Distorted Optimal Stopping

Xunyu Zhou

Oxford/CUHK

Based on joint work with Zuoquan Xu

January 2011/Paris
Model formulation: optimal stopping with probability distortions
- Model formulation: optimal stopping with probability distortions
- Motivation: economical/financial (why?); mathematical (how?)
Outlines

- Model formulation: optimal stopping with probability distortions
- Motivation: economical/financial (why?); mathematical (how?)
- Approach
Outlines

- Model formulation: optimal stopping with probability distortions
- Motivation: economical/financial (why?); mathematical (how?)
- Approach
- Results
Outlines

- Model formulation: optimal stopping with probability distortions
- Motivation: economical/financial (why?); mathematical (how?)
- Approach
- Results
- Interpretations and implications
First decision: Choose between
First decision: Choose between

A: Win £5000 with 0.1% chance
First decision: Choose between

A: Win £5000 with 0.1% chance
B: Win £5 with 100% chance
First decision: Choose between
A: Win £5000 with 0.1% chance
B: Win £5 with 100% chance
A was more popular (lottery)
First decision: Choose between

A: Win £5000 with 0.1% chance
B: Win £5 with 100% chance

A was more popular (lottery)

Second decision: Choose between
First decision: Choose between

- **A**: Win £5000 with 0.1% chance
- **B**: Win £5 with 100% chance

A was more popular (lottery)

Second decision: Choose between

- **C**: Lose £5000 with 0.1% chance
First decision: Choose between
A: Win £5000 with 0.1% chance
B: Win £5 with 100% chance
A was more popular (lottery)

Second decision: Choose between
C: Lose £5000 with 0.1% chance
D: Lose £5 with 100% chance
First decision: Choose between
- A: Win £5000 with 0.1% chance
- B: Win £5 with 100% chance
 - A was more popular (lottery)

Second decision: Choose between
- C: Lose £5000 with 0.1% chance
- D: Lose £5 with 100% chance
 - D was more popular (insurance)
First decision: Choose between
 A: Win £5000 with 0.1% chance
 B: Win £5 with 100% chance
 ■ A was more popular (lottery)

Second decision: Choose between
 C: Lose £5000 with 0.1% chance
 D: Lose £5 with 100% chance
 ■ D was more popular (insurance)

People tend to exaggerate, *intentionally or unintentionally*, small probabilities of both winning big *and* losing big
First decision: Choose between

A: Win £5000 with 0.1% chance
B: Win £5 with 100% chance

A was more popular (lottery)

Second decision: Choose between

C: Lose £5000 with 0.1% chance
D: Lose £5 with 100% chance

D was more popular (insurance)

People tend to exaggerate, intentionally or unintentionally, small probabilities of both winning big and losing big

Exaggerating small probability of huge gains - risk seeking
First decision: Choose between
- A: Win £5000 with 0.1% chance
- B: Win £5 with 100% chance
 - A was more popular (lottery)

Second decision: Choose between
- C: Lose £5000 with 0.1% chance
- D: Lose £5 with 100% chance
 - D was more popular (insurance)

People tend to exaggerate, intentionally or unintentionally, small probabilities of both winning big and losing big
- Exaggerating small probability of huge gains - risk seeking
- Exaggerating small probability of huge losses - risk aversion
First decision: Choose between

A: Win £5000 with 0.1% chance
B: Win £5 with 100% chance
 - A was more popular (lottery)

Second decision: Choose between

C: Lose £5000 with 0.1% chance
D: Lose £5 with 100% chance
 - D was more popular (insurance)

People tend to exaggerate, *intentionally or unintentionally*, small probabilities of both winning big and losing big

- Exaggerating small probability of huge gains - risk seeking
- Exaggerating small probability of huge losses - risk aversion
- Present *simultaneously*
Non-linear transformation of the decumulative distribution function

\[
V(X) = \int_{\mathbb{R}^+} w(P(X > x)) \, dx \equiv \int_{\mathbb{R}^+} xd[-w(1 - F_X(x))] \\
= \int_{\mathbb{R}^+} xw'(1 - F_X(x)) \, dF_X(x)
\]
Probability Distortion: Yaari’s Dual Theory

- Non-linear transformation of the decumulative distribution function

\[V(X) = \int_{\mathbb{R}^+} w(P(X > x)) \, dx \equiv \int_{\mathbb{R}^+} x d[-w(1 - F_X(x))] \]
\[= \int_{\mathbb{R}^+} xw'(1 - F_X(x)) \, dF_X(x) \]

- Risk averse when \(w(\cdot) \) is convex (overweighting small payoff and underweighting large payoff)
Probability Distortion: Yaari’s Dual Theory

- Non-linear transformation of the decumulative distribution function

\[V(X) = \int_{\mathbb{R}^+} w(P(X > x))dx \equiv \int_{\mathbb{R}^+} x d[-w(1 - F_X(x))] \]
\[= \int_{\mathbb{R}^+} x w'(1 - F_X(x)) dF_X(x) \]

- Risk averse when \(w(\cdot) \) is convex (overweighting small payoff and underweighting large payoff)

- Risk seeking when \(w(\cdot) \) is concave
Probability Distortion: Yaari’s Dual Theory

- Non-linear transformation of the decumulative distribution function

\[V(X) = \int_{\mathbb{R}^+} w(P(X > x)) dx \equiv \int_{\mathbb{R}^+} xd[-w(1 - F_X(x))] \]
\[= \int_{\mathbb{R}^+} xw'(1 - F_X(x)) dF_X(x) \]

- Risk averse when \(w(\cdot) \) is convex (overweighting small payoff and underweighting large payoff)

- Risk seeking when \(w(\cdot) \) is concave

- Risk-attitude reflected in the nonlinear weighting of the decumulative distribution rather than the utility of payoff
Probability Distortion: Yaari’s Dual Theory

- Non-linear transformation of the decumulative distribution function

\[V(X) = \int_{\mathbb{R}^+} w(P(X > x))dx \equiv \int_{\mathbb{R}^+} xd[-w(1 - F_X(x))] \]
\[= \int_{\mathbb{R}^+} xw'(1 - F_X(x))dF_X(x) \]

- Risk averse when \(w(\cdot) \) is convex (overweighting small payoff and underweighting large payoff)
- Risk seeking when \(w(\cdot) \) is concave
- Risk-attitude reflected in the nonlinear weighting of the decumulative distribution rather than the utility of payoff
- \(V(X) \equiv \int_{\mathbb{R}^+} (w \circ P)(X > x)dx: \ \text{Choquet expectation under capacity} \ w \circ P \ - \ \text{non-expected utility} \)
Probability Distortion: Yaari’s Dual Theory

