Exact and high order discretization schemes for Wishart processes and their affine extensions

Abdelkoddousse Ahdida & Aurélien Alfonsi

CERMICS, Ecole des Ponts Paris Tech - PRES Université Paris Est
Modeling and Managing Financial Risks -2011
Plan

1. Motivation and notations

2. Exact simulation for Wishart processes
 - Splitting operator property
 - Exact simulation

3. High order discretization for Wishart processes and affine processes
 - Wishart processes
 - Affine processes

4. Numerical results
1 Motivation and notations

2 Exact simulation for Wishart processes
 • Splitting operator property
 • Exact simulation

3 High order discretization for Wishart processes and affine processes
 • Wishart processes
 • Affine processes

4 Numerical results
Motivation

- Wishart process and affine process defined on the symmetric positive cone $S^+_d(\mathbb{R})$ are a key-tool for:
 - Defining the natural correlation between processes.
 - A generalization of stochastic volatility in multidimension.
 - Pricing complex derivatives taking into account the relationship between spot (Outperformer, Best/Worst of options ...).

- Pricing with Fourier transform methods are less efficient in the multi dimension context.

- To the best of our knowledge, this is the first exact simulation and high order discretization that work without any restriction on parameters.
Definitions

We say that the process \((X^x_t)^{t \geq 0}\) is a \underline{continuous positive affine} process, if it is a solution of the following SDE:

\[
X^x_t = x + \int_0^t (\bar{\alpha} + B(X^x_s)) \, ds + \int_0^t \left(\sqrt{X^x_s} dW_s a + a^T dW_s^T \sqrt{X^x_s} \right),
\]

(1)

where \((W_t, t \geq 0)\) denotes a \(d\)-by-\(d\) square matrix made of independent standard Brownian motions, \(x, \bar{\alpha} \in S^+_d(\mathbb{R}), a \in M_d(\mathbb{R}), B \in \mathcal{L}(S_d(\mathbb{R}))\) (where \(\mathcal{L}(S_d(\mathbb{R}))\) is a linear mapping on \(S_d(\mathbb{R})\)), and \(\forall x \in S^+_d(\mathbb{R})\)

\[
x = o\text{diag}(\lambda_1, \ldots, \lambda_d)o^T \implies \sqrt{x} = o\text{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_d})o^T.
\]

\underline{Wishart processes} correspond to the following case:

\[
\exists \alpha \geq 0, \bar{\alpha} = \alpha a^T a \text{ and } \exists b \in M_d(\mathbb{R}), \forall x \in S_d(\mathbb{R}), B(x) = bx + xb^T.
\]

(2)
Application in finance: Gourieroux and Sufana model

- We consider d risky assets S_1^t, \ldots, S_d^t. Let $(B_t, t \geq 0)$ denote a standard Brownian motion on \mathbb{R}^d that is independent from $(X_t)_{t \geq 0} \sim WIS_d(x, \alpha, b, a)$. Then, we have

$$t \geq 0, 1 \leq l \leq d, \quad \frac{dS^l_t}{S^l_t} = rdt + (\sqrt{X_t} dB_t)_l.$$

- Gourieroux and Sufana model assumes that the Wishart process $(X_t)_{t \geq 0}$ is the Covariance matrix of the spot vector $(S_t)_{t \geq 0}$.

- Da Fonseca and al. have chosen the adequate correlation between spot vector $(S_t)_{t \geq 0}$ and its Covariance matrix $(X_t)_{t \geq 0}$ to observe the smile effect, and to keep the model affine.
Plan

1. Motivation and notations
2. Exact simulation for Wishart processes
 - Splitting operator property
 - Exact simulation
3. High order discretization for Wishart processes and affine processes
 - Wishart processes
 - Affine processes
4. Numerical results
Composition technique for the exact simulation

Proposition

If \((Y^x_t)_{t \geq 0} \) is an affine process starting from \(x \) and associated to the infinitesimal operator \(L_Y \), such that \(L_Y = L_Z + L_X \), and \(L_Z L_X = L_X L_Z \).

