Exact and high order discretization schemes for Wishart processes and their affine extensions

Abdelkoddousse Ahdida & Aurélien Alfonsi

CERMICS, Ecole des Ponts Paris Tech - PRES Université Paris Est Modeling and Managing Financial Risks -2011

< ∃ >

Plan

Motivation and notations

2 Exact simulation for Wishart processes

- Splitting operator property
- Exact simulation

3 High order discretization for Wishart processes and affine processes

- Wishart processes
- Affine processes

4 Numerical results

Plan

Motivation and notations

Exact simulation for Wishart processes

- Splitting operator property
- Exact simulation

3 High order discretization for Wishart processes and affine processes

- Wishart processes
- Affine processes

A Numerical results

- ∢ ⊒ →

Motivation

- Wishart process and affine process defined on the symmetric positive cone $S^+_d(\mathbb{R})$ are a key-tool for:
 - Defining the natural correlation between processes.
 - A generalization of stochastic volatility in multidimension.
 - Pricing complex derivatives taking into account the relationship between spot (Outperformer, Best/Worst of options ...).
- Pricing with Fourier transform methods are less efficient in the multi dimension context.
- To the best of our knowledge, this is the first exact simulation and high order discretization that work without any restriction on parameters.

프 () () () (

Definitions

We say that the process $(X_t^x)_{t\geq 0}$ is a <u>continuous positive affine process</u>, if it is a solution of the following SDE:

$$X_t^{x} = x + \int_0^t \left(\overline{\alpha} + B(X_s^{x})\right) ds + \int_0^t \left(\sqrt{X_s^{x}} dW_s a + a^T dW_s^T \sqrt{X_s^{x}}\right), \qquad (1)$$

where $(W_t, t \ge 0)$ denotes a *d*-by-*d* square matrix made of independent standard Brownian motions, $x, \bar{\alpha} \in S_d^+(\mathbb{R}), a \in \mathcal{M}_d(\mathbb{R}), B \in \mathcal{L}(\mathcal{S}_d(\mathbb{R}))$ (where $\mathcal{L}(\mathcal{S}_d(\mathbb{R}))$ is a linear mapping on $\mathcal{S}_d(\mathbb{R})$), and $\forall x \in \mathcal{S}_d^+(\mathbb{R})$

$$x = o \operatorname{diag}(\lambda_1, \ldots, \lambda_d) o^T \implies \sqrt{x} = o \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_d}) o^T.$$

Wishart processes correspond to the following case :

$$\exists \alpha \geq 0, \bar{\alpha} = \alpha a^{\mathsf{T}} a \text{ and } \exists b \in \mathcal{M}_d(\mathbb{R}), \forall x \in \mathcal{S}_d(\mathbb{R}), B(x) = bx + xb^{\mathsf{T}}.$$
 (2)

Application in finance : Gourieroux and Sufana model

• We consider d risky assets S_t^1, \ldots, S_t^d . Let $(B_t, t \ge 0)$ denote a standard Brownian motion on \mathbb{R}^d that is independent from $(X_t)_{t\ge 0} \sim WIS_d(x, \alpha, b, a)$. Then, we have

$$t \geq 0, 1 \leq l \leq d, \ \frac{dS'_t}{S'_t} = rdt + (\sqrt{X_t}dB_t)_l.$$

- Gourieroux and Sufana model assumes that the Wishart process (X_t)_{t≥0} is the Covariance matrix of the spot vector (S_t)_{t≥0}.
- Da Fonseca and al. have chosen the adequate correlation between spot vector $(S_t)_{t\geq 0}$ and its Covariance matrix $(X_t)_{t\geq 0}$ to observe the smile effect, and to keep the model affine.