- Non-linear transformation of the decumulative distribution function

\[V(X) = \int_{\mathbb{R}^+} w(P(X > x)) dx \equiv \int_{\mathbb{R}^+} xd[-w(1 - F_X(x))] = \int_{\mathbb{R}^+} xw'(1 - F_X(x))dF_X(x) \]

- Risk averse when \(w(\cdot) \) is convex (overweighting small payoff and underweighting large payoff)

- Risk seeking when \(w(\cdot) \) is concave

- Risk-attitude reflected in the nonlinear weighting of the decumulative distribution rather than the utility of payoff

\[V(X) \equiv \int_{\mathbb{R}^+} (w \circ P)(X > x) dx: \text{Choquet expectation under capacity } w \circ P - \text{non}-expected \text{ utility} \]

- Kahneman and Tversky (1979) - prospect theory; Yaari (1987) - dual theory of choice; Lopes (1987) - SP/A theory; insurance literature ...
Distortion (Weighting) Functions

- Kahneman and Tversky (1992) distortion

\[
 w(p) = \frac{p^\gamma}{(p^\gamma + (1 - p)^\gamma)^{1/\gamma}},
\]

- Tversky and Fox (1995) distortion

\[
 w(p) = \frac{\delta p^\gamma}{\delta p^\gamma + (1 - p)^\gamma},
\]

- Prelec (1998) distortion

\[
 w(p) = e^{-\delta(-\ln p)^\gamma}
\]

- Jin and Zhou (2008) distortion

\[
 w(p) = \begin{cases}
 y_0^{b-a} ke^{a\mu+\frac{(a\sigma)^2}{2}} \Phi \left(\Phi^{-1}(p) - a\sigma \right), & p \leq 1 - z_0, \\
 C + ke^{b\mu+\frac{(b\sigma)^2}{2}} \Phi \left(\Phi^{-1}(p) - b\sigma \right), & z \geq 1 - z_0
 \end{cases}
\]
Distortion Functions (Cont’d): Reverse S-Shaped

- Kahneman–Tversky’s distortion
- Tversky–Fox’s distortion
- Prelec’s distortion
- Jin–Zhou’s distortion

$w(p)$ vs p
A Model of Distorted Optimal Stopping

An asset’s (discounted) price follows GBM on $(\Omega, \mathcal{F}, P; \{\mathcal{F}_t\}_{t \geq 0})$:

$$dP_t = \mu P_t dt + \sigma P_t dB_t, \quad P_0 = P_0$$
A Model of Distorted Optimal Stopping

- An asset's (discounted) price follows GBM on $(\Omega, \mathcal{F}, P; \{\mathcal{F}_t\}_{t \geq 0})$:

$$dP_t = \mu P_t dt + \sigma P_t dB_t, \quad P_0 = P_0$$

- $U(\cdot) : \mathbb{R}^+ \mapsto \mathbb{R}^+$ (payoff/utility) non-decreasing,
- $w(\cdot) : [0, 1] \mapsto [0, 1]$ (probability distortion/weighting) smooth, increasing with $w(0) = 0$ and $w(1) = 1$
A Model of Distorted Optimal Stopping

- An asset’s (discounted) price follows GBM on $(\Omega, \mathcal{F}, P; \{\mathcal{F}_t\}_{t \geq 0})$:
 \[
dP_t = \mu P_t dt + \sigma P_t dB_t, \quad P_0 = P_0
 \]

- $U(\cdot) : \mathbb{R}^+ \mapsto \mathbb{R}^+$ (payoff/utility) non-decreasing,
 $w(\cdot) : [0, 1] \mapsto [0, 1]$ (probability distortion/weighting) smooth, increasing with $w(0) = 0$ and $w(1) = 1$

- \mathcal{T}: set of $\{\mathcal{F}_t\}_{t \geq 0}$-stopping times τ with $P(\tau < +\infty) = 1$
A Model of Distorted Optimal Stopping

- An asset’s (discounted) price follows GBM on $(\Omega, \mathcal{F}, P; \{\mathcal{F}_t\}_{t \geq 0})$:

 \[dP_t = \mu P_t dt + \sigma P_t dB_t, \quad P_0 = P_0 \]

- \(U(\cdot) : \mathbb{R}^+ \mapsto \mathbb{R}^+ \) (payoff/utility) non-decreasing,
- \(w(\cdot) : [0, 1] \mapsto [0, 1] \) (probability distortion/weighting) smooth, increasing with \(w(0) = 0 \) and \(w(1) = 1 \)

- \(\mathcal{T} \): set of \(\{\mathcal{F}_t\}_{t \geq 0} \)-stopping times \(\tau \) with \(P(\tau < +\infty) = 1 \)

- Problem: To maximise “distorted” mean payoff/utility

\[
J(\tau) := \int_0^\infty w(\mathbb{P}(U(P_\tau) > x)) \, dx \tag{1}
\]

over \(\tau \in \mathcal{T} \)
A Model of Distorted Optimal Stopping

- An asset’s (discounted) price follows GBM on $\langle \Omega, \mathcal{F}, P; \{\mathcal{F}_t\}_{t \geq 0} \rangle$:

 $$dP_t = \mu P_t dt + \sigma P_t dB_t, \quad P_0 = P_0$$

- $U(\cdot) : \mathbb{R}^+ \mapsto \mathbb{R}^+$ (payoff/utility) non-decreasing,
 $w(\cdot) : [0, 1] \mapsto [0, 1]$ (probability distortion/weighting) smooth, increasing with $w(0) = 0$ and $w(1) = 1$

- \mathcal{T}: set of $\{\mathcal{F}_t\}_{t \geq 0}$-stopping times τ with $P(\tau < +\infty) = 1$

- Problem: To maximise “distorted” mean payoff/utility

 $$J(\tau) := \int_{0}^{\infty} w(P(U(P_{\tau}) > x)) \, dx$$

 over $\tau \in \mathcal{T}$

- If $w(x) \equiv x$, then $J(\tau) = E[U(P_{\tau})]$
Application Examples

- Stock selling (liquidation)
- Perpetual American option
- Irreversible investment
- ... all with probability distortions
Optimal Stopping: Literature

 ...
- Shiryaev, Peskir, etc. (2000–): stopping a Brownian motion closest to maximum
- Shiryaev, Xu, Zhou (2008): stopping a GBM to minimise the relative error with respect to the maximum
- Henderson (2009): liquidating a stock with prospect theory payoff/utility (but no distortion); disposition effect
- Nishimura and Ozaki (2007), Riedel (2010): optimal stopping with ambiguity
Conventional approaches in optimal stopping
Conventional approaches in optimal stopping