Then

\[
Y^x_t \sim X^Z^x_t,
\]

where \((X^x_t)_{t \geq 0} \) and \((Z^x_t)_{t \geq 0} \) are two affine independent processes associated respectively to two infinitesimal generators \(L_X \) and \(L_Z \).

Proof.

For some class of functions \(f \)

\[
\begin{align*}
\mathbb{E}[f(X^x_t)] &= \sum_{k=0}^{\infty} t^k L_X^k f(x) / k! := e^{tL_X}(f)(x) \\
\mathbb{E}\left[f(X^Z^x_t)\right] &= \mathbb{E}\left[\mathbb{E}\left[f(X^Z^x_t) | Z^x_t\right]\right] \\
&= \sum_{k_1=0}^{+\infty} \frac{t^{k_1}}{k_1!} \mathbb{E}\left[L_X^{k_1} f(Z^x_t)\right] \\
&= \sum_{k_1,k_2=0}^{+\infty} \frac{t^{k_1+k_2}}{k_1! k_2!} L_X^{k_1} L_Z^{k_2} f(x) \\
&= \sum_{k=0}^{\infty} \frac{t^k}{k!} (L_X + L_Z)^k f(x) \\
&= \mathbb{E}[f(Y^x_t)]
\end{align*}
\]
Canonical Wishart process transformation

Proposition

Let \(t > 0, \, a, \, b \in \mathcal{M}_d(\mathbb{R}) \) and \(\alpha \geq d - 1 \). Let \(m_t = \exp(t b) \), \(q_t = \int_0^t \exp(s b) a^T a \exp(s b^T) ds \) and \(n = \text{Rk}(q_t) \). Then, there is \(\theta_t \in \mathcal{G}_d(\mathbb{R}) \) such that \(q_t = t \theta_t l_n^d \theta_t^T \), and we have:

\[
\text{WIS}_d(x, \alpha, b, a; t) = \text{Law}_{\theta_t} \text{WIS}_d(\theta_t^{-1} m_t x m_t^T (\theta_t^{-1})^T, \alpha, 0, l_n^d; t) \theta_t^T
\]

Remark

- **General /Non central Wishart distribution \(\cong\) Canonical/Central Wishart distribution**
- **In the case of \(d = 1\), we obtain the usual identity of Bessel and CIR processes**

\[
\text{WIS}_1(x, \alpha, b, a; t) = \text{Law}_{\frac{a^2 e^{2bt} - 1}{2bt}} \text{WIS}_1(\frac{2btx}{a^2(1 - e^{-2bt})}, \alpha, 0, 1; t).
\]
A remarkable splitting operator

Theorem

Let L be the generator associated to the Wishart process $\text{WIS}_d(x, \alpha, 0, I_n^d)$ and L_i be the generator associated to $\text{WIS}_d(x, \alpha, 0, e_i^d)$ for $i \in \{1, \ldots, d\}$. Then, we have

$$L = \sum_{i=1}^{n} L_i \quad \text{and} \quad \forall i, j \in \{1, \ldots, d\}, \; L_i L_j = L_j L_i,$$

where $\forall 1 \leq i \leq d, \; \forall 1 \leq k, l \leq d, \; (e_i^d)_{k,l} = 1_{\{k=l=i\}}, \; (I_n^d)_{k,l} = 1_{\{k=l, k \leq n\}}$.

Remark

- The operators L_i and L_j are the same up to the exchange of coordinates i and j.