向下 イヨト イヨト

Splitting operator property Exact simulation

Plan

1 Motivation and notations

2 Exact simulation for Wishart processes

- Splitting operator property
- Exact simulation

3 High order discretization for Wishart processes and affine processes

- Wishart processes
- Affine processes

A Numerical results

< ∃⇒

Splitting operator property Exact simulation

Composition technique for the exact simulation

Proposition

If $(Y_t^x)_{t\geq 0}$ is an affine process starting from x and associated to the infinitesimal operator L_Y , such that $L_Y = L_Z + L_X$, and $L_Z L_X = L_X L_Z$. Then $Y_t^x \sim X_t^{Z_t^x}$,

where $(X_t^{\times})_{t\geq 0}$ and $(Z_t^{\times})_{t\geq 0}$ are two affine independent processes associated respectively to two infinitesimal generators L_X and L_Z .

Proof.

For some class of functions f

$$\begin{split} \mathbb{E}[f(X_t^x)] &= \sum_{k=0}^{\infty} t^k L_x^k f(x) / k! := e^{tL_x}(f)(x) \\ \mathbb{E}\left[f(X_t^{Z_t^x})\right] &= \mathbb{E}\left[\mathbb{E}\left[f(X_t^{Z_t^x}) | Z_t^x\right]\right] \\ &= \sum_{k=0}^{+\infty} \frac{t^{k_1}}{k_1!} \mathbb{E}\left[L_x^{k_1} f(Z_t^x)\right] \\ &= \sum_{k_1, k_2 = 0}^{+\infty} \frac{t^{k_1 + k_2}}{k_1! k_2!} L_x^{k_1} L_z^{k_2} f(x) \\ &= \sum_{k=0}^{\infty} \frac{t^k}{k!} (L_x + L_z)^k f(x) \\ &= \mathbb{E}[f(Y_t^x)] \end{split}$$

Splitting operator property Exact simulation

Canonical Wishart process transformation

Proposition

Let t > 0, $a, b \in \mathcal{M}_d(\mathbb{R})$ and $\alpha \ge d - 1$. Let $m_t = \exp(tb)$, $q_t = \int_0^t \exp(sb)a^T a \exp(sb^T) ds$ and $n = \operatorname{Rk}(q_t)$. Then, there is $\theta_t \in \mathcal{G}_d(\mathbb{R})$ such that $q_t = t\theta_t l_d^n \theta_t^T$, and we have:

$$WIS_d(x, \alpha, b, a; t) = \theta_t WIS_d(\theta_t^{-1} m_t \times m_t^T (\theta_t^{-1})^T, \alpha, 0, I_d^n; t) \theta_t^T$$

Remark

- General /Non central Wishart distribution ⇔ Canonical/Central Wishart distribution
- In the case of d = 1, we obtain the usual identity of Bessel and CIR processes

$$WIS_1(x, \alpha, b, a; t) = a^2 \frac{e^{2bt} - 1}{2bt} WIS_1(\frac{2btx}{a^2(1 - e^{-2bt})}, \alpha, 0, 1; t).$$

Splitting operator property Exact simulation

A remarkable splitting operator

Theorem

Let L be the generator associated to the Wishart process $WIS_d(x, \alpha, 0, I_d^n)$ and L_i be the generator associated to $WIS_d(x, \alpha, 0, e_d^i)$ for $i \in \{1, ..., d\}$. Then, we have

$$L = \sum_{i=1} L_i \text{ and } \forall i, j \in \{1, \dots, d\}, \ L_i L_j = L_j L_i,$$
(3)

where $\forall 1 \leq i \leq d$, $\forall 1 \leq k, l \leq d$, $(e_d^i)_{k,l} = 1_{\{k=l=i\}}, (I_d^n)_{k,l} = 1_{\{k=l,k \leq n\}}$

Remark

- The operators L_i and L_j are the same up to the exchange of coordinates i and j.
- The processes $WIS_d(x, \alpha, 0, e_d^i)$ and $WIS_d(x, \alpha, 0, I_d^n)$ are well defined on $S_d^+(\mathbb{R})$ under the same hypothesis, namely $\alpha \ge d-1$ and $x \in S_d^+(\mathbb{R})$.