- **Martingale**: optional sampling, change of time, change of measure
Conventional approaches in optimal stopping

- *Martingale*: optional sampling, change of time, change of measure
- *Dynamic programming*: variational inequality/HJB equation, free boundary
Mathematical Challenges with Probability Distortions

- Conventional approaches in optimal stopping
 - \textit{Martingale}: optional sampling, change of time, change of measure
 - \textit{Dynamic programming}: variational inequality/HJB equation, free boundary

- Distorted optimal stopping
Mathematical Challenges with Probability Distortions

- Conventional approaches in optimal stopping
 - *Martingale*: optional sampling, change of time, change of measure
 - *Dynamic programming*: variational inequality/HJB equation, free boundary

- Distorted optimal stopping
 - Nonlinear expectation with Choquet integration: martingale approach fails
Mathematical Challenges with Probability Distortions

- Conventional approaches in optimal stopping
 - *Martingale*: optional sampling, change of time, change of measure
 - *Dynamic programming*: variational inequality/HJB equation, free boundary

- Distorted optimal stopping
 - Nonlinear expectation with Choquet integration: martingale approach fails
 - Time inconsistency: dynamic programming and HJB fail
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
- Discrete time
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
- Discrete time
- Time-inconsistency (due to probability distortions) highlighted
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
- Discrete time
- Time-inconsistency (due to probability distortions) highlighted
- Three types of gamblers analysed
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
- Discrete time
- Time-inconsistency (due to probability distortions) highlighted
- Three types of gamblers analysed
 - “naive”: keep changing strategies
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
- Discrete time
- Time-inconsistency (due to probability distortions) highlighted
- Three types of gamblers analysed
 - “naive”: keep changing strategies
 - “sophisticated”: aware of time-inconsistency but unable to commit
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
- Discrete time
- Time-inconsistency (due to probability distortions) highlighted
- Three types of gamblers analysed
 - “naive”: keep changing strategies
 - “sophisticated”: aware of time-inconsistency but unable to commit
 - “sophisticated and disciplined”: aware of time-inconsistency and able to commit
Barberis’s Casino Gambling Model

- Barberis (2010): exit strategy in casino gambling with prospect theory preferences
- Discrete time
- Time-inconsistency (due to probability distortions) highlighted
- Three types of gamblers analysed
 - “naive”: keep changing strategies
 - “sophisticated”: aware of time-inconsistency but unable to commit
 - “sophisticated and disciplined”: aware of time-inconsistency and able to commit
- Numerical (exhaustive) solutions
Our Goal

- Find *pre-committed* optimal stopping strategies (in continuous time)
Our Goal

- Find *pre-committed* optimal stopping strategies (in continuous time)
- Key idea to overcome the difficulty of time-inconsistency
Our Goal

- Find *pre-committed* optimal stopping strategies (in continuous time)
- Key idea to overcome the difficulty of time-inconsistency
 - Economical: Consider selling *price* instead of selling *time*
Our Goal

- Find *pre-committed* optimal stopping strategies (in continuous time)
- Key idea to overcome the difficulty of time-inconsistency
 - Economical: Consider selling *price* instead of selling *time*
 - Mathematical: Take *distribution/quantile* of selling price as decision variable
Our Goal

- Find *pre-committed* optimal stopping strategies (in continuous time)
- Key idea to overcome the difficulty of time-inconsistency
 - Economical: Consider selling *price* instead of selling *time*
 - Mathematical: Take *distribution/quantile* of selling price as decision variable
 - Finding the best selling price: quantile/distribution formulation
Our Goal

- Find *pre-committed* optimal stopping strategies (in continuous time)
- Key idea to overcome the difficulty of time-inconsistency
 - Economical: Consider selling *price* instead of selling *time*
 - Mathematical: Take *distribution/quantile* of selling price as decision variable
 - Finding the best selling price: quantile/distribution formulation
 - Recovering optimal selling time: Skorokhod embedding
Skorokhod Embedding

- **Skorokhod embedding problem**: Given a standard Brownian motion B_t and a probability measure m with 0 mean and finite second moment, find an integrable stopping time τ such that the distribution of B_{τ} is m

- Introduced and solved by Skorokhod (1961)
- Great number of variants, generalisations and applications
- Obłój (2004): a very nice survey!
Asset price:

\[dP_t = \mu P_t dt + \sigma P_t dB_t \]
Making Martingale

- Asset price:

\[dP_t = \mu P_t dt + \sigma P_t dB_t \]

- Let

\[\beta = \frac{-2\mu + \sigma^2}{\sigma^2} \neq 0, \quad S_t = P_t^\beta. \]
Making Martingale

- Asset price:
 \[dP_t = \mu P_t dt + \sigma P_t dB_t \]

- Let
 \[\beta = \frac{-2\mu + \sigma^2}{\sigma^2} \neq 0, \quad S_t = P_t^\beta. \]

- Then Itô’s rule gives
 \[dS_t = \beta \sigma S_t dB_t, \quad S_0 = P_0^\beta := s \text{ (a martingale)} \]
Making Martingale

- Asset price:
 \[dP_t = \mu P_t dt + \sigma P_t dB_t \]

- Let
 \[\beta = \frac{-2\mu + \sigma^2}{\sigma^2} \neq 0, \quad S_t = P_t^\beta. \]

- Then Itô’s rule gives
 \[dS_t = \beta \sigma S_t dB_t, \quad S_0 = P_0^\beta := s \] (a martingale)

- Define \(u(x) := U(x^{1/\beta}), \quad \forall x \in (0, +\infty) \)
Making Martingale

- Asset price:
 \[dP_t = \mu P_t dt + \sigma P_t dB_t \]

- Let
 \[\beta = \frac{-2\mu + \sigma^2}{\sigma^2} \neq 0, \quad S_t = P_t^\beta. \]

- Then Itô’s rule gives
 \[dS_t = \beta \sigma S_t dB_t, \quad S_0 = P_0^\beta := s \text{ (a martingale)} \]

- Define \(u(x) := U(x^{1/\beta}), \quad \forall x \in (0, +\infty) \)

- Problem (1) is equivalent to
 \[J(\tau) = \int_0^\infty w(P(U(P_\tau) > x)) \, dx = \int_0^\infty w(P(u(S_\tau) > x)) \, dx, \quad (2) \]
Shape of $u(\cdot)$ and Quality of Asset

- $U(x) = (x - K)^+$ for some $K > 0$: $u(x) = (x^\beta - K)^+$
Shape of $u(\cdot)$ and Quality of Asset