- The processes $\text{WIS}_d(x, \alpha, 0, e_i^d)$ and $\text{WIS}_d(x, \alpha, 0, I_n^d)$ are well defined on $S_d^+(\mathbb{R})$ under the same hypothesis, namely $\alpha \geq d - 1$ and $x \in S_d^+(\mathbb{R})$.
Motivation and notations
Exact simulation for Wishart processes
High order discretization for Wishart processes and affine processes
Numerical results

Splitting operator property
Exact simulation

Exact simulation for the canonical Wishart distribution

Let us consider $t > 0$ and $x \in S_d^+(\mathbb{R})$. We define iteratively:

$$X_{t}^{1,x} \sim WIS_d(x, \alpha, 0, e_d^1; t),$$
$$X_{t}^{2,x} \sim WIS_d(X_{t}^{1,x}, \alpha, 0, e_d^2; t),$$
$$\ldots$$
$$X_{t}^{n,x} \sim WIS_d(X_{t}^{n-1,x}, \ldots, X_{t}^{1,x}, \alpha, 0, e_d^n; t),$$

where, $X_{t}^{i,x}$ is sampled according to the distribution at time t of an independent Wishart process starting from $X_{t}^{i-1,x}$ and with parameters $(\alpha, 0, e_d^i)$.

We have the following result:

Proposition

Let $X_{t}^{n,x}$ be defined as above. Then $X_{t}^{n,x} \sim WIS_d(x, \alpha, 0, I_d^n; t)$.
Exact simulation of $WIS_d(x, \alpha, 0, e_d^1)$, with $d \in \mathbb{N}^*$

Theorem

The solution of $WIS_d(x, \alpha, 0, e_d^1)$ is given explicitly by:

\[
X^x_t = q \begin{pmatrix}
(U^u_t)^{1,1} + \sum_{k=1}^r ((U^u_t)^{1,k+1})^2 & ((U^u_t)^{1,l+1})_{1 \leq l \leq r}^T \\
((U^u_t)^{1,l+1})_{1 \leq l \leq r} & 0 \end{pmatrix}
\begin{pmatrix}
l_r \\
0 \end{pmatrix}
q^T,
\]

where

\[
d(U^u_t)^{1,1} = (\alpha - r) dt + 2 \sqrt{(U^u_t)^{1,1}} dZ_1^1 \geq 0, \\
d((U^u_t)^{1,l+1})_{1 \leq l \leq r} = (dZ_{l+1}^1)_{1 \leq l \leq r}, \\
d((U^u_t)^{k,l})_{2 \leq k,l \leq r} = d((X^x_t)^{k,l})_{2 \leq k,l \leq r} = 0,
\]

and $q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_r & 0 \\ 0 & k_r & l_{d-r-1} \end{pmatrix}$.

Abdelkoddousse Ahdida & Aurélien Alfonsi

Exact and high order discretization schemes
Methodology to sample Exactly Wishart distribution

\[
WIS_d(x, \alpha, b, a; t) \sim \theta_t WIS_d(\theta_t^{-1} m_t m_t^T (\theta_t^{-1})^T, \alpha, 0, I_d; t) \theta_t^T
\]

\[\forall 2 \leq n \leq d, \ WIS_d(x, \alpha, 0, I_d^n), \quad \text{By composition Technique}\]

\[\forall 2 \leq i \leq d, \ WIS_d(x, \alpha, 0, e_i^d), \quad \text{By permutation}\]

\[WIS_d(x, \alpha, 0, e_1^d).\]

Sampling one square Bessel process and \(d - 1 \) Brownian motions.
Plan

1. Motivation and notations

2. Exact simulation for Wishart processes
 - Splitting operator property
 - Exact simulation

3. High order discretization for Wishart processes and affine processes
 - Wishart processes
 - Affine processes

4. Numerical results
A potential ν order scheme for the operator L_1, $d \in \mathbb{N}$

Theorem

By replacing the transformation $(U^u_t\{1,1\})_{2 \leq l \leq d}$ (resp. $(U^u_t\{1,1\})$) with $\sqrt{t}(\hat{G}^i)_{1 \leq i \leq r}$ (resp. with $(\hat{U}^u_t\{1,1\})$), then \hat{X}_t is a potential ν-order scheme for the operator L_1, where:

