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Corollary

If u(·) is concave and w(·) is convex, then

sup
τ∈T

J(τ) = u(s). (18)

Moreover, τ ≡ 0 is an optimal stopping.

For power and log utility U(·), u(·) being concave corresponds
to bad asset

w(·) being convex corresponds to risk aversion
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Concave u(·) and Convex w(·): Dump That Bloody Stock!

Corollary

If u(·) is concave and w(·) is convex, then

sup
τ∈T

J(τ) = u(s). (18)

Moreover, τ ≡ 0 is an optimal stopping.

For power and log utility U(·), u(·) being concave corresponds
to bad asset

w(·) being convex corresponds to risk aversion

A risk averse agent will sell a bad stock immediately
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Concave u(·)

Let u(·) be concave
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Concave u(·)

Let u(·) be concave

Quantile formulation

JQ(G) =

∫ 1

0
u (G(x))w′(1− x) dx (19)
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Concave u(·)

Let u(·) be concave

Quantile formulation

JQ(G) =

∫ 1

0
u (G(x))w′(1− x) dx (19)

Maximising a concave functional over a convex set
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Concave u(·)

Let u(·) be concave

Quantile formulation

JQ(G) =

∫ 1

0
u (G(x))w′(1− x) dx (19)

Maximising a concave functional over a convex set

Lagrange!
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Concave u(·): Lagrange

Consider a family of relaxed problems

Jλ
Q(G) =

∫ 1

0
u(G(x))w′(1− x) dx− λ

(
∫ 1

0
G(x) dx− s

)

=

∫ 1

0
fλ(x,G(x)) dx+ λs,

where λ > 0 and fλ(x, y) := u(y)w′(1− x)− λy
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Concave u(·): Lagrange

Consider a family of relaxed problems

Jλ
Q(G) =

∫ 1

0
u(G(x))w′(1− x) dx− λ

(
∫ 1

0
G(x) dx− s

)

=

∫ 1

0
fλ(x,G(x)) dx+ λs,

where λ > 0 and fλ(x, y) := u(y)w′(1− x)− λy

Maximising fλ(x, ·) for each x we get

Gλ(x) := (u′)−1
(

λ
w′(1−x)

)

, x ∈ (0, 1)
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Concave u(·): Lagrange

Consider a family of relaxed problems

Jλ
Q(G) =

∫ 1

0
u(G(x))w′(1− x) dx− λ

(
∫ 1

0
G(x) dx− s

)

=

∫ 1

0
fλ(x,G(x)) dx+ λs,

where λ > 0 and fλ(x, y) := u(y)w′(1− x)− λy

Maximising fλ(x, ·) for each x we get

Gλ(x) := (u′)−1
(

λ
w′(1−x)

)

, x ∈ (0, 1)

Is Gλ qualified as a quantile function (primarily,
non-decreasing)?
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Concave u(·) and w(·)

When w(·) is also concave, then Gλ(x) := (u′)−1
(

λ
w′(1−x)

)

is

indeed non-decreasing, hence a quantile
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Concave u(·) and w(·)

When w(·) is also concave, then Gλ(x) := (u′)−1
(

λ
w′(1−x)

)

is

indeed non-decreasing, hence a quantile

Finding 0 6 λ∗ < ∞ so that

∫ 1

0
(u′)−1

(

λ∗

w′(1− x)

)

dx = s.
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Concave u(·) and w(·)

When w(·) is also concave, then Gλ(x) := (u′)−1
(

λ
w′(1−x)

)

is

indeed non-decreasing, hence a quantile

Finding 0 6 λ∗ < ∞ so that

∫ 1

0
(u′)−1

(

λ∗

w′(1− x)

)

dx = s.

Then G∗ = Gλ∗ is optimal to problem (8)
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Concave u(·) and w(·)

When w(·) is also concave, then Gλ(x) := (u′)−1
(

λ
w′(1−x)

)

is

indeed non-decreasing, hence a quantile

Finding 0 6 λ∗ < ∞ so that

∫ 1

0
(u′)−1

(

λ∗

w′(1− x)

)

dx = s.

Then G∗ = Gλ∗ is optimal to problem (8)

Bad asset but risk-seeking agent
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Concave u(·) and w(·): An Example

Consider u(x) = 1
γx

γ , 0 < γ < 1, and w(x) = xα,
0 < γ < α < 1: both concave
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Concave u(·) and w(·): An Example

Consider u(x) = 1
γx

γ , 0 < γ < 1, and w(x) = xα,
0 < γ < α < 1: both concave

G∗(x) = sα−γ
1−γ

(

1
1−x

)
1−α
1−γ

is optimal quantile
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Concave u(·) and w(·): An Example

Consider u(x) = 1
γx

γ , 0 < γ < 1, and w(x) = xα,
0 < γ < α < 1: both concave

G∗(x) = sα−γ
1−γ

(

1
1−x

)
1−α
1−γ

is optimal quantile

Corresponding CDF of optimally stopped price is

F ∗(x) =







1−
(

sα−γ
1−γ

)

1−γ

1−α

x−
1−γ

1−α , x > sα−γ
1−γ

;