- $U(x) = (x - K)^+$ for some $K > 0$: $u(x) = (x^\beta - K)^+$
- If $\beta < 0$ or $\frac{\mu}{\sigma^2} > 0.5$, asset is “good” (Shiryaev, Xu and Zhou 2008): $u(\cdot)$ is non-increasing and convex
Shape of $u(\cdot)$ and Quality of Asset

- $U(x) = (x - K)^+$ for some $K > 0$: $u(x) = (x^\beta - K)^+$
 - If $\beta < 0$ or $\frac{\mu}{\sigma^2} > 0.5$, asset is “good” (Shiryaev, Xu and Zhou 2008): $u(\cdot)$ is non-increasing and convex
 - If $0 < \beta \leq 1$ or $0 \leq \frac{\mu}{\sigma^2} < 0.5$: $u(\cdot)$ is non-decreasing and S-shaped.
Shape of $u(\cdot)$ and Quality of Asset

- $U(x) = (x - K)^+$ for some $K > 0$: $u(x) = (x^\beta - K)^+$
 - If $\beta < 0$ or $\frac{\mu}{\sigma^2} > 0.5$, asset is “good” (Shiryaev, Xu and Zhou 2008): $u(\cdot)$ is non-increasing and convex
 - If $0 < \beta \leq 1$ or $0 \leq \frac{\mu}{\sigma^2} < 0.5$: $u(\cdot)$ is non-decreasing and S-shaped.
 - If $\beta > 1$ or $\mu < 0$, asset is “bad”: $u(\cdot)$ is non-decreasing and convex
Shape of $u(\cdot)$ and Quality of Asset

- $U(x) = (x - K)^+$ for some $K > 0$: $u(x) = (x^\beta - K)^+$
 - If $\beta < 0$ or $\frac{\mu}{\sigma^2} > 0.5$, asset is “good” (Shiryaev, Xu and Zhou 2008): $u(\cdot)$ is non-increasing and convex
 - If $0 < \beta \leq 1$ or $0 \leq \frac{\mu}{\sigma^2} < 0.5$: $u(\cdot)$ is non-decreasing and S-shaped.
 - If $\beta > 1$ or $\mu < 0$, asset is “bad”: $u(\cdot)$ is non-decreasing and convex

- $U(x) = \frac{1}{1-\gamma} x^\gamma$, $\gamma \in (0, 1)$. If $\beta < 0$, $u(x) = \frac{1}{1-\gamma} x^{\gamma/\beta}$ is decreasing convex. If $0 < \beta \leq \gamma$, $u(x)$ is increasing convex; If $\beta > 1/\gamma$, then $u(x)$ is increasing concave
S-shaped Function

\[u(x) \]

\[x \]

\[o \]
Shape of $u(\cdot)$ vs Quality of Asset (Cont’d)

- $U(x) = \ln(x + 1)$, $u(x) = \ln(x^{1/\beta} + 1)$ is decreasing if $\beta < 0$, increasing S-shaped if $0 < \beta < 1$, and increasing concave if $\beta \geq 1$
Shape of $u(\cdot)$ vs Quality of Asset (Cont’d)

- $U(x) = \ln(x + 1), u(x) = \ln(x^{1/\beta} + 1)$ is decreasing if $\beta < 0$, increasing S-shaped if $0 < \beta < 1$, and increasing concave if $\beta \geq 1$

- $U(x) = 1 - e^{-\alpha x}, \alpha > 0, u(x) = 1 - e^{-\alpha x^{1/\beta}}$ is decreasing if $\beta < 0$, increasing concave if $0 < \beta < 1$, and increasing S-shaped if $\beta \geq 1$
Shape of \(u(\cdot) \) vs Quality of Asset (Cont’d)

- \(U(x) = \ln(x + 1), \ u(x) = \ln(x^{1/\beta} + 1) \) is decreasing if \(\beta < 0 \), increasing \(S \)-shaped if \(0 < \beta < 1 \), and increasing concave if \(\beta \geq 1 \)

- \(U(x) = 1 - e^{-\alpha x}, \ \alpha > 0, \ u(x) = 1 - e^{-\alpha x^{1/\beta}} \) is decreasing if \(\beta < 0 \), increasing concave if \(0 < \beta < 1 \), and increasing \(S \)-shaped if \(\beta \geq 1 \)

- For a general increasing utility function \(U(\cdot) \), \(u(x) = U(x^{1/\beta}) \) is decreasing if \(\beta < 0 \), and increasing if \(\beta > 0 \)
Theorem

If \(u(\cdot) \) is non-increasing, then (2) has the optimal value \(u(0+) \) and

\[
\lim_{T \to +\infty} J(T) = \sup_{\tau \in T} J(\tau). \tag{3}
\]

Moreover, if \(u(\ell) = u(0+) \) for some \(\ell > 0 \), then

\[
\tau_\ell = \inf\{ t \geq 0 : S_t \leq \ell \} \tag{4}
\]

is an optimal stopping. If \(u(\ell) < u(0+) \) for every \(\ell > 0 \), then (2) has no optimal solution.

- \(u(\cdot) \) being non-increasing corresponds to \(\beta < 0 \) (asset is good)
If $u(\cdot)$ is non-increasing, then (2) has the optimal value $u(0+)$ and

$$\lim_{T \to +\infty} J(T) = \sup_{\tau \in T} J(\tau).$$

(3)

Moreover, if $u(\ell) = u(0+)$ for some $\ell > 0$, then

$$\tau_\ell = \inf\{t \geq 0 : S_t \leq \ell\}$$

(4)

is an optimal stopping. If $u(\ell) < u(0+)$ for every $\ell > 0$, then (2) has no optimal solution.

- $u(\cdot)$ being non-increasing corresponds to $\beta < 0$ (asset is good)
- One should hold the asset perpetually
Thou Shalt Buy and Hold

Theorem

If \(u(\cdot) \) is non-increasing, then (2) has the optimal value \(u(0+) \) and

\[
\lim_{T \to +\infty} J(T) = \sup_{\tau \in T} J(\tau). \tag{3}
\]

Moreover, if \(u(\ell) = u(0+) \) for some \(\ell > 0 \), then

\[
\tau_\ell = \inf\{t \geq 0 : S_t \leq \ell\} \tag{4}
\]

is an optimal stopping. If \(u(\ell) < u(0+) \) for every \(\ell > 0 \), then (2) has no optimal solution.