- $(\hat{G}^i)_{1 \leq i \leq r}$ is a sequence of independent real variables with finite moments of any order such that:
 $$\forall i \in \{1, \ldots, r\}, \ \forall k \leq 2\nu + 1, \ \mathbb{E}[(\hat{G}^i)^k] = \mathbb{E}[G^k], \text{ where } G \sim \mathcal{N}(0,1).$$

- $(\hat{U}^u_t\{1,1\})$ is sampled independently according to a potential weak νth-order scheme for the CIR process $d(U^u_t\{1,1\}) = (\alpha - r)dt + 2\sqrt{(U^u_t\{1,1\})}dZ^1_t$ starting from $u\{1,1\}$.
Methodology to build the scheme of order ν

$$\widehat{WIS}_d(x, \alpha, b, a; t) = \theta_t \widehat{WIS}_d(\theta_t^{-1}m_t x m_t^T (\theta_t^{-1})^T, \alpha, 0, I_d^n; t) \theta_t^T$$

$\forall 2 \leq n \leq d$, $\widehat{WIS}_d(x, \alpha, 0, I_d^n)$, \text{By composition Technique}

$\forall 2 \leq i \leq d$, $\widehat{WIS}_d(x, \alpha, 0, e_i^d)$, \text{By permutation}

$\widehat{WIS}_d(x, \alpha, 0, e_1^d)$.

Schemes of order ν for: one square Bessel process and $d - 1$ Brownian motions.
Theorem

Let \((X_t^x)_{t \geq 0} \sim \text{WIS}_d(x, \alpha, b, a)\) such that either \(a \in \mathcal{G}_d(\mathbb{R})\) or \(a^T ab = ba^T a\), and \(f \in C^\infty(S_d(\mathbb{R}))\). Let \((\hat{X}_{t_i}^N, 0 \leq i \leq N)\) be sampled with the scheme defined previously with the third order scheme for the CIR given in Alfonsi-2009 and starting from \(x_0 \in S_d^+(\mathbb{R})\). Then,

\[\exists C, \ N_0 > 0, \ \forall N \geq N_0, \ |\mathbb{E}[f(\hat{X}_{t_i}^N)] - \mathbb{E}[f(X_t^x)]| \leq C/N^3. \]

Remark

New extension of the regularity of the function \(u(t, x) = \mathbb{E}[f(X_t^x)]\), from the CIR process to Wishart process . (Phd thesis A.Alfonsi 2006)
Canonical positive affine process transformation

Proposition

Let \((X_t^x)_{t \geq 0} \sim AFF_d(x, \tilde{\alpha}, B, a)\) and \(n = \text{Rk}(a)\) be the rank of \(a^T a\). Then, there exist a diagonal matrix \(\tilde{\delta}\), and a non singular matrix \(u \in G_d(\mathbb{R})\) such that \(\tilde{\alpha} = u^T \tilde{\delta} u\), and \(a^T a = u^T I_d u\), and we have:

\[
(X_t^x)_{t \geq 0} \overset{\text{Law}}{=} u^T AFF_d \left((u^{-1})^T x u^{-1}, \tilde{\delta}, B_u, I_d^n \right) u,
\]

where \(\forall y \in S_d(\mathbb{R}), \ B_u(y) = (u^{-1})^T B(u^T y u) u^{-1}\).
The potential second order discretization for a general affine process defined on $\mathcal{S}_d^+(\mathbb{R})$