0, x < sα−γ
1−γ

,
(20)

a Pareto distribution with Pareto index 1−γ
1−α > 1
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Concave u(·) and w(·): An Example

Consider u(x) = 1
γx

γ , 0 < γ < 1, and w(x) = xα,
0 < γ < α < 1: both concave

G∗(x) = sα−γ
1−γ

(

1
1−x

)
1−α
1−γ

is optimal quantile

Corresponding CDF of optimally stopped price is

F ∗(x) =







1−
(

sα−γ
1−γ

)

1−γ

1−α

x−
1−γ

1−α , x > sα−γ
1−γ

;

0, x < sα−γ
1−γ

,
(20)

a Pareto distribution with Pareto index 1−γ
1−α > 1

One never stops when the asset price is below sα−γ
1−γ
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Concave u(·) and w(·): An Example

Consider u(x) = 1
γx

γ , 0 < γ < 1, and w(x) = xα,
0 < γ < α < 1: both concave

G∗(x) = sα−γ
1−γ

(

1
1−x

)
1−α
1−γ

is optimal quantile

Corresponding CDF of optimally stopped price is

F ∗(x) =







1−
(

sα−γ
1−γ

)

1−γ

1−α

x−
1−γ

1−α , x > sα−γ
1−γ

;

0, x < sα−γ
1−γ

,
(20)

a Pareto distribution with Pareto index 1−γ
1−α > 1

One never stops when the asset price is below sα−γ
1−γ

Azéma–Yor stopping time

τAY = inf

{

t > 0 : St ≤
α− γ

1− γ
max
06s6t

Ss

}

(21)

is an optimal solution to problem (2)
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Concave u(·) and Reverse S-shaped w(·)

Reverse S-shaped w(·): fear and hope are present
simultaneously (He and Zhou 2009)
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Concave u(·) and Reverse S-shaped w(·)

Reverse S-shaped w(·): fear and hope are present
simultaneously (He and Zhou 2009)

Optimal quantile is of the form

G∗(x) = a1(0,c](x) +

(

a ∨ (u′)−1

(

λ

w′(1− x)

))

1(c,1](x),

where parameters a, c and λ are subject to

λ > 0, q 6 c 6 1, a ≥ 0,

ac+
∫ 1
c

(

a ∨ (u′)−1
(

λ
w′(1−x)

))

dx 6 s.
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Concave u(·) and Reverse S-shaped w(·)

Reverse S-shaped w(·): fear and hope are present
simultaneously (He and Zhou 2009)

Optimal quantile is of the form

G∗(x) = a1(0,c](x) +

(

a ∨ (u′)−1

(

λ

w′(1− x)

))

1(c,1](x),

where parameters a, c and λ are subject to

λ > 0, q 6 c 6 1, a ≥ 0,

ac+
∫ 1
c

(

a ∨ (u′)−1
(

λ
w′(1−x)

))

dx 6 s.

Payoff under G∗ is

(1−w(1− c))u(a)+

∫ 1

c

u

(

a ∨ (u′)−1

(

λ

w′(1− x)

))

w′(1−x) dx.
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Concave u(·) and Reverse S-shaped w(·)

Reverse S-shaped w(·): fear and hope are present
simultaneously (He and Zhou 2009)

Optimal quantile is of the form

G∗(x) = a1(0,c](x) +

(

a ∨ (u′)−1

(

λ

w′(1− x)

))

1(c,1](x),

where parameters a, c and λ are subject to

λ > 0, q 6 c 6 1, a ≥ 0,

ac+
∫ 1
c

(

a ∨ (u′)−1
(

λ
w′(1−x)

))

dx 6 s.

Payoff under G∗ is

(1−w(1− c))u(a)+

∫ 1

c

u

(

a ∨ (u′)−1

(

λ

w′(1− x)

))

w′(1−x) dx.

A mathematical programme!
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Concave u(·) and Reverse S-shaped w(·)

Reverse S-shaped w(·): fear and hope are present
simultaneously (He and Zhou 2009)

Optimal quantile is of the form

G∗(x) = a1(0,c](x) +

(

a ∨ (u′)−1

(

λ

w′(1− x)

))

1(c,1](x),

where parameters a, c and λ are subject to

λ > 0, q 6 c 6 1, a ≥ 0,

ac+
∫ 1
c

(

a ∨ (u′)−1
(

λ
w′(1−x)

))

dx 6 s.

Payoff under G∗ is

(1−w(1− c))u(a)+

∫ 1

c

u

(

a ∨ (u′)−1

(

λ

w′(1− x)

))

w′(1−x) dx.

A mathematical programme!

Bad asset but an agent with both hope and fear: a cut-loss
level but no take-profit one
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Conclusions

Optimal stopping with probability distortion/weighting is
formulated and pre-committed strategies obtained
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Conclusions

Optimal stopping with probability distortion/weighting is
formulated and pre-committed strategies obtained

A general machinery introduced and developed –
distribution/quantile formulation + Skorokhod embedding

Buy-and-hold and cut-loss-take-profit strategies justified for a
broad class of problems

Open/future research problems:

More general asset prices (work-in-progress)
Finite time horizon
Discounting factor explicit in objective functional
Time consistent strategies (formulation?)
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