- \(u(\cdot) \) being non-increasing corresponds to \(\beta < 0 \) (asset is good)
- One should hold the asset perpetually
- Consistent with the traditional investment wisdom
Theorem

If $u(\cdot)$ is non-increasing, then (2) has the optimal value $u(0+)$ and

$$
\lim_{T \to +\infty} J(T) = \sup_{\tau \in \mathcal{T}} J(\tau).
$$

(3)

Moreover, if $u(\ell) = u(0+)$ for some $\ell > 0$, then

$$
\tau_{\ell} = \inf\{t \geq 0 : S_t \leq \ell\}
$$

(4)

is an optimal stopping. If $u(\ell) < u(0+)$ for every $\ell > 0$, then (2) has no optimal solution.

- $u(\cdot)$ being non-increasing corresponds to $\beta < 0$ (asset is good)
- One should hold the asset perpetually
- Consistent with the traditional investment wisdom
- Consistent with Shiryaev, Xu and Zhou (2008)
Henceforth we assume $u(\cdot)$ is non-decreasing.

For simplicity, we further assume that $u(\cdot)$ is absolute continuous with $u(0) = 0$.

Define the distribution set \mathcal{D} and the quantile set \mathcal{G}:

$$\mathcal{D} := \left\{ F : \mathbb{R}^+ \mapsto [0, 1] \mid F \text{ is CDF of } S_\tau, \text{ for some } \tau \in \mathcal{T} \right\},$$

(5)

$$\mathcal{G} := \left\{ G : [0, 1] \mapsto \mathbb{R}^+ \mid G = F^{-1} \text{ for some } F \in \mathcal{D} \right\}. \quad (6)$$
Lemma

For any \(\tau \in \mathcal{T} \),

\[
J(\tau) = J_D(F) := \int_0^\infty w(1 - F(x)) u'(x) \, dx, \tag{7}
\]

\[
J(\tau) = J_Q(G) := \int_0^1 u(G(x)) w'(1 - x) \, dx, \tag{8}
\]

where \(F \) and \(G \) are the distribution function and quantile function of \(S_\tau \), respectively. Moreover,

\[
\sup_{\tau \in \mathcal{T}} J(\tau) = \sup_{F \in \mathcal{D}} J_D(F) = \sup_{G \in \mathcal{G}} J_Q(G). \tag{9}
\]
Notice certain symmetry – or duality – between the two formulations.
Notice certain symmetry – or duality – between the two formulations

$w(\cdot)$ and $u(\cdot)$ play symmetric roles in the two formulations
Notice certain symmetry – or duality – between the two formulations

\(w(\cdot) \) and \(u(\cdot) \) play symmetric roles in the two formulations

In the context of utility theory both a probability distortion function and a utility function describe an investor’s preference towards risk – they do play some dual roles (Yaari 1987)
Notice certain symmetry – or duality – between the two formulations

$w(\cdot)$ and $u(\cdot)$ play symmetric roles in the two formulations

In the context of utility theory both a probability distortion function and a utility function describe an investor’s preference towards risk – they do play some dual roles (Yaari 1987)

Freedom to choose the convenient formulation
Optional Sampling

Let $F \in \mathcal{D}$: F is CDF of S_τ for some $\tau \in \mathcal{T}$
Optional Sampling

- Let $F \in \mathcal{D}$: F is CDF of S_τ for some $\tau \in \mathcal{T}$
- Since S_t is a nonnegative martingale, optional sampling theorem and Fatou’s lemma yield, necessarily,
 $\int_0^\infty (1 - F(x)) \, dx \equiv \mathbb{E}[S_\tau] \leq s$
Let $F \in \mathcal{D}$: F is CDF of S_τ for some $\tau \in \mathcal{T}$

Since S_t is a nonnegative martingale, optional sampling theorem and Fatou’s lemma yield, necessarily,
\[\int_0^\infty (1 - F(x)) \, dx \equiv \mathbb{E}[S_\tau] \leq s \]

This inequality is also sufficient for a CDF to be that of S_τ for some $\tau \in \mathcal{T}$!
Characterising Distribution/Quantile Sets

Theorem

We have the following expressions of the distribution set D and quantile set G:

$$D = \left\{ F \left| F \text{ is a CDF, } \int_0^\infty (1 - F(x)) \, dx \leq s \right\} \right., \quad (10)$$

$$G = \left\{ G \left| G \text{ is a quantile, } \int_0^1 G(x) \, dx \leq s \right\} \right.. \quad (11)$$

- In particular, both D and G are convex
Step 1: Choose either distribution or quantile formulation
Solution Scheme

- Step 1: Choose either distribution or quantile formulation
- Step 2: Obtain the optimal distribution or quantile function
Solution Scheme

- Step 1: Choose either distribution or quantile formulation
- Step 2: Obtain the optimal distribution or quantile function
- Step 3: Recover optimal stopping via Skorokhod embedding
In the realm of portfolio selection
Quantile Formulation: History

- In the realm of portfolio selection
Quantile Formulation: History

- In the realm of portfolio selection
- A general framework developed in He and Zhou (2009) for possibly non-concave utility function and non-convex/concave distortions
Solutions Based on Shapes of $u(\cdot)$ and $w(\cdot)$

- $w(\cdot)$:
Solutions Based on Shapes of $u(\cdot)$ and $w(\cdot)$

- $w(\cdot)$:
 - convex (risk averse)
Solutions Based on Shapes of $u(\cdot)$ and $w(\cdot)$

- $w(\cdot)$:
 - convex (risk averse)
 - concave (risk seeking)
Solutions Based on Shapes of $u(\cdot)$ and $w(\cdot)$

- $w(\cdot)$:
 - convex (risk averse)
 - concave (risk seeking)
 - reverse S-shaped (hope and fear simultaneously)
Solutions Based on Shapes of $u(\cdot)$ and $w(\cdot)$

- $w(\cdot)$:
 - convex (risk averse)
 - concave (risk seeking)
 - reverse S-shaped (hope and fear simultaneously)

- $u(\cdot)$:
Solutions Based on Shapes of $u(\cdot)$ and $w(\cdot)$

- $w(\cdot)$:
 - convex (risk averse)
 - concave (risk seeking)
 - reverse S-shaped (hope and fear simultaneously)

- $u(\cdot)$:
 - convex (intermediate/bad asset)
Solutions Based on Shapes of $u(\cdot)$ and $w(\cdot)$

- $w(\cdot)$:
 - convex (risk averse)
 - concave (risk seeking)
 - reverse S-shaped (hope and fear simultaneously)

- $u(\cdot)$:
 - convex (intermediate/bad asset)
 - concave (bad asset)
Convex $w(\cdot)$: Distribution Formulation

Let $w(\cdot)$ be convex (whereas $u(\cdot)$ may have any shape): i.e. the agent is risk _averse_
Let $w(\cdot)$ be convex (whereas $u(\cdot)$ may have any shape): i.e. the agent is risk averse.