- It is sufficient to study the affine process $\text{AFF}_d(x, \bar{\delta}, B, I_d^n)$.
- By splitting operator, if L denotes the infinitesimal generator of $\text{AFF}_d(x, \bar{\delta}, B, I_d^n)$, we conclude then that

\[
\begin{align*}
L &= L_{\text{ODE}} + L_{\text{Wishart}}, \\
L_{\text{ODE}} &= \text{Tr}((\bar{\delta} - \delta_{\min} I_d^n + B(x))D^S) \sim X^1_t, \\
L_{\text{Wishart}} &= \text{Tr}((\delta_{\min} I_d^n)D^S) + 2\text{Tr}(xD^S I_d^n D^S) = \sum_{i=1}^n L_i \sim X^2_t.
\end{align*}
\]

Proposition

Both schemes $X^{1, x}_{t/2}$, $X^{2, x}_{t/2}$ and $UX^{1, x}_{t}$, $X^{2, x}_{t} + (1 - U)X^{1, x}_{t}$ are potential second order scheme for $\text{AFF}_d(x, \bar{\delta}, B, I_d^n)$, where U is an independent Bernoulli variable with parameter $\frac{1}{2}$.
Fast potential second order discretization for a general affine process defined on $S_d^+({\mathbb R})$, $\delta \geq dl_d^n$

- The previous algorithm requires $O(d^4)$, on each step time due to Cholesky decomposition of each transformation $(L_i)_{1 \leq i \leq d}$.

- In the case of $\delta \geq dl_d^n$ we propose an other scheme that costs only $O(d^3)$:

\[
L = L_{ODE} + L_{Wishart},
\]

\[
L_{ODE} = \text{Tr}((\delta - dl_d^n + B(x))D^S),
\]

\[
L_{Wishart} = \text{Tr}((dl_d^n)^S)^S) + 2\text{Tr}(xD^S l_d^n D^S) \sim (c + \sqrt{t\tilde{G}l_d^n})(c + \sqrt{t\tilde{G}l_d^n})^T,
\]

where \tilde{G} is a matrix, in $\mathcal{M}_d({\mathbb R})$, made of independent variables that fit the first five moments of normal random variable.
Plan

1 Motivation and notations

2 Exact simulation for Wishart processes
 • Splitting operator property
 • Exact simulation

3 High order discretization for Wishart processes and affine processes
 • Wishart processes
 • Affine processes

4 Numerical results
Time computation for $\mathbb{E} \left[\exp (i \text{Tr} (v X_T^X)) \right]$: $Nmc = 10^6$, $a = l_d$, $b = 0$, $x = 10l_d$, $v = 0.09l_d$ and $T = 1$

<table>
<thead>
<tr>
<th>Schemes</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact (1 step)</td>
<td>-0.526852</td>
<td>-0.227962</td>
<td>12</td>
<td>-0.526486</td>
<td>-0.229078</td>
<td>125</td>
</tr>
<tr>
<td>2^{nd} order bis</td>
<td>-0.526229</td>
<td>-0.228663</td>
<td>41</td>
<td>-0.526574</td>
<td>-0.228133</td>
<td>229</td>
</tr>
<tr>
<td>2^{nd} order</td>
<td>-0.526577</td>
<td>-0.228923</td>
<td>76</td>
<td>-0.527613</td>
<td>-0.228376</td>
<td>244</td>
</tr>
<tr>
<td>3^{rd} order</td>
<td>-0.527021</td>
<td>-0.227286</td>
<td>82</td>
<td>-0.526891</td>
<td>-0.227729</td>
<td>369</td>
</tr>
<tr>
<td>Exact (N steps)</td>
<td>-0.526963</td>
<td>-0.228303</td>
<td>123</td>
<td>-0.525638</td>
<td>-0.231449</td>
<td>687</td>
</tr>
<tr>
<td>Corrected Euler</td>
<td>-0.525627*</td>
<td>-0.233863*</td>
<td>225</td>
<td>-0.527090</td>
<td>-0.228251</td>
<td></td>
</tr>
</tbody>
</table>

$\alpha = 3.5$, $d = 3$, $\Delta R = 10^{-3}$, $\Delta \text{Im.} = 10^{-3}$, exact value $R. = -0.527090$ and $\text{Im.} = -0.228251$