・聞き ・ ほき・ ・ ほき

Splitting operator property Exact simulation

Exact simulation for the canonical Wishart distribution

Let us consider t > 0 and $x \in S_d^+(\mathbb{R})$. We define iteratively:

We have the following result:

Splitting operator property Exact simulation

Exact simulation of $WIS_d(x, \alpha, 0, e_d^1)$, with $d \in \mathbb{N}^*$

Theorem

The solution of $WIS_d(x, \alpha, 0, e_d^1)$ is given explicitly by:

$$X_t^x = q \begin{pmatrix} (U_t^u)_{\{1,1\}} + \sum_{k=1}^r ((U_t^u)_{\{1,k+1\}})^2 & ((U_t^u)_{\{1,l+1\}})_{1 \le l \le r}^T & 0 \\ ((U_t^u)_{\{1,l+1\}})_{1 \le l \le r} & I_r & 0 \\ 0 & 0 & 0 \end{pmatrix} q^T$$

where

$$\begin{aligned} d(U_t^u)_{\{1,1\}} &= (\alpha - r)dt + 2\sqrt{(U_t^u)_{\{1,1\}}}dZ_t^1 \ge 0, \\ d((U_t^u)_{\{1,l+1\}})_{1\le l\le r} &= (dZ_t^{l+1})_{1\le l\le r}. \\ d((U_t^u)_{\{k,l\}})_{2\le k,l\le r} &= d((X_t^x)_{\{k,l\}})_{2\le k,l\le r} = 0, \end{aligned}$$

and $q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_r & 0 \\ 0 & k_r & l_{d-r-1} \end{pmatrix}.$

프 () () () (

< (17) > <

э

Splitting operator propert Exact simulation

Methodology to sample Exactly Wishart distribution

$$WIS_{d}(x, \alpha, b, a; t) \underset{Law}{\sim} \theta_{t}WIS_{d}(\theta_{t}^{-1}m_{t}xm_{t}^{T}(\theta_{t}^{-1})^{T}, \alpha, 0, I_{d}^{n}; t)\theta_{t}^{T}$$

$$\begin{array}{c} \updownarrow \\ \forall 2 \leq n \leq d, \quad WIS_{d}(x, \alpha, 0, I_{d}^{n}), \quad \underbrace{\text{By composition Technique}}_{\forall 2 \leq i \leq d, \quad WIS_{d}(x, \alpha, 0, e_{d}^{i}), \quad \underbrace{\text{By permutation}}_{\forall VIS_{d}(x, \alpha, 0, e_{d}^{1}). \quad \textcircled{}} \end{array}$$

Sampling one square Bessel process and d-1 Brownian motions.

通 と く ヨ と く ヨ と

Wishart processes Affine processes

Plan

Motivation and notations

2 Exact simulation for Wishart processes

- Splitting operator property
- Exact simulation

3 High order discretization for Wishart processes and affine processes

- Wishart processes
- Affine processes

4 Numerical results

< ∃⇒

A potential ν order scheme for the operator L_1 , $d \in \mathbb{N}$

Theorem

By replacing in \checkmark transformation $((U_t^u)_{\{1,l\}})_{2 \le l \le d}$ (resp. $(U_t^u)_{\{1,1\}}$) with $\sqrt{t}(\hat{G}^i)_{1 \le i \le r}$ (resp. with $(\hat{U}_t^u)_{\{1,1\}}$), then \hat{X}_t is a potential ν -order scheme for the operator L_1 , where :

 (Ĝⁱ)_{1≤i≤r} is a sequence of independent real variables with finite moments of any order such that:

 $\forall i \in \{1, \dots, r\}, \ \forall k \leq 2\nu + 1, \ \mathbb{E}[(\hat{G}^i)^k] = \mathbb{E}[G^k], \ \textit{where} \ G \sim \mathcal{N}(0, 1).$

• $(\hat{U}_t^u)_{\{1,1\}}$ is sampled independently according to a potential weak ν th-order scheme for the CIR process $d(U_t^u)_{\{1,1\}} = (\alpha - r)dt + 2\sqrt{(U_t^u)_{\{1,1\}}}dZ_t^1$ starting from $u_{\{1,1\}}$.