Recall

$$J_D(F) := \int_0^\infty w(1 - F(x)) u'(x) \, dx,$$

$$J_Q(G) := \int_0^1 u(G(x)) w'(1 - x) \, dx,$$
Convex $w(\cdot)$: Distribution Formulation

- Let $w(\cdot)$ be convex (whereas $u(\cdot)$ may have any shape): i.e. the agent is risk
 averse

- Recall

 \[
 J_D(F) := \int_0^\infty w(1 - F(x)) u'(x) \, dx, \tag{12}
 \]

 \[
 J_Q(G) := \int_0^1 u(G(x)) w'(1 - x) \, dx, \tag{13}
 \]

- Distribution formulation is easier to study than quantile formulation
Convex $w(\cdot)$: Distribution Formulation

- Let $w(\cdot)$ be convex (whereas $u(\cdot)$ may have any shape): i.e. the agent is risk averse
- Recall

\[
 J_D(F) := \int_0^\infty w(1 - F(x)) \, u'(x) \, dx, \quad (12)
\]

\[
 J_Q(G) := \int_0^1 u(G(x)) \, w'(1 - x) \, dx, \quad (13)
\]

- Distribution formulation is easier to study than quantile formulation
- Maximising a convex functional over a convex set \mathcal{D}

\[
 (\int_0^1 (1 - F(x)) \, dx \leq s)
\]
Let $w(\cdot)$ be convex (whereas $u(\cdot)$ may have any shape): i.e. the agent is risk averse

Recall

\[
J_D(F) := \int_0^\infty w(1 - F(x)) u'(x) \, dx, \quad (12)
\]

\[
J_Q(G) := \int_0^1 u(G(x)) w'(1 - x) \, dx, \quad (13)
\]

Distribution formulation is easier to study than quantile formulation

Maximising a convex functional over a convex set \mathcal{D}

\[
(\int_0^1 (1 - F(x)) \, dx \leq s)
\]

A maximum should be at “corners” of \mathcal{D}
Theorem

If $w(\cdot)$ is convex and $u(\cdot)$ is non-decreasing, then

$$\sup_{\tau \in \mathcal{T}} J(\tau) = \sup_{0 < a \leq s \leq b} \left[\left(1 - w \left(\frac{s - a}{b - a} \right) \right) u(a) + w \left(\frac{s - a}{b - a} \right) u(b) \right]. \quad (14)$$

Moreover, if (14) has an optimal pair (a^*, b^*) with $a^* > 0$, then

$$\tau_{(a^*, b^*)} := \inf \{ t \geq 0 : S_t \notin (a^*, b^*) \} \quad (15)$$

is an optimal stopping to problem (2).
By symmetry, if $u(\cdot)$ is convex, one uses quantile formulation

Theorem

If $u(\cdot)$ is convex, then

$$
\sup_{\tau \in \mathcal{T}} J(\tau) = \sup_{0 < a \leq s \leq b} \left[\left(1 - w \left(\frac{s - a}{b - a} \right) \right) u(a) + w \left(\frac{s - a}{b - a} \right) u(b) \right]. \quad (16)
$$

Moreover, if (16) has an optimal pair (a^, b^*) with $a^* > 0$, then*

$$
\tau(a^*, b^*) := \inf \{ t \geq 0 : S_t \notin (a^*, b^*) \} \quad (17)
$$

is an optimal stopping to problem (2).
Traditional investment wisdom/advice: one should set a target price and a cut-loss price
Convex $w(\cdot)$ or $u(\cdot)$: Cut-Loss and Take-Profit Strategy

- Traditional investment wisdom/advice: one should set a target price and a cut-loss price
- $u(\cdot)$ being convex corresponds to “intermediate” and “bad” asset
Convex $u(\cdot)$ or $w(\cdot)$: Cut-Loss and Take-Profit Strategy

- Traditional investment wisdom/advice: one should set a target price and a cut-loss price
- $u(\cdot)$ being convex corresponds to “intermediate” and “bad” asset
- $w(\cdot)$ being convex corresponds to risk aversion
Convex $w(\cdot)$ or $u(\cdot)$: Cut-Loss and Take-Profit Strategy

- Traditional investment wisdom/advice: one should set a target price and a cut-loss price
- $u(\cdot)$ being convex corresponds to “intermediate” and “bad” asset
- $w(\cdot)$ being convex corresponds to risk aversion
- Zhang (2001): cut-loss and take-profit thresholds are exogenously set
Convex $w(\cdot)$ or $u(\cdot)$: Cut-Loss and Take-Profit Strategy

- Traditional investment wisdom/advice: one should set a target price and a cut-loss price
- $u(\cdot)$ being convex corresponds to “intermediate” and “bad” asset
- $w(\cdot)$ being convex corresponds to risk aversion
- Zhang (2001): cut-loss and take-profit thresholds are exogenously set
- Here we show that this strategy is endogenous for broad classes of problems
Convex $w(\cdot)$ or $u(\cdot)$: Cut-Loss and Take-Profit Strategy

- Traditional investment wisdom/advice: one should set a target price and a cut-loss price
- $u(\cdot)$ being convex corresponds to “intermediate” and “bad” asset
- $w(\cdot)$ being convex corresponds to risk aversion
- Zhang (2001): cut-loss and take-profit thresholds are exogenously set
- Here we show that this strategy is endogenous for broad classes of problems
- It also recovers Henderson (2010) where probability distortion is absent
Corollary

If \(u(\cdot) \) is concave and \(w(\cdot) \) is convex, then

\[
\sup_{\tau \in T} J(\tau) = u(s). \tag{18}
\]

Moreover, \(\tau \equiv 0 \) is an optimal stopping.

- For power and log utility \(U(\cdot), u(\cdot) \) being concave corresponds to bad asset.
Corollary

If $u(\cdot)$ is concave and $w(\cdot)$ is convex, then

$$\sup_{\tau \in \mathcal{T}} J(\tau) = u(s).$$ \hspace{1cm} (18)

Moreover, $\tau \equiv 0$ is an optimal stopping.

- For power and log utility $U(\cdot)$, $u(\cdot)$ being concave corresponds to bad asset
- $w(\cdot)$ being convex corresponds to risk aversion
Corollary

If \(u(\cdot) \) is concave and \(w(\cdot) \) is convex, then

\[
\sup_{\tau \in \mathcal{T}} J(\tau) = u(s).
\]

(18)

Moreover, \(\tau \equiv 0 \) is an optimal stopping.