<table>
<thead>
<tr>
<th>Schemes</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact (1 step)</td>
<td>-0.591579</td>
<td>-0.037651</td>
<td>12</td>
<td>-0.590808</td>
<td>-0.036487</td>
<td>229</td>
</tr>
<tr>
<td>2^{nd} order bis</td>
<td>-0.590444</td>
<td>-0.037024</td>
<td>77</td>
<td>-0.590818</td>
<td>-0.036210</td>
<td>246</td>
</tr>
<tr>
<td>2^{nd} order</td>
<td>-0.591234</td>
<td>-0.034847</td>
<td>82</td>
<td>-0.592145</td>
<td>-0.037411</td>
<td>920</td>
</tr>
<tr>
<td>3^{rd} order</td>
<td>-0.591169</td>
<td>-0.036618</td>
<td>174</td>
<td>-0.590079</td>
<td>-0.039937</td>
<td>680</td>
</tr>
</tbody>
</table>
| Exact (N steps) | -0.589735* | -0.042002* | 223 | -0.591411 and $\text{Im.} = -0.036346$

$\alpha = 2.2$, $d = 3$, $\Delta R = 0.9 \times 10^{-3}$, $\Delta \text{Im.} = 1.3 \times 10^{-3}$, exact value $R. = -0.591411$ and $\text{Im.} = -0.036346$

<table>
<thead>
<tr>
<th>Schemes</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact (1 step)</td>
<td>0.062712</td>
<td>-0.063757</td>
<td>181</td>
<td>0.064573</td>
<td>-0.062747</td>
<td>2762</td>
</tr>
<tr>
<td>2^{nd} order bis</td>
<td>0.064237</td>
<td>-0.063825</td>
<td>921</td>
<td>0.063534</td>
<td>-0.063280</td>
<td>4283</td>
</tr>
<tr>
<td>2^{nd} order</td>
<td>0.064922</td>
<td>-0.064103</td>
<td>1431</td>
<td>0.064120</td>
<td>-0.063122</td>
<td>4343</td>
</tr>
<tr>
<td>3^{rd} order</td>
<td>0.064620</td>
<td>-0.064543</td>
<td>1446</td>
<td>0.063469</td>
<td>-0.064380</td>
<td>5408</td>
</tr>
<tr>
<td>Exact (N steps)</td>
<td>0.063418</td>
<td>-0.064636</td>
<td>1806</td>
<td>0.061732*</td>
<td>-0.056882*</td>
<td>7113</td>
</tr>
</tbody>
</table>
| Corrected Euler | 0.068298* | -0.058491* | 2312 | 0.063960 and $\text{Im.} = -0.063544$

$\alpha = 10.5$, $d = 10$, $\Delta R = 1.4 \times 10^{-3}$, $\Delta \text{Im.} = 1.3 \times 10^{-3}$, exact value $R. = 0.063960$ and $\text{Im.} = -0.063544$

<table>
<thead>
<tr>
<th>Schemes</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
<th>R. value</th>
<th>Im. value</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact (1 step)</td>
<td>-0.036869</td>
<td>-0.094156</td>
<td>177</td>
<td>-0.035944</td>
<td>-0.092770</td>
<td>4285</td>
</tr>
<tr>
<td>2^{nd} order</td>
<td>-0.036246</td>
<td>-0.094196</td>
<td>1430</td>
<td>-0.036277</td>
<td>-0.093178</td>
<td>4327</td>
</tr>
<tr>
<td>3^{rd} order</td>
<td>-0.035408</td>
<td>-0.093479</td>
<td>1441</td>
<td>-0.036145</td>
<td>-0.093003</td>
<td>6385</td>
</tr>
<tr>
<td>Exact (N steps)</td>
<td>-0.036478</td>
<td>-0.092860</td>
<td>1866</td>
<td>-0.030118*</td>
<td>-0.088988*</td>
<td>7144</td>
</tr>
</tbody>
</table>
| Corrected Euler | -0.028685* | -0.094281* | 2321 | -0.036064 and $\text{Im.} = -0.093275$