Wishart processes Affine processes

Methodology to build the scheme of order ν

Schemes of order ν for: one square Bessel process and d-1 Brownian motions.

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Wishart processes Affine processes

The third order discretization for Wishart process

Theorem

Let $(X_t^*)_{t\geq 0} \sim WIS_d(x, \alpha, b, a)$ such that either $a \in \mathcal{G}_d(\mathbb{R})$ or $a^T ab = ba^T a$, and $f \in \mathcal{C}^{\infty}_{\text{pol}}(\mathcal{S}_d(\mathbb{R}))$. Let $(\hat{X}_{t^N}^N, 0 \leq i \leq N)$ be sampled with the scheme defined previously with the third order scheme for the CIR given in Alfonsi-2009 and starting from $x_0 \in S_d^+(\mathbb{R})$. Then,

 $\exists C, N_0 > 0, \forall N \geq N_0, |\mathbb{E}[f(\hat{X}_{t_N^N}^N)] - \mathbb{E}[f(X_t^{x_0})]| \leq C/N^3.$

Remark

New extension of the regularity of the function $u(t, x) = \mathbb{E}[f(X_t^x)]$, from the CIR process to Wishart process . (Phd thesis A.Alfonsi 2006)

・ 同 ト ・ ヨ ト ・ ヨ ト

Wishart processes Affine processes

Canonical positive affine process transformation

Proposition

Let $(X_t^x)_{t\geq 0} \sim AFF_d(x, \bar{\alpha}, B, a)$ and n = Rk(a) be the rank of $a^T a$. Then, there exist a diagonal matrix $\bar{\delta}$, and a non singular matrix $u \in \mathcal{G}_d(\mathbb{R})$ such that $\bar{\alpha} = u^T \bar{\delta} u$, and $a^T a = u^T I_d^n u$, and we have:

$$(X_t^x)_{t\geq 0} = \underset{Law}{u^T} AFF_d \left((u^{-1})^T x u^{-1}, \overline{\delta}, B_u, I_d^n \right) u,$$

where $\forall y \in S_d(\mathbb{R}), \ B_u(y) = (u^{-1})^T B(u^T y u) u^{-1}.$

Wishart processes Affine processes

The potential second order discretization for a general affine process defined on $S_d^+(\mathbb{R})$

- It is sufficient to study the affine process $AFF_d(x, \overline{\delta}, B, I_d^n)$.
- By splitting operator, if L denotes the infinitesimal generator of $AFF_d(x, \overline{\delta}, B, I_d^n)$, we conclude then that

$$\begin{array}{lll} L & = & L_{ODE} + L_{Wishart}, \\ L_{ODE} & = & \operatorname{Tr}((\overline{\delta} - \delta_{\min} I_d^n + B(x))D^S) \sim X_t^1, \\ L_{Wishart} & = & \operatorname{Tr}((\delta_{\min} I_d^n)D^S) + 2\operatorname{Tr}(xD^S I_d^nD^S) = \sum_{i=1}^n L_i \sim X_d^i \end{array}$$

Proposition

Both schemes $X_{t/2}^{1,X_t^{1,x}}$ and $UX_t^{1,X_t^{2,x}} + (1-U)X_t^{2,X_t^{1,x}}$ are potential second order scheme for $AFF_d(x, \overline{\delta}, B, I_d^n)$, where U is an independent Bernoulli variable with parameter $\frac{1}{2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Wishart processes Affine processes

Fast potential second order discretization for a general affine process defined on $\mathcal{S}_d^+(\mathbb{R})$, $\overline{\delta} \ge dI_d^n$

The previous algorithm requires O(d⁴), on each step time due to Cholesky decomposition of each transformation (L_i)_{1≤i≤d}.