- For power and log utility \(U(\cdot) \), \(u(\cdot) \) being concave corresponds to bad asset
- \(w(\cdot) \) being convex corresponds to risk aversion
- A risk averse agent will sell a bad stock immediately
Let \(u(\cdot) \) be concave
Let $u(\cdot)$ be concave

Quantile formulation

$$J_Q(G) = \int_0^1 u(G(x)) w'(1 - x) \, dx$$ (19)
Let $u(\cdot)$ be concave

Quantile formulation

$$J_Q(G) = \int_0^1 u(G(x)) w'(1 - x) \, dx$$ \hspace{1cm} (19)

Maximising a concave functional over a convex set
Let $u(\cdot)$ be concave.

Quantile formulation

\[J_Q(G) = \int_0^1 u(G(x)) w'(1 - x) \, dx \quad (19) \]

Maximising a *concave* functional over a convex set.

Lagrange!
Consider a family of relaxed problems

\[
J^\lambda_Q(G) = \int_0^1 u(G(x))w'(1 - x) \, dx - \lambda \left(\int_0^1 G(x) \, dx - s \right) \\
= \int_0^1 f^\lambda(x, G(x)) \, dx + \lambda s,
\]

where \(\lambda \geq 0 \) and \(f^\lambda(x, y) := u(y)w'(1 - x) - \lambda y \).
Consider a family of relaxed problems

\[J_Q^\lambda(G) = \int_0^1 u(G(x))w'(1 - x) \, dx - \lambda \left(\int_0^1 G(x) \, dx - s \right) \]

\[= \int_0^1 f^\lambda(x, G(x)) \, dx + \lambda s, \]

where \(\lambda \geq 0 \) and \(f^\lambda(x, y) := u(y)w'(1 - x) - \lambda y \)

Maximising \(f^\lambda(x, \cdot) \) for each \(x \) we get

\[G_\lambda(x) := (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right), \quad x \in (0, 1) \]
Consider a family of relaxed problems

\[
J^\lambda_Q(G) = \int_0^1 u(G(x))w'(1 - x)\,dx - \lambda \left(\int_0^1 G(x)\,dx - s \right) \\
= \int_0^1 f^\lambda(x, G(x))\,dx + \lambda s,
\]

where \(\lambda \geq 0 \) and \(f^\lambda(x, y) := u(y)w'(1 - x) - \lambda y \)

Maximising \(f^\lambda(x, \cdot) \) for each \(x \) we get

\[
G^\lambda(x) := (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right), \quad x \in (0, 1)
\]

Is \(G^\lambda \) qualified as a quantile function (primarily, non-decreasing)?
When $w(\cdot)$ is also concave, then $G_\lambda(x) := (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right)$ is indeed non-decreasing, hence a quantile.
Concave $u(\cdot)$ and $w(\cdot)$

- When $w(\cdot)$ is also concave, then $G_\lambda(x) := (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right)$ is indeed non-decreasing, hence a quantile.
- Finding $0 \leq \lambda^* < \infty$ so that
 \[\int_0^1 (u')^{-1} \left(\frac{\lambda^*}{w'(1-x)} \right) \, dx = s. \]
Concave $u(\cdot)$ and $w(\cdot)$

- When $w(\cdot)$ is also concave, then $G_\lambda(x) := (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right)$ is indeed non-decreasing, hence a quantile.
- Finding $0 \leq \lambda^* < \infty$ so that
 \[
 \int_0^1 (u')^{-1} \left(\frac{\lambda^*}{w'(1-x)} \right) \, dx = s.
 \]
- Then $G^* = G_{\lambda^*}$ is optimal to problem (8).
When \(w(\cdot) \) is also concave, then \(G_\lambda(x) := (u')^{-1} \left(\lambda \frac{w'}{w'(1-x)} \right) \) is indeed non-decreasing, hence a quantile.

Finding \(0 \leq \lambda^* < \infty \) so that

\[
\int_0^1 (u')^{-1} \left(\frac{\lambda^*}{w'(1-x)} \right) \, dx = s.
\]

Then \(G^* = G_{\lambda^*} \) is optimal to problem (8).

Bad asset but risk-seeking agent
Consider $u(x) = \frac{1}{\gamma} x^\gamma$, $0 < \gamma < 1$, and $w(x) = x^\alpha$, $0 < \gamma < \alpha < 1$: both concave.
Concave $u(\cdot)$ and $w(\cdot)$: An Example

- Consider $u(x) = \frac{1}{\gamma}x^\gamma$, $0 < \gamma < 1$, and $w(x) = x^\alpha$, $0 < \gamma < \alpha < 1$: both concave
- $G^*(x) = s^{\frac{\alpha-\gamma}{1-\gamma}} \left(\frac{1}{1-x} \right)^{\frac{1-\alpha}{1-\gamma}}$ is optimal quantile
Concave \(u(\cdot) \) and \(w(\cdot) \): An Example

- Consider \(u(x) = \frac{1}{\gamma} x^{\gamma}, 0 < \gamma < 1 \), and \(w(x) = x^\alpha, 0 < \gamma < \alpha < 1 \): both concave

- \(G^*(x) = s \frac{\alpha-\gamma}{1-\gamma} \left(\frac{1}{1-x} \right)^{\frac{1-\alpha}{1-\gamma}} \) is optimal quantile

- Corresponding CDF of optimally stopped price is

\[
F^*(x) = \begin{cases}
1 - \left(s \frac{\alpha-\gamma}{1-\gamma} \right)^{\frac{1-\gamma}{1-\alpha}} x^{-\frac{1-\gamma}{1-\alpha}}, & x \geq s \frac{\alpha-\gamma}{1-\gamma}; \\
0, & x < s \frac{\alpha-\gamma}{1-\gamma},
\end{cases}
\]

(20)

a *Pareto distribution* with Pareto index \(\frac{1-\gamma}{1-\alpha} > 1 \)
Concave $u(\cdot)$ and $w(\cdot)$: An Example

- Consider $u(x) = \frac{1}{\gamma} x^\gamma$, $0 < \gamma < 1$, and $w(x) = x^\alpha$, $0 < \gamma < \alpha < 1$: both concave

- $G^*(x) = s \frac{\alpha-\gamma}{1-\gamma} \left(\frac{1}{1-x} \right)^{\frac{1-\alpha}{1-\gamma}}$ is optimal quantile

- Corresponding CDF of optimally stopped price is

\[
F^*(x) = \begin{cases}
1 - \left(s \frac{\alpha-\gamma}{1-\gamma} \right)^{\frac{1-\gamma}{1-\alpha}} x^{-\frac{1-\gamma}{1-\alpha}}, & x \geq s \frac{\alpha-\gamma}{1-\gamma}; \\
0, & x < s \frac{\alpha-\gamma}{1-\gamma},
\end{cases}
\]