$\alpha = 9.2$, $d = 10$, $\Delta R = 1.4 \times 10^{-3}$, $\Delta \text{Im.} = 1.4 \times 10^{-3}$, exact value $R. = -0.036064$ and $\text{Im.} = -0.093275$
Motivation and notations
Exact simulation for Wishart processes
High order discretization for Wishart processes and affine processes
Numerical results

Laplace transform $\mathbb{E} [\exp(i \text{Tr}(\nu X_t^X))]$, $d = 3$

Figure: $d = 3$, 10^7 MC, $T = 10$. The RV of $\mathbb{E}[\exp(-\text{Tr}(\nu X_t^N))]$ in function of T/N. Left: $\nu = 0.05I_d$ and $x = 0.4I_d$, $\alpha = 4.5$, $a = I_d$ and $b = 0$. Ex.Val.: 0.054277. Right: $\nu = 0.2I_d + 0.04q$ and $x = 0.4I_d + 0.2q$, $\alpha = 2.22$, $a = I_d$ and $b = -0.5I_d$. Ex.Val: 0.239836. Here, q is the matrix defined by: $q_{i,j} = 1_{i \neq j}$. The width of each point represents the 95% confidence interval.
Laplace transform $\mathbb{E}[\exp(i\text{Tr}(vX^\mathcal{X}_{t_f}))], \ d = 10$

Figure: $d = 10$, 10^7 MC, $T = 10$. Left: IM of $\mathbb{E}[\exp(-\text{Tr}(iv\hat{X}_N^t))]$ with $v = 0.009l_d$ in function of T/N, $x = 0.4l_d$, $\alpha = 12.5$, $b = 0$ and $a = l_d$. Ex.Val: -0.361586. Right: RV of $\mathbb{E}[\exp(-\text{Tr}(iv\hat{X}_N^t))]$ with $v = 0.009l_d$ in function of T/N, $x = 0.4l_d$, $\alpha = 9.2$, $b = -0.5l_d$ and $a = l_d$. Ex.Val 0.572241. The width of each point represents the 95% confidence interval.
Trajectory error $\mathbb{E} \left[\max_{0 \leq s \leq T} \text{Tr}(X_s^x) \right]$

Figure: $d = 3$, 10^7 MC, $T = 1$, $x = 0.4l_d + 0.2q$ with $q_{i,j} = 1_{i \neq j}$, $\alpha = 2.2$, $b = 0$ and $a = l_d$. Left, $\mathbb{E} [\max_{0 \leq k \leq N} \text{Tr}(\hat{X}_k^{N})]$, right: $\mathbb{E} [\max_{0 \leq k \leq N} \text{Tr}(X_k^{x_N})]$ in function of T/N. The width of each point gives the precision up to two standard deviations.
Gourieroux Sufana Model - Put Best of Option

Figure: \(E[e^{-rT}(K - \max(\hat{S}^{1,T}_N, \hat{S}^{2,T}_N))^+] \) in function of \(T/N \). \(d = 2, T = 1, K = 120, S^1_0 = S^2_0 = 100, \) and \(r = 0.02 \), \(x = 0.04I_d + 0.02q \) with \(q_{i,j} = 1_{i \neq j} \), \(a = 0.2I_d \), \(b = 0.5I_d \) and \(\alpha = 4.5 \) (left), \(\alpha = 1.05 \) (right). The width of each point gives the precision up to two standard deviations (10^6 MC).
In this work, we have presented:

- Exact scheme for Wishart process.
- Second and third order scheme for Wishart process.
- Potential second order scheme for a general affine process defined on $S_d^+(\mathbb{R})$.
Thank you !!