• In the case of $\overline{\delta} \ge dl_d^n$ we propose an other scheme that costs only $O(d^3)$:

 $\begin{array}{lll} L &=& L_{ODE} + L_{Wishart}, \\ L_{ODE} &=& \mathrm{Tr}((\bar{\delta} - dI_d^n + B(x))D^S), \\ L_{Wishart} &=& \mathrm{Tr}((dI_d^n)D^S) + 2\mathrm{Tr}(xD^SI_d^nD^S) \sim (c + \sqrt{t}\tilde{G}I_d^n)(c + \sqrt{t}\tilde{G}I_d^n)^T, \\ \\ \text{where } \tilde{G} \text{ is a matrix, in } \mathcal{M}_d(\mathbb{R}), \text{ made of independent variables that fit the first five moments of normal random variable.} \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Plan

1 Motivation and notations

2 Exact simulation for Wishart processes

- Splitting operator property
- Exact simulation

3 High order discretization for Wishart processes and affine processes

- Wishart processes
- Affine processes

4 Numerical results

- ∢ ⊒ →

Time computation for $\mathbb{E}\left[\exp(i\operatorname{Tr}(vX_T^{X}))\right]$: Nmc = 10⁶, a = l_d, b = 0,

 $x = 10I_d$, $v = 0.09I_d$ and T = 1

	N = 10			N = 30		
Schemes	R. value	Im. value	Time	R. value	Im. value	Time
Exact (1 step)	-0.526852	-0.227962	12			
2 nd order bis	-0.526229	-0.228663	41	-0.526486	-0.229078	125
2 nd order	-0.526577	-0.228923	76	-0.526574	-0.228133	229
3 rd order	-0.527021	-0.227286	82	-0.527613	-0.228376	244
Exact (N steps)	-0.526963	-0.228303	123	-0.526891	-0.227729	369
Corrected Euler	-0.525627*	-0.233863*	225	-0.525638*	-0.231449*	687
$\alpha = 3.5, d = 3, \Delta_R = 10^{-3}, \Delta_{Im} = 10^{-3}$, exact value R. $= -0.527090$ and Im. $= -0.228251$						
Exact (1 step)	-0.591579	-0.037651	12			
2 nd order	-0.590444	-0.037024	77	-0.590808	-0.036487	229
3 rd order	-0.591234	-0.034847	82	-0.590818	-0.036210	246
Exact (N steps)	-0.591169	-0.036618	174	-0.592145	-0.037411	920
Corrected Euler	-0.589735*	-0.042002*	223	-0.590079*	-0.039937*	680
$\alpha = 2.2, d = 3, \Delta_R = 0.9 \times 10^{-3}, \Delta_{Im} = 1.3 \times 10^{-3},$ exact value R. = -0.591411 and Im. = -0.036346						
Exact (1 step)	0.062712	-0.063757	181			
2 nd order bis	0.064237	-0.063825	921	0.064573	-0.062747	2762
2 nd order	0.064922	-0.064103	1431	0.063534	-0.063280	4283
3 rd order	0.064620	-0.064543	1446	0.064120	-0.063122	4343
Exact (N steps)	0.063418	-0.064636	1806	0.063469	-0.064380	5408
Corrected Euler	0.068298*	-0.058491*	2312	0.061732*	-0.056882*	7113
$\alpha = 10.5, d = 10, \Delta_R = 1.4 \times 10^{-3}, \Delta_{Im} = 1.3 \times 10^{-3}$, exact value R. = 0.063960 and Im. = -0.063544						
Exact (1 step)	-0.036869	-0.094156	177			
2 nd order	-0.036246	-0.094196	1430	-0.035944	-0.092770	4285
3 rd order	-0.035408	-0.093479	1441	-0.036277	-0.093178	4327
Exact (N steps)	-0.036478	-0.092860	1866	-0.036145	-0.093003	6385
Corrected Euler	-0.028685*	-0.094281*	2321	-0.030118*	-0.088988*	7144
$\alpha = 9.2$ d = 10 $\Delta p = 1.4 \times 10^{-3}$ $\Delta t = 1.4 \times 10^{-3}$ exact value R = -0.036064 and lm = -0.093275						