(20)

a *Pareto distribution* with Pareto index $\frac{1-\gamma}{1-\alpha} > 1$

- One never stops when the asset price is below $s \frac{\alpha-\gamma}{1-\gamma}$
Concave $u(\cdot)$ and $w(\cdot)$: An Example

- Consider $u(x) = \frac{1}{\gamma} x^\gamma$, $0 < \gamma < 1$, and $w(x) = x^\alpha$, $0 < \gamma < \alpha < 1$: both concave

- $G^*(x) = s \frac{\alpha-\gamma}{1-\gamma} \left(\frac{1}{1-x} \right)^{\frac{1-\alpha}{1-\gamma}}$ is optimal quantile

- Corresponding CDF of optimally stopped price is

$$F^*(x) = \begin{cases}
1 - \left(s \frac{\alpha-\gamma}{1-\gamma} \right)^{\frac{1-\gamma}{1-\alpha}} x^{-\frac{1-\gamma}{1-\alpha}}, & x \geq s \frac{\alpha-\gamma}{1-\gamma}; \\
0, & x < s \frac{\alpha-\gamma}{1-\gamma},
\end{cases}$$

(20)

a *Pareto distribution* with Pareto index $\frac{1-\gamma}{1-\alpha} > 1$

- One never stops when the asset price is below $s \frac{\alpha-\gamma}{1-\gamma}$

- Azéma–Yor stopping time

$$\tau_{AY} = \inf \left\{ t \geq 0 : S_t \leq \frac{\alpha - \gamma}{1 - \gamma} \max_{0 \leq s \leq t} S_s \right\}$$

(21)

is an optimal solution to problem (2)
Concave $u(\cdot)$ and Reverse S-shaped $w(\cdot)$

- Reverse S-shaped $w(\cdot)$: fear and hope are present simultaneously (He and Zhou 2009)
Concave $u(\cdot)$ and Reverse S-shaped $w(\cdot)$

- Reverse S-shaped $w(\cdot)$: fear and hope are present simultaneously (He and Zhou 2009)
- Optimal quantile is of the form

$$G^*(x) = a \mathbf{1}_{(0,c]}(x) + \left(a \vee (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) \mathbf{1}_{(c,1]}(x),$$

where parameters a, c and λ are subject to

$$\lambda \geq 0, \quad q \leq c \leq 1, \quad a \geq 0,$$

$$ac + \int_c^1 \left(a \vee (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) dx \leq s.$$
Concave $u(\cdot)$ and Reverse S-shaped $w(\cdot)$

- Reverse S-shaped $w(\cdot)$: fear and hope are present simultaneously (He and Zhou 2009)
- Optimal quantile is of the form

$$G^*(x) = a \mathbf{1}_{(0,c]}(x) + \left(a \lor (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) \mathbf{1}_{(c,1]}(x),$$

where parameters a, c and λ are subject to

$$\lambda \geq 0, \quad q \leq c \leq 1, \quad a \geq 0,$$

$$ac + \int_c^1 \left(a \lor (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) dx \leq s.$$

- Payoff under G^* is

$$(1-w(1-c))u(a) + \int_c^1 u \left(a \lor (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) w'(1-x) dx.$$
Concave $u(\cdot)$ and Reverse S-shaped $w(\cdot)$

- **Reverse S-shaped $w(\cdot)$**: fear and hope are present simultaneously (He and Zhou 2009)
- **Optimal quantile is of the form**

$$G^*(x) = a \mathbf{1}_{(0,c]}(x) + \left(a \vee (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) \mathbf{1}_{(c,1]}(x),$$

where parameters a, c and λ are subject to

$$\lambda \geq 0, \quad q \leq c \leq 1, \quad a \geq 0,$$

$$ac + \int_c^1 \left(a \vee (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) \, dx \leq s.$$

- **Payoff under G^*** is

$$(1 - w(1-c))u(a) + \int_c^1 u \left(a \vee (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) w'(1-x) \, dx.$$

- A mathematical programme!
Concave $u(\cdot)$ and Reverse S-shaped $w(\cdot)$

- Reverse S-shaped $w(\cdot)$: fear and hope are present simultaneously (He and Zhou 2009)
- Optimal quantile is of the form

$$G^*(x) = a1_{(0,c]}(x) + \left(a \lor (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) 1_{(c,1]}(x),$$

where parameters a, c and λ are subject to

$$\lambda \geq 0, \quad q \leq c \leq 1, \quad a \geq 0,$$

$$ac + \int_c^1 \left(a \lor (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) dx \leq s.$$

- Payoff under G^* is

$$(1-w(1-c))u(a) + \int_c^1 u \left(a \lor (u')^{-1} \left(\frac{\lambda}{w'(1-x)} \right) \right) w'(1-x) dx.$$

- A mathematical programme!
- Bad asset but an agent with both hope and fear: a cut-loss level but no take-profit one
Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained.
Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained.

A general machinery introduced and developed – distribution/quantile formulation + Skorokhod embedding.
Conclusions

- Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained
- A general machinery introduced and developed – distribution/quantile formulation + Skorokhod embedding
- Buy-and-hold and cut-loss-take-profit strategies justified for a broad class of problems
Conclusions

- Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained.
- A general machinery introduced and developed – distribution/quantile formulation + Skorokhod embedding.
- Buy-and-hold and cut-loss-take-profit strategies justified for a broad class of problems.
- Open/future research problems:
Conclusions

- Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained
- A general machinery introduced and developed – distribution/quantile formulation + Skorokhod embedding
- Buy-and-hold and cut-loss-take-profit strategies justified for a broad class of problems
- Open/future research problems:
 - More general asset prices (work-in-progress)
Conclusions

- Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained
- A general machinery introduced and developed – distribution/quantile formulation + Skorokhod embedding
- Buy-and-hold and cut-loss-take-profit strategies justified for a broad class of problems
- Open/future research problems:
 - More general asset prices (work-in-progress)
 - Finite time horizon
Conclusions

- Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained.
- A general machinery introduced and developed – distribution/quantile formulation + Skorokhod embedding.
- Buy-and-hold and cut-loss-take-profit strategies justified for a broad class of problems.
- Open/future research problems:
 - More general asset prices (work-in-progress)
 - Finite time horizon
 - Discounting factor explicit in objective functional.
Conclusions

- Optimal stopping with probability distortion/weighting is formulated and pre-committed strategies obtained
- A general machinery introduced and developed – distribution/quantile formulation + Skorokhod embedding
- Buy-and-hold and cut-loss-take-profit strategies justified for a broad class of problems
- Open/future research problems:
 - More general asset prices (work-in-progress)
 - Finite time horizon
 - Discounting factor explicit in objective functional
 - Time consistent strategies (formulation?)