Abdelkoddousse Ahdida & Aurélien Alfonsi Exact and

Exact and high order discretization schemes

Laplace transform $\mathbb{E}\left[\exp(i\operatorname{Tr}(vX_T^{\times}))\right], \ d=3$

Figure: $d = 3, 10^7$ MC, T = 10. The RV of $\mathbb{E}[\exp(-\text{Tr}(i \kappa \hat{X}_{t_N}^N))]$ in function of T/N. Left: $v = 0.05l_d$ and $x = 0.4l_d$, $\alpha = 4.5$, $a = l_d$ and b = 0. Ex.Val.: 0.054277. Right: $v = 0.2l_d + 0.04q$ and $x = 0.4l_d + 0.2q$, $\alpha = 2.22$, $a = l_d$ and $b = -0.5l_d$. Ex.Val: 0.239836. Here, q is the matrix defined by: $q_{i,j} = 1_{j \neq j}$. The width of each point represents the 95% confidence interval.

글 > : < 글 >

Laplace transform $\mathbb{E}\left[\exp(i\operatorname{Tr}(vX_T^{\chi}))\right], \ d = 10$

Figure: $d = 10, 10^7$ MC, T = 10. Left: IM of $\mathbb{E}[\exp(-\text{Tr}(iv\hat{X}_{I_N}^N))]$ with $v = 0.009I_d$ in function of T/N, $x = 0.4I_d$, $\alpha = 12.5$, b = 0 and $a = I_d$. Ex.Val: -0.361586. Right: RV of $\mathbb{E}[\exp(-\text{Tr}(iv\hat{X}_{I_N}^N))]$ with $v = 0.009I_d$ in function of T/N, $x = 0.4I_d$, $\alpha = 9.2$, $b = -0.5I_d$ and $a = I_d$. Ex.Val: 0.572241. The width of each point represents the 95% confidence interval.

Trajectory error $\mathbb{E}\left[\max_{0 \le s \le T} \operatorname{Tr}(X_s^{\times})\right]$

Figure: $d = 3, 10^7 \text{ MC}, T = 1, x = 0.4I_d + 0.2q \text{ with } q_{i,j} = 1_{i \neq j}, \alpha = 2.2, b = 0 \text{ and } a = I_d.$ Left, $\mathbb{E}[\max_{0 \leq k \leq N} \operatorname{Tr}(\hat{X}_{t_k}^N)]$, right: $\mathbb{E}[\max_{0 \leq k \leq N} \operatorname{Tr}(\hat{X}_{t_k}^N)] - \mathbb{E}[\max_{0 \leq k \leq N} \operatorname{Tr}(X_{t_k}^X)]$ in function of T/N. The width of each point gives the precision up to two standard deviations.

Gourieroux Sufana Model - Put Best of Option

Figure: $\mathbb{E}[e^{-rT}(K - \max(\hat{S}_{i,N}^{1,N}, \hat{S}_{i,N}^{2,N}))^+]$ in function of T/N. d = 2, T = 1, K = 120, $S_0^1 = S_0^2 = 100$, and r = 0.02, $x = 0.04I_d + 0.02q$ with $q_{i,j} = 1_{i \neq j}$, $a = 0.2I_d$, $b = 0.5I_d$ and $\alpha = 4.5$ (left), $\alpha = 1.05$ (right). The width of each point gives the precision up to two standard deviations (10^6 MC).

In this work, we have presented :

- Exact scheme for Wishart process.
- Second and third order scheme for Wishart process.
- Potential second order scheme for a general affine process defined on $\mathcal{S}^+_d(\mathbb{R}).$

< ∃ >

Thank you !!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで